Last updated: 2018-06-02

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 8fc91c5

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/BH_robustness_cache/
        Ignored:    analysis/FDR_Null_cache/
        Ignored:    analysis/FDR_null_betahat_cache/
        Ignored:    analysis/Rmosek_cache/
        Ignored:    analysis/StepDown_cache/
        Ignored:    analysis/alternative2_cache/
        Ignored:    analysis/alternative_cache/
        Ignored:    analysis/ash_gd_cache/
        Ignored:    analysis/average_cor_gtex_2_cache/
        Ignored:    analysis/average_cor_gtex_cache/
        Ignored:    analysis/brca_cache/
        Ignored:    analysis/cash_deconv_cache/
        Ignored:    analysis/cash_fdr_1_cache/
        Ignored:    analysis/cash_fdr_2_cache/
        Ignored:    analysis/cash_fdr_3_cache/
        Ignored:    analysis/cash_fdr_4_cache/
        Ignored:    analysis/cash_fdr_5_cache/
        Ignored:    analysis/cash_fdr_6_cache/
        Ignored:    analysis/cash_plots_2_cache/
        Ignored:    analysis/cash_plots_cache/
        Ignored:    analysis/cash_sim_1_cache/
        Ignored:    analysis/cash_sim_2_cache/
        Ignored:    analysis/cash_sim_3_cache/
        Ignored:    analysis/cash_sim_4_cache/
        Ignored:    analysis/cash_sim_5_cache/
        Ignored:    analysis/cash_sim_6_cache/
        Ignored:    analysis/cash_sim_7_cache/
        Ignored:    analysis/correlated_z_2_cache/
        Ignored:    analysis/correlated_z_3_cache/
        Ignored:    analysis/correlated_z_cache/
        Ignored:    analysis/create_null_cache/
        Ignored:    analysis/cutoff_null_cache/
        Ignored:    analysis/design_matrix_2_cache/
        Ignored:    analysis/design_matrix_cache/
        Ignored:    analysis/diagnostic_ash_cache/
        Ignored:    analysis/diagnostic_correlated_z_2_cache/
        Ignored:    analysis/diagnostic_correlated_z_3_cache/
        Ignored:    analysis/diagnostic_correlated_z_cache/
        Ignored:    analysis/diagnostic_plot_2_cache/
        Ignored:    analysis/diagnostic_plot_cache/
        Ignored:    analysis/efron_leukemia_cache/
        Ignored:    analysis/fitting_normal_cache/
        Ignored:    analysis/gaussian_derivatives_2_cache/
        Ignored:    analysis/gaussian_derivatives_3_cache/
        Ignored:    analysis/gaussian_derivatives_4_cache/
        Ignored:    analysis/gaussian_derivatives_5_cache/
        Ignored:    analysis/gaussian_derivatives_cache/
        Ignored:    analysis/gd-ash_cache/
        Ignored:    analysis/gd_delta_cache/
        Ignored:    analysis/gd_lik_2_cache/
        Ignored:    analysis/gd_lik_cache/
        Ignored:    analysis/gd_w_cache/
        Ignored:    analysis/knockoff_10_cache/
        Ignored:    analysis/knockoff_2_cache/
        Ignored:    analysis/knockoff_3_cache/
        Ignored:    analysis/knockoff_4_cache/
        Ignored:    analysis/knockoff_5_cache/
        Ignored:    analysis/knockoff_6_cache/
        Ignored:    analysis/knockoff_7_cache/
        Ignored:    analysis/knockoff_8_cache/
        Ignored:    analysis/knockoff_9_cache/
        Ignored:    analysis/knockoff_cache/
        Ignored:    analysis/knockoff_var_cache/
        Ignored:    analysis/marginal_z_alternative_cache/
        Ignored:    analysis/marginal_z_cache/
        Ignored:    analysis/mosek_reg_2_cache/
        Ignored:    analysis/mosek_reg_4_cache/
        Ignored:    analysis/mosek_reg_5_cache/
        Ignored:    analysis/mosek_reg_6_cache/
        Ignored:    analysis/mosek_reg_cache/
        Ignored:    analysis/pihat0_null_cache/
        Ignored:    analysis/plot_diagnostic_cache/
        Ignored:    analysis/poster_obayes17_cache/
        Ignored:    analysis/real_data_simulation_2_cache/
        Ignored:    analysis/real_data_simulation_3_cache/
        Ignored:    analysis/real_data_simulation_4_cache/
        Ignored:    analysis/real_data_simulation_5_cache/
        Ignored:    analysis/real_data_simulation_cache/
        Ignored:    analysis/rmosek_primal_dual_2_cache/
        Ignored:    analysis/rmosek_primal_dual_cache/
        Ignored:    analysis/seqgendiff_cache/
        Ignored:    analysis/simulated_correlated_null_2_cache/
        Ignored:    analysis/simulated_correlated_null_3_cache/
        Ignored:    analysis/simulated_correlated_null_cache/
        Ignored:    analysis/simulation_real_se_2_cache/
        Ignored:    analysis/simulation_real_se_cache/
        Ignored:    analysis/smemo_2_cache/
        Ignored:    data/LSI/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
        Ignored:    output/fig/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    rmd 8fc91c5 LSun 2018-06-02 wflow_publish(“analysis/cash_plots_2.rmd”)
    rmd 3189fa1 Lei Sun 2018-05-29 boxplots
    rmd c209689 Lei Sun 2018-05-29 plotting
    rmd 0bfb991 Lei Sun 2018-05-28 w.rho
    rmd a4261c2 Lei Sun 2018-05-28 normal simulation
    html f395b95 LSun 2018-05-28 Build site.
    rmd 10d1bae Lei Sun 2018-05-28 choose typical
    html 899a50f LSun 2018-05-28 Build site.
    rmd d4d750e Lei Sun 2018-05-28 kable
    html ff444fd LSun 2018-05-28 Build site.
    rmd 8216cc4 LSun 2018-05-28 wflow_publish(“analysis/cash_plots_2.rmd”)
    html f50e602 LSun 2018-05-28 Build site.
    rmd 41b6461 LSun 2018-05-28 wflow_publish(“analysis/cash_plots_2.rmd”)
    rmd 5ebe9d5 Lei Sun 2018-05-28 plots
    rmd 756fdcc LSun 2018-05-28 revision
    rmd 9978e57 Lei Sun 2018-05-27 different g
    rmd 2b3ee63 Lei Sun 2018-05-27 sigma = 3
    html 7610f05 LSun 2018-05-23 Build site.
    rmd 0cdcf7b LSun 2018-05-23 wflow_publish(“analysis/cash_plots_2.rmd”)
    html 1eec7b1 LSun 2018-05-23 Build site.
    rmd f912730 LSun 2018-05-23 wflow_publish(“analysis/cash_plots_2.rmd”)
    rmd f178424 Lei Sun 2018-05-21 multiple priors
    rmd 637bdce LSun 2018-05-21 simulations
    rmd fe910f1 Lei Sun 2018-05-21 plotting
    rmd e5852e2 Lei Sun 2018-05-20 replot
    rmd 3dc5e78 Lei Sun 2018-05-20 revision
    rmd f387ded Lei Sun 2018-05-20 revision
    rmd 86fc901 Lei Sun 2018-05-20 new simulation scheme
    html d51ff50 LSun 2018-05-18 Build site.
    rmd 7c1e2f8 LSun 2018-05-18 wflow_publish(c(“analysis/cash_plots_2.rmd”,
    rmd c818b3f Lei Sun 2018-05-17 lfsr simulations

