Last updated: 2018-05-28

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 41b6461

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/BH_robustness_cache/
        Ignored:    analysis/FDR_Null_cache/
        Ignored:    analysis/FDR_null_betahat_cache/
        Ignored:    analysis/Rmosek_cache/
        Ignored:    analysis/StepDown_cache/
        Ignored:    analysis/alternative2_cache/
        Ignored:    analysis/alternative_cache/
        Ignored:    analysis/ash_gd_cache/
        Ignored:    analysis/average_cor_gtex_2_cache/
        Ignored:    analysis/average_cor_gtex_cache/
        Ignored:    analysis/brca_cache/
        Ignored:    analysis/cash_deconv_cache/
        Ignored:    analysis/cash_fdr_1_cache/
        Ignored:    analysis/cash_fdr_2_cache/
        Ignored:    analysis/cash_fdr_3_cache/
        Ignored:    analysis/cash_fdr_4_cache/
        Ignored:    analysis/cash_fdr_5_cache/
        Ignored:    analysis/cash_fdr_6_cache/
        Ignored:    analysis/cash_plots_2_cache/
        Ignored:    analysis/cash_plots_cache/
        Ignored:    analysis/cash_sim_1_cache/
        Ignored:    analysis/cash_sim_2_cache/
        Ignored:    analysis/cash_sim_3_cache/
        Ignored:    analysis/cash_sim_4_cache/
        Ignored:    analysis/cash_sim_5_cache/
        Ignored:    analysis/cash_sim_6_cache/
        Ignored:    analysis/cash_sim_7_cache/
        Ignored:    analysis/correlated_z_2_cache/
        Ignored:    analysis/correlated_z_3_cache/
        Ignored:    analysis/correlated_z_cache/
        Ignored:    analysis/create_null_cache/
        Ignored:    analysis/cutoff_null_cache/
        Ignored:    analysis/design_matrix_2_cache/
        Ignored:    analysis/design_matrix_cache/
        Ignored:    analysis/diagnostic_ash_cache/
        Ignored:    analysis/diagnostic_correlated_z_2_cache/
        Ignored:    analysis/diagnostic_correlated_z_3_cache/
        Ignored:    analysis/diagnostic_correlated_z_cache/
        Ignored:    analysis/diagnostic_plot_2_cache/
        Ignored:    analysis/diagnostic_plot_cache/
        Ignored:    analysis/efron_leukemia_cache/
        Ignored:    analysis/fitting_normal_cache/
        Ignored:    analysis/gaussian_derivatives_2_cache/
        Ignored:    analysis/gaussian_derivatives_3_cache/
        Ignored:    analysis/gaussian_derivatives_4_cache/
        Ignored:    analysis/gaussian_derivatives_5_cache/
        Ignored:    analysis/gaussian_derivatives_cache/
        Ignored:    analysis/gd-ash_cache/
        Ignored:    analysis/gd_delta_cache/
        Ignored:    analysis/gd_lik_2_cache/
        Ignored:    analysis/gd_lik_cache/
        Ignored:    analysis/gd_w_cache/
        Ignored:    analysis/knockoff_10_cache/
        Ignored:    analysis/knockoff_2_cache/
        Ignored:    analysis/knockoff_3_cache/
        Ignored:    analysis/knockoff_4_cache/
        Ignored:    analysis/knockoff_5_cache/
        Ignored:    analysis/knockoff_6_cache/
        Ignored:    analysis/knockoff_7_cache/
        Ignored:    analysis/knockoff_8_cache/
        Ignored:    analysis/knockoff_9_cache/
        Ignored:    analysis/knockoff_cache/
        Ignored:    analysis/knockoff_var_cache/
        Ignored:    analysis/marginal_z_alternative_cache/
        Ignored:    analysis/marginal_z_cache/
        Ignored:    analysis/mosek_reg_2_cache/
        Ignored:    analysis/mosek_reg_4_cache/
        Ignored:    analysis/mosek_reg_5_cache/
        Ignored:    analysis/mosek_reg_6_cache/
        Ignored:    analysis/mosek_reg_cache/
        Ignored:    analysis/pihat0_null_cache/
        Ignored:    analysis/plot_diagnostic_cache/
        Ignored:    analysis/poster_obayes17_cache/
        Ignored:    analysis/real_data_simulation_2_cache/
        Ignored:    analysis/real_data_simulation_3_cache/
        Ignored:    analysis/real_data_simulation_4_cache/
        Ignored:    analysis/real_data_simulation_5_cache/
        Ignored:    analysis/real_data_simulation_cache/
        Ignored:    analysis/rmosek_primal_dual_2_cache/
        Ignored:    analysis/rmosek_primal_dual_cache/
        Ignored:    analysis/seqgendiff_cache/
        Ignored:    analysis/simulated_correlated_null_2_cache/
        Ignored:    analysis/simulated_correlated_null_3_cache/
        Ignored:    analysis/simulated_correlated_null_cache/
        Ignored:    analysis/simulation_real_se_2_cache/
        Ignored:    analysis/simulation_real_se_cache/
        Ignored:    analysis/smemo_2_cache/
        Ignored:    data/LSI/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
        Ignored:    output/fig/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    rmd 41b6461 LSun 2018-05-28 wflow_publish(“analysis/cash_plots_2.rmd”)
    rmd 5ebe9d5 Lei Sun 2018-05-28 plots
    rmd 756fdcc LSun 2018-05-28 revision
    rmd 9978e57 Lei Sun 2018-05-27 different g
    rmd 2b3ee63 Lei Sun 2018-05-27 sigma = 3
    html 7610f05 LSun 2018-05-23 Build site.
    rmd 0cdcf7b LSun 2018-05-23 wflow_publish(“analysis/cash_plots_2.rmd”)
    html 1eec7b1 LSun 2018-05-23 Build site.
    rmd f912730 LSun 2018-05-23 wflow_publish(“analysis/cash_plots_2.rmd”)
    rmd f178424 Lei Sun 2018-05-21 multiple priors
    rmd 637bdce LSun 2018-05-21 simulations
    rmd fe910f1 Lei Sun 2018-05-21 plotting
    rmd e5852e2 Lei Sun 2018-05-20 replot
    rmd 3dc5e78 Lei Sun 2018-05-20 revision
    rmd f387ded Lei Sun 2018-05-20 revision
    rmd 86fc901 Lei Sun 2018-05-20 new simulation scheme
    html d51ff50 LSun 2018-05-18 Build site.
    rmd 7c1e2f8 LSun 2018-05-18 wflow_publish(c(“analysis/cash_plots_2.rmd”,
    rmd c818b3f Lei Sun 2018-05-17 lfsr simulations

