Last updated: 2019-01-06

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: b04fb6c

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/include/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
        Ignored:    output/.sos/
    
    Untracked files:
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorMash.Rmd
        Untracked:  analysis/EstimateCorMaxGD.Rmd
        Untracked:  analysis/EstimateCorMaxMCMash.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/MashLowSignalGTEx4.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/GTExNullModel.R
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashCormVResult.R
        Untracked:  code/MashNULLCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/dsc-differentV/
        Untracked:  code/dsc-differentV_signal/
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/mV.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  data/wasp_yuxin/
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/EstCorMLECompare/
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/GTExNULLres/
        Untracked:  output/GTEx_2.5_nullData.rds
        Untracked:  output/GTEx_2.5_nullModel.rds
        Untracked:  output/GTEx_2.5_nullPermData.rds
        Untracked:  output/GTEx_2.5_nullPermModel.rds
        Untracked:  output/GTEx_3.5_nullData.rds
        Untracked:  output/GTEx_3.5_nullModel.rds
        Untracked:  output/GTEx_3.5_nullPermData.rds
        Untracked:  output/GTEx_3.5_nullPermModel.rds
        Untracked:  output/GTEx_3_nullData.rds
        Untracked:  output/GTEx_3_nullModel.rds
        Untracked:  output/GTEx_3_nullPermData.rds
        Untracked:  output/GTEx_3_nullPermModel.rds
        Untracked:  output/GTEx_4.5_nullData.rds
        Untracked:  output/GTEx_4.5_nullModel.rds
        Untracked:  output/GTEx_4.5_nullPermData.rds
        Untracked:  output/GTEx_4.5_nullPermModel.rds
        Untracked:  output/GTEx_4_nullData.rds
        Untracked:  output/GTEx_4_nullModel.rds
        Untracked:  output/GTEx_4_nullPermData.rds
        Untracked:  output/GTEx_4_nullPermModel.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MashCorSim--midway/
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/UKBio_mash_model.rds
        Untracked:  output/WASP/
        Untracked:  output/diff_v/
        Untracked:  output/diff_v_signal/
        Untracked:  output/dsc-mashr-est_v/
        Untracked:  output/mVIterations/
        Untracked:  output/mVMLEsubset/
        Untracked:  output/mVUlist/
        Untracked:  output/result.em.rds
    
    Unstaged changes:
        Modified:   analysis/EstimateCorMaxMVSample.Rmd
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd b04fb6c zouyuxin 2019-01-06 wflow_publish(“analysis/WASPmash.Rmd”)


Loading required package: ashr
dat = readRDS('../data/wasp_yuxin/fastqtl_to_mash_output/wasp.mash.rds')
dat$strong.z[is.infinite(dat$strong.z)] = sign(dat$strong.z[is.infinite(dat$strong.z)]) * 10
dat$random.z[is.infinite(dat$random.z)] = sign(dat$random.z[is.infinite(dat$random.z)]) * 10
dat$strong.z = dat$strong.z[,c(1,8:16,2:7)]
dat$random.z = dat$random.z[,c(1,8:16,2:7)]
data.random = mash_set_data(dat$random.z)
data.strong = mash_set_data(dat$strong.z)

Data Driven Covariances

Flash:

my_init_fn <- function(Y, K = 1) {
  ret = flashr:::udv_si(Y, K)
  pos_sum = sum(ret$v[ret$v > 0])
  neg_sum = -sum(ret$v[ret$v < 0])
  if (neg_sum > pos_sum) {
    return(list(u = -ret$u, d = ret$d, v = -ret$v))
  } else
    return(ret)
}

flash_pipeline = function(data, ...) {
  ## current state-of-the art
  ## suggested by Jason Willwerscheid
  ## cf: discussion section of
  ## https://willwerscheid.github.io/MASHvFLASH/MASHvFLASHnn2.html
  ebnm_fn = "ebnm_ash"
  ebnm_param = list(l = list(mixcompdist = "normal",
                             optmethod = "mixSQP"),
                    f = list(mixcompdist = "+uniform",
                             optmethod = "mixSQP"))
  ##
  fl_g <- flashr:::flash_greedy_workhorse(data,
                                          var_type = "constant",
                                          ebnm_fn = ebnm_fn,
                                          ebnm_param = ebnm_param,
                                          init_fn = "my_init_fn",
                                          stopping_rule = "factors",
                                          tol = 1e-3,
                                          verbose_output = "odF")
  fl_b <- flashr:::flash_backfit_workhorse(data,
                                           f_init = fl_g,
                                           var_type = "constant",
                                           ebnm_fn = ebnm_fn,
                                           ebnm_param = ebnm_param,
                                           stopping_rule = "factors",
                                           tol = 1e-3,
                                           verbose_output = "odF")
  return(fl_b)
}