source("../code/gdfit.R")
source("../code/gdash_lik.R")
source("../code/count_to_summary.R")
library(ashr)
library(locfdr)
library(qvalue)
library(reshape2)
library(ggplot2)
mean_sdp <- function (x) {
   m <- mean(x)
   ymax <- m + sd(x)
   return(c(y = m, ymax = ymax, ymin = m))
}
mad.mean <- function (x) {
  return(mean(abs(x - median(x))))
}
FDP <- function (FDR, qvalue, beta) {
  return(sum(qvalue <= FDR & beta == 0) / max(sum(qvalue <= FDR), 1))
}
pFDP <- function (FDR, qvalue, beta) {
  return(sum(qvalue <= FDR & beta == 0) / sum(qvalue <= FDR))
}
TDP <- function (FDR, qvalue, beta) {
  return(sum(qvalue <= FDR & beta != 0) / sum(beta != 0))
}
FSP <- function (FSR, svalue, beta, betahat) {
  return(sum(sign(betahat[svalue <= FSR]) != sign(beta[svalue <= FSR])) / max(sum(svalue <= FSR), 1))
}
boxplot.quantile <- function(x) {
  r <- quantile(x, probs = c(0.05, 0.25, 0.5, 0.75, 0.95))
  names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
  r
}
r <- readRDS("../data/liver.rds")
ngene <- 1e4
top_genes_index = function (g, X) {
  return(order(rowSums(X), decreasing = TRUE)[1 : g])
}
lcpm = function (r) {
  R = colSums(r)
  t(log2(((t(r) + 0.5) / (R + 1)) * 10^6))
}
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
nsamp <- 5
pi0.vec <- c(0.5, 0.9, 0.99)
q.vec <- seq(0.001, 0.20, by = 0.001)
q <- 0.1
z.over <- 1.05
z.under <- 0.95
method.name.FDR <- c("BHq", "qvalue", "locfdr", "ASH", "CASH")
method.name.FSR <- c("ASH", "CASH")
method.col.FDR <- scales::hue_pal()(length(method.name.FDR))
method.col.pi0hat <- method.col.FDR[-1]
method.col.FSR <- method.col.FDR[4 : 5]
FXP.ggdata <- function (FXP.list, Noise) {
  