source("../code/gdfit.R")
source("../code/gdash_lik.R")
source("../code/count_to_summary.R")
library(ashr)
library(locfdr)
library(qvalue)
library(reshape2)
library(ggplot2)
mean_sdp <- function (x) {
   m <- mean(x)
   ymax <- m + sd(x)
   return(c(y = m, ymax = ymax, ymin = m))
}
mad.mean <- function (x) {
  return(mean(abs(x - median(x))))
}
FDP <- function (FDR, qvalue, beta) {
  return(sum(qvalue <= FDR & beta == 0) / max(sum(qvalue <= FDR), 1))
}
pFDP <- function (FDR, qvalue, beta) {
  return(sum(qvalue <= FDR & beta == 0) / sum(qvalue <= FDR))
}
TDP <- function (FDR, qvalue, beta) {
  return(sum(qvalue <= FDR & beta != 0) / sum(beta != 0))
}
FSP <- function (FSR, svalue, beta, betahat) {
  return(sum(sign(betahat[svalue <= FSR]) != sign(beta[svalue <= FSR])) / max(sum(svalue <= FSR), 1))
}
r <- readRDS("../data/liver.rds")
ngene <- 1e4
top_genes_index = function (g, X) {
  return(order(rowSums(X), decreasing = TRUE)[1 : g])
}
lcpm = function (r) {
  R = colSums(r)
  t(log2(((t(r) + 0.5) / (R + 1)) * 10^6))
}
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
nsamp <- 5
pi0.vec <- c(0.5, 0.9, 0.99)
q.vec <- seq(0.001, 0.20, by = 0.001)
q <- 0.1
z.over <- 1.05
z.under <- 0.95
method.name.FDR <- c("BHq", "qvalue", "locfdr", "ASH", "CASH")
method.name.FSR <- c("ASH", "CASH")
method.col.FDR <- scales::hue_pal()(length(method.name.FDR))
method.col.pi0hat <- method.col.FDR[-1]
method.col.FSR <- method.col.FDR[4 : 5]
FXP.ggdata <- function (FXP.list, Noise) {
  