cov_flash = function(data, subset = NULL, non_canonical = FALSE, save_model = NULL) {
  if(is.null(subset)) subset = 1:mashr:::n_effects(data)
  b.center = apply(data$Bhat, 2, function(x) x - mean(x))
  ## Only keep factors with at least two values greater than 1 / sqrt(n)
  find_nonunique_effects <- function(fl) {
    thresh <- 1/sqrt(ncol(fl$fitted_values))
    vals_above_avg <- colSums(fl$ldf$f > thresh)
    nonuniq_effects <- which(vals_above_avg > 1)
    return(fl$ldf$f[, nonuniq_effects, drop = FALSE])
  }
  fmodel = flash_pipeline(b.center)
  if (non_canonical)
    flash_f = find_nonunique_effects(fmodel)
  else 
    flash_f = fmodel$ldf$f
  ## row.names(flash_f) = colnames(b)
  if (!is.null(save_model)) saveRDS(list(model=fmodel, factors=flash_f), save_model)
  if(ncol(flash_f) == 0){
    U.flash = list("tFLASH" = t(fmodel$fitted_values) %*% fmodel$fitted_values / nrow(fmodel$fitted_values))
  } else{
    U.flash = c(cov_from_factors(t(as.matrix(flash_f)), "FLASH"),
  list("tFLASH" = t(fmodel$fitted_values) %*% fmodel$fitted_values / nrow(fmodel$fitted_values)))
  }
  
  return(U.flash)
}
U.f = cov_flash(data.strong, non_canonical = TRUE, save_model = '../output/WASP/flash_model.rds')
saveRDS(U.f, '../output/WASP/flash_cov.rds')
fl_model = readRDS('../output/WASP/flash_model.rds')$model
factors = readRDS('../output/WASP/flash_model.rds')$factors
par(mfrow = c(1, 3))
for(k in 1:3){
  barplot(factors[,k], main=paste0("Factor ", k), names.arg = 0:15)
}

fll_model = flash_pipeline(fl_model$ldf$l)
saveRDS(fll_model, '../output/WASP/flash_loading_model.rds')
U.pca = cov_pca(data.strong, 5)
U.ed = cov_ed(data.strong, c(U.f, U.pca))
U.ed = readRDS('../output/WASP/Ued.rds')
U.c = cov_canonical(data.random)

Mash model

m.ignore = mash(data.random, c(U.c, U.ed), outputlevel = 1)
m.ignore$result = mash_compute_posterior_matrices(m.ignore, data.strong)
V.simple = estimate_null_correlation_simple(data.random)
data.random.V.simple = mash_update_data(data.random, V = V.simple)
m.simple = mash(data.random.V.simple, c(U.c, U.ed), outputlevel = 1)
data.strong.V.simple = mash_update_data(data.strong, V = V.simple)
m.simple$result = mash_compute_posterior_matrices(m.simple, data.strong.V.simple)
set.seed(1)
random.subset = sample(1:nrow(gtex$random.b),5000)
data.random.s = mash_set_data(gtex$random.b[random.subset,], gtex$random.s[random.subset,])
current = estimate_null_correlation(data.random.s, c(U.c, U.ed), max_iter = 20)
V.current = current$V
data.random.V.current = mash_update_data(data.random, V = V.current)
m.current = mash(data.random.V.current, c(U.c, U.ed), outputlevel = 1)
data.strong = mash_update_data(data.strong, V = V.current)
m.current$result = mash_compute_posterior_matrices(m.current, data.strong)
# read model
m_ignore = readRDS('../output/WASP/m_ignore_post.rds')
m_simple = readRDS('../output/WASP/m_simple_post.rds')
m_current = readRDS('../output/WASP/m_current_post.rds')

Estimated null cor V

colnames(V.simple) = 0:15
row.names(V.simple) = 0:15
corrplot::corrplot(V.simple, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'Simple', mar=c(0,0,5,0))

V.current = readRDS('../output/WASP/currentV.rds')
V.current = V.current$V
colnames(V.current) = 0:15
row.names(V.current) = 0:15
corrplot::corrplot(V.current, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'Current', mar=c(0,0,5,0))

Results

tmp = cbind(c(get_loglik(m_ignore), get_loglik(m_simple), get_loglik(m_current)))
row.names(tmp) = c('Ignore', 'Simple', 'Current')
colnames(tmp) = 'log likelihood'
tmp %>% kable() %>% kable_styling()
log likelihood
Ignore -442320.6
Simple -429581.7
Current -428237.2
par(mfrow=c(1,3))
barplot(get_estimated_pi(m_ignore), las=2, cex.names = 0.7, main = 'Ignore')
barplot(get_estimated_pi(m_simple), las=2, cex.names = 0.7, main = 'Simple')
barplot(get_estimated_pi(m_current), las=2, cex.names = 0.7, main = 'Current')

Number of significant:

numsig = c(length(get_significant_results(m_ignore)), 
              length(get_significant_results(m_simple)), 
              length(get_significant_results(m_current)))
tmp = cbind(numsig)
row.names(tmp) = c('Ignore', 'Simple', 'Current')
colnames(tmp) = c('# significance')
tmp %>% kable() %>% kable_styling()
# significance
Ignore 5872
Simple 2983
Current 1617