  FXP.mean <- lapply(FXP.list, function (FXP.mat, Noise) {
    rbind(
      All = colMeans(FXP.mat, na.rm = TRUE),
      apply(FXP.mat, 2, tapply, Noise, mean, na.rm = TRUE)
    )
  }, Noise)
  
  FXP.ggdata <- melt(FXP.mean, value.name = "mean", varnames = c("Noise", "Method"))

  FXP.q975 <- lapply(FXP.list, function (FXP.mat, Noise) {
    rbind(
      All = apply(FXP.mat, 2, quantile, probs = 0.975, na.rm = TRUE),
      apply(FXP.mat, 2, tapply, Noise, quantile, probs = 0.975, na.rm = TRUE)
    )
  }, Noise)

  FXP.q975.ggdata <- melt(FXP.q975, value.name = "q975")
  
  FXP.q025 <- lapply(FXP.list, function (FXP.mat, Noise) {
    rbind(
      All = apply(FXP.mat, 2, quantile, probs = 0.025, na.rm = TRUE),
      apply(FXP.mat, 2, tapply, Noise, quantile, probs = 0.025, na.rm = TRUE)
    )
  }, Noise)

  FXP.q025.ggdata <- melt(FXP.q025, value.name = "q025")
  
  FXP.ggdata <- cbind.data.frame(
    FXP.ggdata,
    q975 = FXP.q975.ggdata$q975,
    q025 = FXP.q025.ggdata$q025
  )
  
  FXP.ggdata$L1 <- as.numeric(FXP.ggdata$L1)
  
  return(FXP.ggdata)
}

Normal

\[ g_1 = N\left(0, 2^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, dnorm(plotx, 0, 2), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g1-1.png:
Version Author Date
f50e602 LSun 2018-05-28
1eec7b1 LSun 2018-05-23
density.ggdata.normal <- cbind.data.frame(
  g = "Normal",
  plotx,
  ploty = dnorm(plotx, 0, 2)
)
pi0hat.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  do.call(rbind, pi0hat.list)
)

##================================================================

sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##================================================================

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.normal <- cbind.data.frame(
  g = "Normal",
  FDP.q.all.ggdata
)

##============================================================

FDP.q.noise.sep <- cbind.data.frame(
  Noise,
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
)
  
FDP.q.ggdata.sep <- melt(FDP.q.noise.sep, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.sep.plot <- ggplot(data = FDP.q.ggdata.sep, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5) +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("At nominal FDR = ", .(q)))) +
  theme(plot.title = element_text(size = 12),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "bottom",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