  FXP.mean <- lapply(FXP.list, function (FXP.mat, Noise) {
    rbind(
      All = colMeans(FXP.mat, na.rm = TRUE),
      apply(FXP.mat, 2, tapply, Noise, mean, na.rm = TRUE)
    )
  }, Noise)
  
  FXP.ggdata <- melt(FXP.mean, value.name = "mean", varnames = c("Noise", "Method"))

  FXP.q975 <- lapply(FXP.list, function (FXP.mat, Noise) {
    rbind(
      All = apply(FXP.mat, 2, quantile, probs = 0.975, na.rm = TRUE),
      apply(FXP.mat, 2, tapply, Noise, quantile, probs = 0.975, na.rm = TRUE)
    )
  }, Noise)

  FXP.q975.ggdata <- melt(FXP.q975, value.name = "q975")
  
  FXP.q025 <- lapply(FXP.list, function (FXP.mat, Noise) {
    rbind(
      All = apply(FXP.mat, 2, quantile, probs = 0.025, na.rm = TRUE),
      apply(FXP.mat, 2, tapply, Noise, quantile, probs = 0.025, na.rm = TRUE)
    )
  }, Noise)

  FXP.q025.ggdata <- melt(FXP.q025, value.name = "q025")
  
  FXP.ggdata <- cbind.data.frame(
    FXP.ggdata,
    q975 = FXP.q975.ggdata$q975,
    q025 = FXP.q025.ggdata$q025
  )
  
  FXP.ggdata$L1 <- as.numeric(FXP.ggdata$L1)
  
  return(FXP.ggdata)
}

Normal

\[ g_1 = N\left(0, 3^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, dnorm(plotx, 0, 3), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g1-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.normal <- cbind.data.frame(
  g = "Normal",
  plotx,
  ploty = dnorm(plotx, 0, 2)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.normal <- cbind.data.frame(
  g = "Normal",
  FDP.q.all.ggdata
)

##============================================================

FDP.q.noise.sep <- cbind.data.frame(
  Noise,
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
)
  
FDP.q.ggdata.sep <- melt(FDP.q.noise.sep, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.sep.plot <- ggplot(data = FDP.q.ggdata.sep, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("At nominal FDR = ", .(q)))) +
  theme(plot.title = element_text(size = 12),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "bottom",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================

z.list.sel <- z.list[order(sd.z)[floor(quantile(seq(sd.z), c(0.1, 0.5, 0.9)))]]
names(z.list.sel) <- c("Deflated Noise", "In-between", "Inflated Noise")
z.sep.ggdata <- melt(z.list.sel, value.name = "z")
z.sep.plot <- ggplot(data = z.sep.ggdata, aes(x = z)) +
  geom_histogram(aes(y = ..density..), binwidth = 0.2) +
  facet_wrap(~L1, nrow = 1) +
  stat_function(fun = dnorm, color = "blue", lwd = 1.5) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15))

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-7-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-7-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-7-3.png:
Version Author Date
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-8-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
d51ff50 LSun 2018-05-18
TDP.q.plot

Expand here to see past versions of unnamed-chunk-8-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23
d51ff50 LSun 2018-05-18

Big normal

\[ g_2 = N\left(0, 5^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, dnorm(plotx, 0, 5), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g2-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.bignormal <- cbind.data.frame(
  g = "Big Normal",
  plotx,
  ploty = dnorm(plotx, 0, 5)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.bignormal <- cbind.data.frame(
  g = "Big Normal",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-11-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-11-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-11-3.png:
Version Author Date
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-12-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23

Near normal

\[ g_3 = 0.6 N\left(0, 1^2\right) + 0.4 N\left(0, 3^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, 0.6 * dnorm(plotx) + 0.4 * dnorm(plotx, 0, 3), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g3-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.nearnormal <- cbind.data.frame(
  g = "Near Normal",
  plotx,
  ploty = 0.6 * dnorm(plotx) + 0.4 * dnorm(plotx, 0, 3)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.nearnormal <- cbind.data.frame(
  g = "Near Normal",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-15-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-15-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-15-3.png:
Version Author Date
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-16-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-16-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23

