Last updated: 2018-07-17
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Repository version: e84909d
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: R/.Rhistory
Ignored: analysis/.Rhistory
Ignored: analysis/pipeline/.Rhistory
Untracked files:
Untracked: ..gif
Untracked: .DS_Store
Untracked: R/.DS_Store
Untracked: analysis/.DS_Store
Untracked: analysis/bibliography.bib
Untracked: analysis/detection_rate_correction_cache/
Untracked: analysis/pipeline/large_sets.pdf
Untracked: analysis/pipeline/temp_ari.txt
Untracked: analysis/pipeline/temp_time.txt
Untracked: analysis/tutorial_cache/
Untracked: analysis/writeup/cite.bib
Untracked: analysis/writeup/cite.log
Untracked: analysis/writeup/paper.aux
Untracked: analysis/writeup/paper.bbl
Untracked: analysis/writeup/paper.blg
Untracked: analysis/writeup/paper.log
Untracked: analysis/writeup/paper.out
Untracked: analysis/writeup/paper.synctex.gz
Untracked: analysis/writeup/paper.tex
Untracked: analysis/writeup/writeup.aux
Untracked: analysis/writeup/writeup.bbl
Untracked: analysis/writeup/writeup.blg
Untracked: analysis/writeup/writeup.dvi
Untracked: analysis/writeup/writeup.log
Untracked: analysis/writeup/writeup.out
Untracked: analysis/writeup/writeup.synctex.gz
Untracked: analysis/writeup/writeup.tex
Untracked: analysis/writeup/writeup2.aux
Untracked: analysis/writeup/writeup2.bbl
Untracked: analysis/writeup/writeup2.blg
Untracked: analysis/writeup/writeup2.log
Untracked: analysis/writeup/writeup2.out
Untracked: analysis/writeup/writeup2.pdf
Untracked: analysis/writeup/writeup2.synctex.gz
Untracked: analysis/writeup/writeup2.tex
Untracked: analysis/writeup/writeup3.aux
Untracked: analysis/writeup/writeup3.log
Untracked: analysis/writeup/writeup3.out
Untracked: analysis/writeup/writeup3.synctex.gz
Untracked: analysis/writeup/writeup3.tex
Untracked: data/unnecessary_in_building/
Unstaged changes:
Modified: R/LSLSL.R
Modified: R/SLSL.R
Modified: R/SLSL_ref.R
Modified: R/tsne_spectral.R
Deleted: SCNoisyClustering_0.1.0.tar.gz
Deleted: analysis/correcting_detection_rate/Buettner.Rmd
Deleted: analysis/correcting_detection_rate/Buettner.pdf
Deleted: analysis/correcting_detection_rate/Pollen.R
Deleted: analysis/correcting_detection_rate/Pollen.Rmd
Deleted: analysis/correcting_detection_rate/Pollen.pdf
Deleted: analysis/correcting_detection_rate/Usoskin.Rmd
Deleted: analysis/correcting_detection_rate/Usoskin.pdf
Deleted: analysis/correcting_detection_rate/Usoskin_files/figure-latex/loess residuals-1.pdf
Deleted: analysis/correcting_detection_rate/Usoskin_files/figure-latex/pca_plot-1.pdf
Deleted: analysis/correcting_detection_rate/Usoskin_files/figure-latex/quantile_plot-1.pdf
Deleted: analysis/correcting_detection_rate/Usoskin_files/figure-latex/quantile_plot_log-1.pdf
Deleted: analysis/correcting_detection_rate/Usoskin_files/figure-latex/rg residuals-1.pdf
Deleted: analysis/correcting_detection_rate/Zeisel.R
Deleted: analysis/correcting_detection_rate/detectionrate_alldata.R
Deleted: analysis/correcting_detection_rate/detectionrate_pbmc.R
Deleted: analysis/correcting_detection_rate/sc.xls
Modified: analysis/pipeline/large_sets.Rmd
Modified: analysis/pipeline/pbmc_pipeline.R
Modified: analysis/pipeline/small_good_sets.Rmd
Modified: analysis/pipeline/small_good_sets_result.txt
Modified: analysis/pipeline/small_good_sets_time.txt
Modified: analysis/writeup/.DS_Store
Modified: src/SCNoisyClustering.cpp
Modified: src/SCNoisyClustering.o
Modified: src/SCNoisyClustering.so
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
SLSL (Scaled Lasso Similarity Learning) is an unsupervised learning tool for clustering single cells using their expression level data. SLSL constructs many similarity matrices using different distance measures (Euclidean, Pearson, and Spearman), and different kernel parameters to account for the possible nonlinear structure. Then, SLSL employs scaled lasso to find optimal weights on each of those similarity matrices and infer one final sparse similarity matrix. This procedure does not have rank constraint unlike many popular unsupervised learning tools, because imposing such inflexible structure does not guarantee higher accuracy. Instead, we employ network diffusion to make the final similarity matrix closer to the block diagonal matrix. This is in effect equivalent to shrinking the less important eigenvalues. Lastly, SLSL sequentially performs dimension reduction using tSNE and kmeans for the final clustering result.
This reproducible R Markdown analysis was created with workflowr 1.1.1