FDP.q.all.sep.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP, fill = Method, color = Method)) +
  stat_summary(fun.data = boxplot.quantile, geom = "boxplot", position = "dodge") +
  stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = TRUE) +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("At nominal FDR = ", .(q)))) +
  theme(plot.title = element_text(size = 12, hjust = 0),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "bottom",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================

pi0.0.9 <- which(pi0.list == 0.9)
sd.z.0.9 <- sd.z[pi0.0.9]
typical.noise <- pi0.0.9[order(sd.z.0.9)[floor(quantile(seq(sd.z.0.9), c(0.15, 0.5, 0.91)))]]

z.list.sel <- z.list[typical.noise]
names(z.list.sel) <- c("Deflated Noise", "In-between", "Inflated Noise")
z.sep.ggdata <- melt(z.list.sel, value.name = "z")
z.sep.plot <- ggplot(data = z.sep.ggdata, aes(x = z)) +
  geom_histogram(aes(y = ..density..), binwidth = 0.2) +
  facet_wrap(~L1, nrow = 1) +
  stat_function(fun = dnorm, aes(color = "N(0, 1)"), lwd = 1.5, show.legend = TRUE) +
  scale_color_manual(values = "blue") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "left",
        legend.title = element_blank(),
        legend.text = element_text(size = 12))

##===========================================================

qvalue.list.sel <- qvalue.list[typical.noise]
beta.list.sel <- beta.list[typical.noise]
D <- mapply(function (X, y, q) {
  apply(X, 2, function (x, y, q) {
    c(FD = sum(y[x <= q] == 0), TD = sum(y[x <= q] != 0))
  }, y, q)
}, qvalue.list.sel, beta.list.sel, MoreArgs = list(q = q), SIMPLIFY = FALSE)
names(D) <- c("Deflated Noise", "In-between", "Inflated Noise")

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-7-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-7-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-7-3.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-8-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
d51ff50 LSun 2018-05-18
TDP.q.plot

Expand here to see past versions of unnamed-chunk-8-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
d51ff50 LSun 2018-05-18

Big normal

\[ g_2 = N\left(0, 5^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, dnorm(plotx, 0, 5), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g2-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.bignormal <- cbind.data.frame(
  g = "Big Normal",
  plotx,
  ploty = dnorm(plotx, 0, 5)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.bignormal <- cbind.data.frame(
  g = "Big Normal",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-11-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-11-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-11-3.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-12-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

Near normal

\[ g_3 = 0.6 N\left(0, 1^2\right) + 0.4 N\left(0, 3^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, 0.6 * dnorm(plotx) + 0.4 * dnorm(plotx, 0, 3), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g3-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.nearnormal <- cbind.data.frame(
  g = "Near Normal",
  plotx,
  ploty = 0.6 * dnorm(plotx) + 0.4 * dnorm(plotx, 0, 3)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.nearnormal <- cbind.data.frame(
  g = "Near Normal",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-15-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-15-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-15-3.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-16-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-16-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

Spiky

\[ g_4 = 0.4 N\left(0, 0.5^2\right) + 0.2 N\left(0, 1^2\right) + 0.2 N\left(0, 2^2\right) + 0.2 N\left(0, 3^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0,
        0.4 * dnorm(0, 0, 0.5) + 
        0.2 * dnorm(0) +
        0.2 * dnorm(0, 0, 2) +
        0.2 * dnorm(0, 0, 3)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, 0.4 * dnorm(plotx, 0, 0.5) + 
        0.2 * dnorm(plotx) +
        0.2 * dnorm(plotx, 0, 2) +
        0.2 * dnorm(plotx, 0, 3), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g4-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.spiky <- cbind.data.frame(
  g = "Spiky",
  plotx,
  ploty = 0.4 * dnorm(plotx, 0, 0.5) + 
        0.2 * dnorm(plotx) +
        0.2 * dnorm(plotx, 0, 2) +
        0.2 * dnorm(plotx, 0, 3)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.spiky <- cbind.data.frame(
  g = "Spiky",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-19-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-19-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-19-3.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-20-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-20-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