Spiky

\[ g_4 = 0.4 N\left(0, 0.5^2\right) + 0.2 N\left(0, 1^2\right) + 0.2 N\left(0, 2^2\right) + 0.2 N\left(0, 3^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0,
        0.4 * dnorm(0, 0, 0.5) + 
        0.2 * dnorm(0) +
        0.2 * dnorm(0, 0, 2) +
        0.2 * dnorm(0, 0, 3)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, 0.4 * dnorm(plotx, 0, 0.5) + 
        0.2 * dnorm(plotx) +
        0.2 * dnorm(plotx, 0, 2) +
        0.2 * dnorm(plotx, 0, 3), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g4-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.spiky <- cbind.data.frame(
  g = "Spiky",
  plotx,
  ploty = 0.4 * dnorm(plotx, 0, 0.5) + 
        0.2 * dnorm(plotx) +
        0.2 * dnorm(plotx, 0, 2) +
        0.2 * dnorm(plotx, 0, 3)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.spiky <- cbind.data.frame(
  g = "Spiky",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-19-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-19-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-19-3.png:
Version Author Date
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-20-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-20-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23

Skew

\[ g_5 = 1/4 N\left(-2, 2^2\right) + 1/4 N\left(-1, 2^2\right) + 1/4 N\left(0, 1^2\right) + 1 / 4 N\left(1, 1^2\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, 0.25 * dnorm(plotx, -2, 2) + 
        0.25 * dnorm(plotx, -1, 2) +
        0.25 * dnorm(plotx, 0, 1) +
        0.25 * dnorm(plotx, 1, 1), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g5-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.skew <- cbind.data.frame(
  g = "Skew",
  plotx,
  ploty = 0.25 * dnorm(plotx, -2, 2) + 
        0.25 * dnorm(plotx, -1, 2) +
        0.25 * dnorm(plotx, 0, 1) +
        0.25 * dnorm(plotx, 1, 1)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.skew <- cbind.data.frame(
  g = "Skew",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-23-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-23-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-23-3.png:
Version Author Date
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-24-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-24-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23

Flattop

\[ g_6 = \frac17\left[N\left(-1.5, 0.5^2\right) + N\left(-1, 0.5^2\right) + N\left(-0.5, 0.5^2\right) + N\left(0, 0.5^2\right) + N\left(0.5, 0.5^2\right) + N\left(1, 0.5^2\right) + N\left(1.5, 0.5^2\right)\right] \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, sapply(plotx, function(x) {mean(dnorm(x, seq(-1.5, 1.5, by = 0.5), 0.5))}), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g6-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.flattop <- cbind.data.frame(
  g = "Flat Top",
  plotx,
  ploty = sapply(plotx, function(x) {mean(dnorm(x, seq(-1.5, 1.5, by = 0.5), 0.5))})
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.flattop <- cbind.data.frame(
  g = "Flat Top",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-27-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-27-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-27-3.png:
Version Author Date
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-28-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-28-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23

Bimodal

\[ g_7 = 0.5 N\left(-1.5, 1\right) + 0.5 N\left(1.5, 1\right) \]

plotx <- seq(-6, 6, by = 0.01)
plot(plotx, plotx, ylim = c(0, dnorm(0)),
     xlab = expression(theta), ylab = expression(g(theta)),
     type = "n")
lines(plotx, dnorm(plotx), lty = 2)
lines(plotx, 0.5 * dnorm(plotx, -1.5, 1) + 
        0.5 * dnorm(plotx, 1.5, 1), col = "blue")
legend("topright", lty = c(1, 2), col = c(4, 1), c("g", "N(0, 1)"))

Expand here to see past versions of g7-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
density.ggdata.bimodal <- cbind.data.frame(
  g = "Bimodal",
  plotx,
  ploty = 0.5 * dnorm(plotx, -1.5, 1) + 
        0.5 * dnorm(plotx, 1.5, 1)
)
pi0hat.mat <- cbind.data.frame(pi0 = factor(do.call(rbind, pi0.list)), do.call(rbind, pi0hat.list))

FDP.list <- lapply(q.vec, function (q) {
  t(mapply(function (qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      FDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(FDP.list) <- q.vec

