Last updated: 2019-01-06
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: d607f8d
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/include/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Ignored: output/.sos/
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorMash.Rmd
Untracked: analysis/EstimateCorMaxGD.Rmd
Untracked: analysis/EstimateCorMaxMCMash.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignalGTEx4.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/GTExNullModel.R
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashCormVResult.R
Untracked: code/MashNULLCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/dsc-differentV/
Untracked: code/dsc-differentV_signal/
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/mV.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: data/wasp_yuxin/
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/EstCorMLECompare/
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/GTExNULLres/
Untracked: output/GTEx_2.5_nullData.rds
Untracked: output/GTEx_2.5_nullModel.rds
Untracked: output/GTEx_2.5_nullPermData.rds
Untracked: output/GTEx_2.5_nullPermModel.rds
Untracked: output/GTEx_3.5_nullData.rds
Untracked: output/GTEx_3.5_nullModel.rds
Untracked: output/GTEx_3.5_nullPermData.rds
Untracked: output/GTEx_3.5_nullPermModel.rds
Untracked: output/GTEx_3_nullData.rds
Untracked: output/GTEx_3_nullModel.rds
Untracked: output/GTEx_3_nullPermData.rds
Untracked: output/GTEx_3_nullPermModel.rds
Untracked: output/GTEx_4.5_nullData.rds
Untracked: output/GTEx_4.5_nullModel.rds
Untracked: output/GTEx_4.5_nullPermData.rds
Untracked: output/GTEx_4.5_nullPermModel.rds
Untracked: output/GTEx_4_nullData.rds
Untracked: output/GTEx_4_nullModel.rds
Untracked: output/GTEx_4_nullPermData.rds
Untracked: output/GTEx_4_nullPermModel.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MashCorSim--midway/
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/UKBio_mash_model.rds
Untracked: output/WASP/
Untracked: output/diff_v/
Untracked: output/diff_v_signal/
Untracked: output/dsc-mashr-est_v/
Untracked: output/mVIterations/
Untracked: output/mVMLEsubset/
Untracked: output/mVUlist/
Untracked: output/result.em.rds
Unstaged changes:
Modified: analysis/EstimateCorMaxMVSample.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Loading required package: ashr
dat = readRDS('../data/wasp_yuxin/fastqtl_to_mash_output/wasp.mash.rds')
dat$strong.z[is.infinite(dat$strong.z)] = sign(dat$strong.z[is.infinite(dat$strong.z)]) * 10
dat$random.z[is.infinite(dat$random.z)] = sign(dat$random.z[is.infinite(dat$random.z)]) * 10
dat$strong.z = dat$strong.z[,c(1,8:16,2:7)]
dat$random.z = dat$random.z[,c(1,8:16,2:7)]
data.random = mash_set_data(dat$random.z)
data.strong = mash_set_data(dat$strong.z)
Flash:
my_init_fn <- function(Y, K = 1) {
ret = flashr:::udv_si(Y, K)
pos_sum = sum(ret$v[ret$v > 0])
neg_sum = -sum(ret$v[ret$v < 0])
if (neg_sum > pos_sum) {
return(list(u = -ret$u, d = ret$d, v = -ret$v))
} else
return(ret)
}
flash_pipeline = function(data, ...) {
## current state-of-the art
## suggested by Jason Willwerscheid
## cf: discussion section of
## https://willwerscheid.github.io/MASHvFLASH/MASHvFLASHnn2.html
ebnm_fn = "ebnm_ash"
ebnm_param = list(l = list(mixcompdist = "normal",
optmethod = "mixSQP"),
f = list(mixcompdist = "+uniform",
optmethod = "mixSQP"))
##
fl_g <- flashr:::flash_greedy_workhorse(data,
var_type = "constant",
ebnm_fn = ebnm_fn,
ebnm_param = ebnm_param,
init_fn = "my_init_fn",
stopping_rule = "factors",
tol = 1e-3,
verbose_output = "odF")
fl_b <- flashr:::flash_backfit_workhorse(data,
f_init = fl_g,
var_type = "constant",
ebnm_fn = ebnm_fn,
ebnm_param = ebnm_param,
stopping_rule = "factors",
tol = 1e-3,
verbose_output = "odF")
return(fl_b)
}
cov_flash = function(data, subset = NULL, non_canonical = FALSE, save_model = NULL) {
if(is.null(subset)) subset = 1:mashr:::n_effects(data)
b.center = apply(data$Bhat, 2, function(x) x - mean(x))
## Only keep factors with at least two values greater than 1 / sqrt(n)
find_nonunique_effects <- function(fl) {
thresh <- 1/sqrt(ncol(fl$fitted_values))
vals_above_avg <- colSums(fl$ldf$f > thresh)
nonuniq_effects <- which(vals_above_avg > 1)
return(fl$ldf$f[, nonuniq_effects, drop = FALSE])
}
fmodel = flash_pipeline(b.center)
if (non_canonical)
flash_f = find_nonunique_effects(fmodel)
else