Skew

\[ g_5 = 1/4 N\left(-2, 2^2\right) + 1/4 N\left(-1, 2^2\right) + 1/4 N\left(0, 1^2\right) + 1 / 4 N\left(1, 1^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, 0.25 * dnorm(plotx, -2, 2) + 
        0.25 * dnorm(plotx, -1, 2) +
        0.25 * dnorm(plotx, 0, 1) +
        0.25 * dnorm(plotx, 1, 1), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g5-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.skew <- cbind.data.frame(
  g = "Skew",
  plotx,
  ploty = 0.25 * dnorm(plotx, -2, 2) + 
        0.25 * dnorm(plotx, -1, 2) +
        0.25 * dnorm(plotx, 0, 1) +
        0.25 * dnorm(plotx, 1, 1)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.skew <- cbind.data.frame(
  g = "Skew",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-23-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-23-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-23-3.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-24-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-24-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

Flattop

\[ g_6 = \frac17\left[N\left(-1.5, 0.5^2\right) + N\left(-1, 0.5^2\right) + N\left(-0.5, 0.5^2\right) + N\left(0, 0.5^2\right) + N\left(0.5, 0.5^2\right) + N\left(1, 0.5^2\right) + N\left(1.5, 0.5^2\right)\right] \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, sapply(plotx, function(x) {mean(dnorm(x, seq(-1.5, 1.5, by = 0.5), 0.5))}), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g6-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.flattop <- cbind.data.frame(
  g = "Flat Top",
  plotx,
  ploty = sapply(plotx, function(x) {mean(dnorm(x, seq(-1.5, 1.5, by = 0.5), 0.5))})
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.flattop <- cbind.data.frame(
  g = "Flat Top",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-27-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-27-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-27-3.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-28-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-28-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

Bimodal

\[ g_7 = 0.5 N\left(-1.5, 1\right) + 0.5 N\left(1.5, 1\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, 0.5 * dnorm(plotx, -1.5, 1) + 
        0.5 * dnorm(plotx, 1.5, 1), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g7-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.bimodal <- cbind.data.frame(
  g = "Bimodal",
  plotx,
  ploty = 0.5 * dnorm(plotx, -1.5, 1) + 
        0.5 * dnorm(plotx, 1.5, 1)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.bimodal <- cbind.data.frame(
  g = "Bimodal",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-31-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-31-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-31-3.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-32-1.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-32-2.png:
Version Author Date
ff444fd LSun 2018-05-28
1eec7b1 LSun 2018-05-23

Put together

pi0.list <- list()
for (i in seq(1000)) {pi0.list[[i]] <- sample(c(0.5, 0.9, 0.99), 1)}

FDP.q <- cbind.data.frame(
  BH = runif(1e3, 0, 0.2),
  qvalue = runif(1e3, 0, 0.2),
  locfdr = runif(1e3, 0, 0.2),
  ASH = runif(1e3, 0, 0.2),
  CASH = runif(1e3, 0, 0.2)
)

Noise <- sample(c("Deflated Noise", "In-between", "Inflated Noise"), 1e3, replace = TRUE)

z.list <- list()
for (i in seq(1000)) {z.list[[i]] <- rnorm(1e4)}

qvalue.list.sel <- list()
for (i in 1 : 3) {
qvalue.list.sel[[i]] <- cbind(
  BH = runif(1e4, 0, 0.2),
  qvalue = runif(1e4, 0, 0.2),
  locfdr = runif(1e4, 0, 0.2),
  ASH = runif(1e4, 0, 0.2),
  CASH = runif(1e4, 0, 0.2)
)
}

beta.list.sel <- list()
for (i in 1 : 3) {
beta.list.sel[[i]] <- sample(c(rep(0, 9e3), rnorm(1e3)))
}
density.g.ggdata <- rbind.data.frame(
  density.ggdata.normal,
  density.ggdata.nearnormal,
  density.ggdata.spiky,
  density.ggdata.flattop,
  density.ggdata.skew,
  density.ggdata.bimodal
)

density.g.plot <- ggplot(data = density.g.ggdata, aes(x = plotx, y = ploty)) +
  geom_line() +
  facet_wrap(~g, nrow = 1) +
  labs(x = expression(theta), y = expression(g(theta))) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "none",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##===========================================================