FSP.list <- lapply(q.vec, function (s) {
  t(mapply(function (svalue.mat, beta, betahat, s) {
    apply(svalue.mat, 2, function (svalue, s, beta, betahat) {
      FSP(s, svalue, beta, betahat)
    }, s, beta, betahat)
  }, svalue.list, beta.list, betahat.list, s))
})
names(FSP.list) <- q.vec

TDP.list <- lapply(q.vec, function(q) {
  t(mapply(function(qvalue.mat, beta, q) {
    apply(qvalue.mat, 2, function (qvalue, q, beta) {
      TDP(q, qvalue, beta)
    }, q, beta)
  }, qvalue.list, beta.list, q))
})
names(TDP.list) <- q.vec
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))
# Noise <- cut(sd.z, breaks = c(0, z.under, z.over, Inf), labels = c("Deflated Noise", "In-between", "Inflated Noise"))

##=================================================

pi0hat.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)), pi0hat.mat),
  cbind.data.frame(Noise, pi0hat.mat)
)

pi0hat.ggdata <- melt(pi0hat.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "pi0hat")

pi0hat.plot <- ggplot(data = pi0hat.ggdata, aes(x = pi0, y = pi0hat)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.pi0hat) +
  scale_fill_manual(values = alpha(method.col.pi0hat, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = pi0.vec, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = expression(hat(pi)[0])) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FDP.calib.ggdata <- FXP.ggdata(FDP.list, Noise)

FDR.calib.plot <- ggplot(data = FDP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
  scale_fill_manual(labels = method.name.FDR, values = method.col.FDR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FDR", y = "FDP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##==================================================

FSP.calib.ggdata <- FXP.ggdata(FSP.list, Noise)

FSR.calib.plot <- ggplot(data = FSP.calib.ggdata, aes(x = L1, y = mean, group = Method, col = Method)) +
  geom_line() +
  geom_ribbon(aes(ymin = q025, ymax = q975, fill = Method), alpha = 0.35, linetype = "blank") +
  scale_color_manual(labels = method.name.FSR, values = method.col.FSR) +
  scale_fill_manual(labels = method.name.FSR, values = method.col.FSR) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", size = 1, col = "black") +
  labs(x = "Nominal FSR", y = "FSP") +
  theme(axis.title.x = element_text(size = 12),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##============================================================

FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   FDP.q)
)
FDP.q.ggdata <- melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")

FDP.q.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##====================================================================

TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
  cbind.data.frame(Noise = rep("All", length(Noise)),
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q),
  cbind.data.frame(Noise,
                   pi0 = factor(do.call(rbind, pi0.list)),
                   TDP.q)
)
TDP.q.ggdata <- melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")

TDP.q.plot <- ggplot(data = TDP.q.ggdata, aes(x = pi0, y = TDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5
            # , outlier.shape = NA
               ) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~Noise, nrow = 1, ncol = 4) +
  labs(x = expression(pi[0]), y = "TDP") +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
        axis.title.y = element_text(size = 12),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "top",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

##=================================================

FDP.q.all.mat <- cbind.data.frame(
  pi0 = factor(do.call(rbind, pi0.list)),
  FDP.q
  )
FDP.q.all.ggdata <- melt(FDP.q.all.mat, id.vars = c("pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.all.ggdata.bimodal <- cbind.data.frame(
  g = "Bimodal",
  FDP.q.all.ggdata
)

Overall

pi0hat.plot

Expand here to see past versions of unnamed-chunk-31-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FDR.calib.plot

Expand here to see past versions of unnamed-chunk-31-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23
FSR.calib.plot

Expand here to see past versions of unnamed-chunk-31-3.png:
Version Author Date
1eec7b1 LSun 2018-05-23

At nominal FDR = \(0.1\)

FDP.q.plot

Expand here to see past versions of unnamed-chunk-32-1.png:
Version Author Date
1eec7b1 LSun 2018-05-23
TDP.q.plot

Expand here to see past versions of unnamed-chunk-32-2.png:
Version Author Date
1eec7b1 LSun 2018-05-23

Put together

pi0.list <- list()
for (i in seq(1000)) {pi0.list[[i]] <- sample(c(0.5, 0.9, 0.99), 1)}

FDP.q <- cbind.data.frame(
  BH = runif(1e3, 0, 0.2),
  qvalue = runif(1e3, 0, 0.2),
  locfdr = runif(1e3, 0, 0.2),
  ASH = runif(1e3, 0, 0.2),
  CASH = runif(1e3, 0, 0.2)
)