The intersection of significance results:

length(intersect(get_significant_results(m_simple), get_significant_results(m_current)))
[1] 1526
length(intersect(get_significant_results(m_ignore), get_significant_results(m_simple)))
[1] 2981
length(intersect(get_significant_results(m_current), get_significant_results(m_ignore)))
[1] 1593
stronggene = data.frame(dat$strong.z[739,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = 0:15
stronggene$se = dat$strong.s[739,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE) + coord_flip() + ggtitle('ENSG00000085491') + ylim(c(-10,-2)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))

stronggeneSimple = data.frame(m_simple$result$PosteriorMean[739,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = 0:15
stronggeneSimple$se = m_simple$result$PosteriorSD[739,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE) + coord_flip() + ggtitle('ENSG00000085491 Simple') + ylim(c(-10,-2)) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))

stronggeneCurrent = data.frame(m_current$result$PosteriorMean[739,])
colnames(stronggeneCurrent) = 'EffectSize'
stronggeneCurrent$Group = 0:15
stronggeneCurrent$se = m_current$result$PosteriorSD[739,]
p3 = ggplot(stronggeneCurrent, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE) + ylim(c(-10,-2)) + coord_flip() + ggtitle('ENSG00000085491 Current') + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))
grid.arrange(p1, p2, p3, nrow = 1)

The gene significant in simple, not in current

stronggene = data.frame(dat$strong.z[5111,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = 0:15
stronggene$se = dat$strong.s[5111,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE) + coord_flip() + ggtitle('ENSG00000173473') + ylim(c(-6,3)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))

stronggeneSimple = data.frame(m_simple$result$PosteriorMean[5111,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = 0:15
stronggeneSimple$se = m_simple$result$PosteriorSD[5111,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE) + coord_flip() + ggtitle('ENSG00000173473 Simple') + ylim(c(-6,3)) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))

stronggeneCurrent = data.frame(m_current$result$PosteriorMean[5111,])
colnames(stronggeneCurrent) = 'EffectSize'
stronggeneCurrent$Group = 0:15
stronggeneCurrent$se = m_current$result$PosteriorSD[5111,]
p3 = ggplot(stronggeneCurrent, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE) + ylim(c(-6,3)) + coord_flip() + ggtitle('ENSG00000173473 Current') + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(size = 6))
grid.arrange(p1, p2, p3, nrow = 1)

The pairwise sharing by magnitude

x           <- get_pairwise_sharing(m_ignore)
colnames(x) <- 0:15
rownames(x) <- 0:15
clrs=colorRampPalette(rev(c('darkred', 'red','orange','yellow','cadetblue1', 'cyan', 'dodgerblue4', 'blue','darkorchid1','lightgreen','green', 'forestgreen','darkolivegreen')))(200)

corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Ignore', mar=c(0,0,5,0))

x           <- get_pairwise_sharing(m_simple)
colnames(x) <- 0:15
rownames(x) <- 0:15

corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Simple', mar=c(0,0,5,0))

x           <- get_pairwise_sharing(m_current)
colnames(x) <- 0:15
rownames(x) <- 0:15
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Current', mar=c(0,0,5,0))

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] gridExtra_2.3     ggplot2_3.1.0     kableExtra_0.9.0  knitr_1.20       
[5] mashr_0.2.19.0555 ashr_2.2-26       mixsqp_0.1-93     flashr_0.6-3     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0        mvtnorm_1.0-8     lattice_0.20-35  
 [4] assertthat_0.2.0  rprojroot_1.3-2   digest_0.6.18    
 [7] foreach_1.4.4     truncnorm_1.0-8   R6_2.3.0         
[10] plyr_1.8.4        backports_1.1.2   evaluate_0.12    
[13] httr_1.3.1        highr_0.7         pillar_1.3.1     
[16] rlang_0.3.0.1     lazyeval_0.2.1    pscl_1.5.2       
[19] rstudioapi_0.8    whisker_0.3-2     R.utils_2.7.0    
[22] R.oo_1.22.0       Matrix_1.2-14     rmarkdown_1.10   
[25] labeling_0.3      readr_1.1.1       stringr_1.3.1    
[28] munsell_0.5.0     compiler_3.5.1    pkgconfig_2.0.2  
[31] SQUAREM_2017.10-1 htmltools_0.3.6   tidyselect_0.2.5 
[34] tibble_1.4.2      workflowr_1.1.1   codetools_0.2-15 
[37] viridisLite_0.3.0 crayon_1.3.4      dplyr_0.7.6      
[40] withr_2.1.2       MASS_7.3-50       R.methodsS3_1.7.1
[43] grid_3.5.1        gtable_0.2.0      git2r_0.23.0     
[46] magrittr_1.5      scales_1.0.0      stringi_1.2.4    
[49] reshape2_1.4.3    doParallel_1.0.14 bindrcpp_0.2.2   
[52] xml2_1.2.0        rmeta_3.0         iterators_1.0.10 
[55] tools_3.5.1       glue_1.3.0        softImpute_1.4   
[58] purrr_0.2.5       hms_0.4.2         abind_1.4-5      
[61] parallel_3.5.1    yaml_2.2.0        colorspace_1.3-2 
[64] rvest_0.3.2       corrplot_0.84     bindr_0.1.1      

This reproducible R Markdown analysis was created with workflowr 1.1.1