FDP.q.g.ggdata <- rbind.data.frame(
  FDP.q.all.ggdata.normal,
  FDP.q.all.ggdata.nearnormal,
  FDP.q.all.ggdata.spiky,
  FDP.q.all.ggdata.flattop,
  FDP.q.all.ggdata.skew,
  FDP.q.all.ggdata.bimodal
)

FDP.q.g.ggdata$Method[FDP.q.g.ggdata$Method == "BH"] = "BHq"

FDP.q.g.plot <- ggplot(data = FDP.q.g.ggdata, aes(x = pi0, y = FDP, fill = Method, color = Method)) +
  stat_summary(fun.data = boxplot.quantile, geom = "boxplot", position = "dodge") +
  stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = TRUE) +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~g, nrow = 1) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("At nominal FDR = ", .(q)))) +
  theme(plot.title = element_text(size = 12, hjust = 0),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "bottom",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

FDP.q.g.plot.save <- gridExtra::arrangeGrob(density.g.plot, FDP.q.g.plot, heights = c(1, 1.5))
Warning: Removed 8 rows containing non-finite values (stat_summary).

Warning: Removed 8 rows containing non-finite values (stat_summary).
ggsave("../output/fig/FDP.q.g.pdf", FDP.q.g.plot.save, height = 6, width = 9)

##=========================================================

blank.ggdata <- data.frame()
blank.plot <- ggplot(data = blank.ggdata) + 
  geom_blank()

z.sep.plot.save <- gridExtra::arrangeGrob(blank.plot, z.sep.plot, nrow = 1, widths = c(0.4, 3.8))

FDP.q.sep.plot.save <- gridExtra::arrangeGrob(z.sep.plot.save, FDP.q.all.sep.plot, heights = c(1, 1.5))

ggsave("../output/fig/FDP.q.sep.pdf", FDP.q.sep.plot.save, height = 6, width = 8)

##============================================================
knitr::kable(D)
BHq qvalue locfdr ASH CASH
FD 2 2 18 2 50
TD 267 267 345 265 402
BHq qvalue locfdr ASH CASH
FD 12 14 5 13 25
TD 325 339 268 335 362
BHq qvalue locfdr ASH CASH
FD 193 307 0 1346 25
TD 351 370 127 492 267
saveRDS(D, "../output/D.rds")

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggplot2_2.2.1     reshape2_1.4.3    qvalue_2.10.0    
 [4] locfdr_1.1-8      ashr_2.2-7        Rmosek_8.0.69    
 [7] CVXR_0.95         REBayes_1.3       Matrix_1.2-14    
[10] SQUAREM_2017.10-1 EQL_1.0-0         ttutils_1.0-1    
[13] PolynomF_1.0-2   

loaded via a namespace (and not attached):
 [1] splines_3.4.3     lattice_0.20-35   colorspace_1.3-2 
 [4] htmltools_0.3.6   yaml_2.1.19       gmp_0.5-13.1     
 [7] rlang_0.2.0       R.oo_1.22.0       pillar_1.2.2     
[10] Rmpfr_0.7-0       R.utils_2.6.0     bit64_0.9-7      
[13] scs_1.1-1         foreach_1.4.4     plyr_1.8.4       
[16] stringr_1.3.1     munsell_0.4.3     gtable_0.2.0     
[19] workflowr_1.0.1   R.methodsS3_1.7.1 codetools_0.2-15 
[22] evaluate_0.10.1   labeling_0.3      knitr_1.20       
[25] doParallel_1.0.11 pscl_1.5.2        parallel_3.4.3   
[28] highr_0.6         Rcpp_0.12.16      backports_1.1.2  
[31] scales_0.5.0      truncnorm_1.0-8   bit_1.1-13       
[34] gridExtra_2.3     digest_0.6.15     stringi_1.2.2    
[37] grid_3.4.3        rprojroot_1.3-2   ECOSolveR_0.4    
[40] tools_3.4.3       magrittr_1.5      lazyeval_0.2.1   
[43] tibble_1.4.2      whisker_0.3-2     MASS_7.3-50      
[46] rmarkdown_1.9     iterators_1.0.9   R6_2.2.2         
[49] git2r_0.21.0      compiler_3.4.3   

This reproducible R Markdown analysis was created with workflowr 1.0.1