Noise <- sample(c("Deflated Noise", "In-between", "Inflated Noise"), 1e3, replace = TRUE)

z.list <- list()
for (i in seq(1000)) {z.list[[i]] <- rnorm(1e4)}
density.g.ggdata <- rbind.data.frame(
  density.ggdata.normal,
  density.ggdata.nearnormal,
  density.ggdata.spiky,
  density.ggdata.flattop,
  density.ggdata.skew,
  density.ggdata.bimodal
)

density.g.plot <- ggplot(data = density.g.ggdata, aes(x = plotx, y = ploty)) +
  geom_line() +
  facet_wrap(~g, nrow = 1) +
  labs(x = expression(theta), y = expression(g(theta))) +
  theme(axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "none",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

FDP.q.g.ggdata <- rbind.data.frame(
  FDP.q.all.ggdata.normal,
  FDP.q.all.ggdata.nearnormal,
  FDP.q.all.ggdata.spiky,
  FDP.q.all.ggdata.flattop,
  FDP.q.all.ggdata.skew,
  FDP.q.all.ggdata.bimodal
)

FDP.q.g.plot <- ggplot(data = FDP.q.g.ggdata, aes(x = pi0, y = FDP)) +
  geom_boxplot(aes(fill = Method, color = Method), outlier.color = NULL, outlier.size = 0.5) +
  scale_color_manual(values = method.col.FDR) +
  scale_fill_manual(values = alpha(method.col.FDR, 0.35)) +
  facet_wrap(~g, nrow = 1) +
  geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
  labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("At nominal FDR = ", .(q)))) +
  theme(plot.title = element_text(size = 12),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = "bottom",
        legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 12))

FDP.q.g.plot.save <- gridExtra::arrangeGrob(density.g.plot, FDP.q.g.plot, heights = c(1, 1.5))
Warning: Removed 8 rows containing non-finite values (stat_boxplot).
ggsave("../output/fig/FDP.q.g.pdf", FDP.q.g.plot.save, height = 6, width = 9)

##=========================================================

FDP.q.sep.plot.save <- gridExtra::arrangeGrob(z.sep.plot, FDP.q.sep.plot, heights = c(1, 1.5))

ggsave("../output/fig/FDP.q.sep.pdf", FDP.q.sep.plot.save, height = 6, width = 8)

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggplot2_2.2.1     reshape2_1.4.3    qvalue_2.10.0    
 [4] locfdr_1.1-8      ashr_2.2-7        Rmosek_8.0.69    
 [7] CVXR_0.95         REBayes_1.3       Matrix_1.2-14    
[10] SQUAREM_2017.10-1 EQL_1.0-0         ttutils_1.0-1    
[13] PolynomF_1.0-2   

loaded via a namespace (and not attached):
 [1] splines_3.4.3     lattice_0.20-35   colorspace_1.3-2 
 [4] htmltools_0.3.6   yaml_2.1.19       gmp_0.5-13.1     
 [7] rlang_0.2.0       R.oo_1.22.0       pillar_1.2.2     
[10] Rmpfr_0.7-0       R.utils_2.6.0     bit64_0.9-7      
[13] scs_1.1-1         foreach_1.4.4     plyr_1.8.4       
[16] stringr_1.3.1     munsell_0.4.3     gtable_0.2.0     
[19] workflowr_1.0.1   R.methodsS3_1.7.1 codetools_0.2-15 
[22] evaluate_0.10.1   labeling_0.3      knitr_1.20       
[25] doParallel_1.0.11 pscl_1.5.2        parallel_3.4.3   
[28] Rcpp_0.12.16      backports_1.1.2   scales_0.5.0     
[31] truncnorm_1.0-8   bit_1.1-13        gridExtra_2.3    
[34] digest_0.6.15     stringi_1.2.2     grid_3.4.3       
[37] rprojroot_1.3-2   ECOSolveR_0.4     tools_3.4.3      
[40] magrittr_1.5      lazyeval_0.2.1    tibble_1.4.2     
[43] whisker_0.3-2     MASS_7.3-50       rmarkdown_1.9    
[46] iterators_1.0.9   R6_2.2.2          git2r_0.21.0     
[49] compiler_3.4.3   

This reproducible R Markdown analysis was created with workflowr 1.0.1