flash_f = fmodel$ldf$f
## row.names(flash_f) = colnames(b)
if (!is.null(save_model)) saveRDS(list(model=fmodel, factors=flash_f), save_model)
if(ncol(flash_f) == 0){
U.flash = list("tFLASH" = t(fmodel$fitted_values) %*% fmodel$fitted_values / nrow(fmodel$fitted_values))
} else{
U.flash = c(cov_from_factors(t(as.matrix(flash_f)), "FLASH"),
list("tFLASH" = t(fmodel$fitted_values) %*% fmodel$fitted_values / nrow(fmodel$fitted_values)))
}
return(U.flash)
}
U.f = cov_flash(data.strong, non_canonical = TRUE, save_model = '../output/WASP/flash_model.rds')
saveRDS(U.f, '../output/WASP/flash_cov.rds')
fl_model = readRDS('../output/WASP/flash_model.rds')$model
factors = readRDS('../output/WASP/flash_model.rds')$factors
par(mfrow = c(1, 3))
for(k in 1:3){
barplot(factors[,k], main=paste0("Factor ", k), names.arg = 0:15)
}
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
fll_model = flash_pipeline(fl_model$ldf$l)
saveRDS(fll_model, '../output/WASP/flash_loading_model.rds')
U.pca = cov_pca(data.strong, 5)
U.ed = cov_ed(data.strong, c(U.f, U.pca))
U.ed = readRDS('../output/WASP/Ued.rds')
U.c = cov_canonical(data.random)
m.ignore = mash(data.random, c(U.c, U.ed), outputlevel = 1)
m.ignore$result = mash_compute_posterior_matrices(m.ignore, data.strong)
V.simple = estimate_null_correlation_simple(data.random)
data.random.V.simple = mash_update_data(data.random, V = V.simple)
m.simple = mash(data.random.V.simple, c(U.c, U.ed), outputlevel = 1)
data.strong.V.simple = mash_update_data(data.strong, V = V.simple)
m.simple$result = mash_compute_posterior_matrices(m.simple, data.strong.V.simple)
set.seed(1)
random.subset = sample(1:nrow(gtex$random.b),5000)
data.random.s = mash_set_data(gtex$random.b[random.subset,], gtex$random.s[random.subset,])
current = estimate_null_correlation(data.random.s, c(U.c, U.ed), max_iter = 20)
V.current = current$V
data.random.V.current = mash_update_data(data.random, V = V.current)
m.current = mash(data.random.V.current, c(U.c, U.ed), outputlevel = 1)
data.strong = mash_update_data(data.strong, V = V.current)
m.current$result = mash_compute_posterior_matrices(m.current, data.strong)
# read model
m_ignore = readRDS('../output/WASP/m_ignore_post.rds')
m_simple = readRDS('../output/WASP/m_simple_post.rds')
m_current = readRDS('../output/WASP/m_current_post.rds')
colnames(V.simple) = 0:15
row.names(V.simple) = 0:15
corrplot::corrplot(V.simple, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'Simple', mar=c(0,0,5,0))
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
V.current = readRDS('../output/WASP/currentV.rds')
V.current = V.current$V
colnames(V.current) = 0:15
row.names(V.current) = 0:15
corrplot::corrplot(V.current, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'Current', mar=c(0,0,5,0))
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
tmp = cbind(c(get_loglik(m_ignore), get_loglik(m_simple), get_loglik(m_current)))
row.names(tmp) = c('Ignore', 'Simple', 'Current')
colnames(tmp) = 'log likelihood'
tmp %>% kable() %>% kable_styling()
log likelihood | |
---|---|
Ignore | -442320.6 |
Simple | -429581.7 |
Current | -428237.2 |
par(mfrow=c(1,3))
barplot(get_estimated_pi(m_ignore), las=2, cex.names = 0.7, main = 'Ignore')
barplot(get_estimated_pi(m_simple), las=2, cex.names = 0.7, main = 'Simple')
barplot(get_estimated_pi(m_current), las=2, cex.names = 0.7, main = 'Current')
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
Number of significant:
numsig = c(length(get_significant_results(m_ignore)),
length(get_significant_results(m_simple)),
length(get_significant_results(m_current)))
tmp = cbind(numsig)
row.names(tmp) = c('Ignore', 'Simple', 'Current')
colnames(tmp) = c('# significance')
tmp %>% kable() %>% kable_styling()
# significance | |
---|---|
Ignore | 5872 |
Simple | 2983 |
Current | 1617 |
The intersection of significance results:
length(intersect(get_significant_results(m_simple), get_significant_results(m_current)))
[1] 1526
length(intersect(get_significant_results(m_ignore), get_significant_results(m_simple)))
[1] 2981
length(intersect(get_significant_results(m_current), get_significant_results(m_ignore)))
[1] 1593
stronggene = data.frame(dat$strong.z[739,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = 0:15
stronggene$se = dat$strong.s[739,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE) + coord_flip() + ggtitle('ENSG00000085491') + ylim(c(-10,-2)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))
stronggeneSimple = data.frame(m_simple$result$PosteriorMean[739,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = 0:15
stronggeneSimple$se = m_simple$result$PosteriorSD[739,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE) + coord_flip() + ggtitle('ENSG00000085491 Simple') + ylim(c(-10,-2)) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))
stronggeneCurrent = data.frame(m_current$result$PosteriorMean[739,])
colnames(stronggeneCurrent) = 'EffectSize'
stronggeneCurrent$Group = 0:15
stronggeneCurrent$se = m_current$result$PosteriorSD[739,]
p3 = ggplot(stronggeneCurrent, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE) + ylim(c(-10,-2)) + coord_flip() + ggtitle('ENSG00000085491 Current') +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))
grid.arrange(p1, p2, p3, nrow = 1)
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
The gene significant in simple
, not in current
stronggene = data.frame(dat$strong.z[5111,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = 0:15
stronggene$se = dat$strong.s[5111,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE) + coord_flip() + ggtitle('ENSG00000173473') + ylim(c(-6,3)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))
stronggeneSimple = data.frame(m_simple$result$PosteriorMean[5111,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = 0:15
stronggeneSimple$se = m_simple$result$PosteriorSD[5111,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE) + coord_flip() + ggtitle('ENSG00000173473 Simple') + ylim(c(-6,3)) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))
stronggeneCurrent = data.frame(m_current$result$PosteriorMean[5111,])
colnames(stronggeneCurrent) = 'EffectSize'
stronggeneCurrent$Group = 0:15
stronggeneCurrent$se = m_current$result$PosteriorSD[5111,]
p3 = ggplot(stronggeneCurrent, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE) + ylim(c(-6,3)) + coord_flip() + ggtitle('ENSG00000173473 Current') +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))
grid.arrange(p1, p2, p3, nrow = 1)
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
The pairwise sharing by magnitude
x <- get_pairwise_sharing(m_ignore)
colnames(x) <- 0:15
rownames(x) <- 0:15
clrs=colorRampPalette(rev(c('darkred', 'red','orange','yellow','cadetblue1', 'cyan', 'dodgerblue4', 'blue','darkorchid1','lightgreen','green', 'forestgreen','darkolivegreen')))(200)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Ignore', mar=c(0,0,5,0))
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
x <- get_pairwise_sharing(m_simple)
colnames(x) <- 0:15
rownames(x) <- 0:15
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Simple', mar=c(0,0,5,0))
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
x <- get_pairwise_sharing(m_current)
colnames(x) <- 0:15
rownames(x) <- 0:15
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Current', mar=c(0,0,5,0))
Version | Author | Date |
---|---|---|
71d959e | zouyuxin | 2019-01-06 |
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.2
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gridExtra_2.3 ggplot2_3.1.0 kableExtra_0.9.0 knitr_1.20
[5] mashr_0.2.19.0555 ashr_2.2-26 mixsqp_0.1-93 flashr_0.6-3
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 mvtnorm_1.0-8 lattice_0.20-35
[4] assertthat_0.2.0 rprojroot_1.3-2 digest_0.6.18
[7] foreach_1.4.4 truncnorm_1.0-8 R6_2.3.0
[10] plyr_1.8.4 backports_1.1.2 evaluate_0.12
[13] httr_1.3.1 highr_0.7 pillar_1.3.1
[16] rlang_0.3.0.1 lazyeval_0.2.1 pscl_1.5.2
[19] rstudioapi_0.8 whisker_0.3-2 R.utils_2.7.0
[22] R.oo_1.22.0 Matrix_1.2-14 rmarkdown_1.10
[25] labeling_0.3 readr_1.1.1 stringr_1.3.1
[28] munsell_0.5.0 compiler_3.5.1 pkgconfig_2.0.2
[31] SQUAREM_2017.10-1 htmltools_0.3.6 tidyselect_0.2.5
[34] tibble_1.4.2 workflowr_1.1.1 codetools_0.2-15
[37] viridisLite_0.3.0 crayon_1.3.4 dplyr_0.7.6
[40] withr_2.1.2 MASS_7.3-50 R.methodsS3_1.7.1
[43] grid_3.5.1 gtable_0.2.0 git2r_0.23.0
[46] magrittr_1.5 scales_1.0.0 stringi_1.2.4
[49] reshape2_1.4.3 doParallel_1.0.14 bindrcpp_0.2.2
[52] xml2_1.2.0 rmeta_3.0 iterators_1.0.10
[55] tools_3.5.1 glue_1.3.0 softImpute_1.4
[58] purrr_0.2.5 hms_0.4.2 abind_1.4-5
[61] parallel_3.5.1 yaml_2.2.0 colorspace_1.3-2
[64] rvest_0.3.2 corrplot_0.84 bindr_0.1.1
This reproducible R Markdown analysis was created with workflowr 1.1.1