Last updated: 2018-08-20
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Repository version: af79e60
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/figure/
Ignored: analysis/include/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorMaxEM.Rmd
Untracked: analysis/EstimateCorMaxEMGD.Rmd
Untracked: analysis/EstimateCorPrior.Rmd
Untracked: analysis/EstimateCorSol.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignal.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/Test.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MASH.result.1.rds
Untracked: output/MASH.result.10.rds
Untracked: output/MASH.result.2.rds
Untracked: output/MASH.result.3.rds
Untracked: output/MASH.result.4.rds
Untracked: output/MASH.result.5.rds
Untracked: output/MASH.result.6.rds
Untracked: output/MASH.result.7.rds
Untracked: output/MASH.result.8.rds
Untracked: output/MASH.result.9.rds
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/Trail 1/
Untracked: output/Trail 2/
Untracked: output/UKBio_mash_model.rds
Unstaged changes:
Modified: analysis/EstimateCorMaxMash.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | f798d3a | zouyuxin | 2018-08-13 | Build site. |
Rmd | 2074f93 | zouyuxin | 2018-08-13 | wflow_publish(c(“analysis/EstimateCorIndex.Rmd”, “analysis/index.Rmd”)) |
html | 8b75854 | zouyuxin | 2018-07-26 | Build site. |
Rmd | bb1bbf5 | zouyuxin | 2018-07-26 | wflow_publish(“analysis/index.Rmd”) |
html | af9003d | zouyuxin | 2018-07-14 | Build site. |
Rmd | 17ad677 | zouyuxin | 2018-07-14 | wflow_publish(“analysis/index.Rmd”) |
html | b93cfbb | zouyuxin | 2018-07-08 | Build site. |
Rmd | 549d5a2 | zouyuxin | 2018-07-08 | wflow_publish(“analysis/index.Rmd”) |
html | cd3854c | zouyuxin | 2018-05-30 | Build site. |
Rmd | 229e181 | zouyuxin | 2018-05-30 | wflow_publish(c(“analysis/index.Rmd”, “analysis/UKBio.Rmd”)) |
html | 659b045 | zouyuxin | 2018-04-26 | Build site. |
Rmd | e34e585 | zouyuxin | 2018-04-26 | wflow_publish(“analysis/index.Rmd”) |
html | 5e7201c | zouyuxin | 2018-04-25 | Build site. |
Rmd | efb2ba9 | zouyuxin | 2018-04-25 | wflow_publish(“analysis/index.Rmd”) |
html | db7ac31 | zouyuxin | 2018-03-06 | Build site. |
Rmd | e16e34a | zouyuxin | 2018-03-06 | wflow_publish(c(“analysis/Flash_Brain.Rmd”, “analysis/Flash_Breast.Rmd”, “analysis/Flash_Movie.Rmd”, “analysis/Flash_PresiAdd.Rmd”, |
html | 5b4437e | zouyuxin | 2018-03-04 | Build site. |
Rmd | b35ea25 | zouyuxin | 2018-03-04 | wflow_publish(“analysis/index.Rmd”) |
html | 90c37a6 | zouyuxin | 2018-03-02 | Build site. |
Rmd | 058cd68 | zouyuxin | 2018-03-02 | wflow_publish(“analysis/index.Rmd”) |
html | 62f67e6 | zouyuxin | 2018-03-01 | Build site. |
Rmd | d62d09a | zouyuxin | 2018-03-01 | wflow_publish(c(“analysis/index.Rmd”, “analysis/mash_largeR.Rmd”, “analysis/mash_missing_whole_row.Rmd”, |
html | 807e47a | zouyuxin | 2018-02-27 | Build site. |
Rmd | be7f846 | zouyuxin | 2018-02-27 | wflow_publish(c(“analysis/mash_missing.Rmd”, “analysis/Flash_PresiAdd.Rmd”, |
html | b60296e | zouyuxin | 2018-02-06 | Build site. |
Rmd | d7ab5b9 | zouyuxin | 2018-02-06 | Start workflowr project. |
Missing value using mash
:
If we want to have reasonable posterior mean, we need to use EE mode. Because in the EZ model, multiplying back the standard errors causes the problem. The missing data have large standard error. It will pruduce huge posteiror mean.
With missing values, the covariance structure learnt from the model is weired sometimes. The weights do not shrink to zero.
Suppose some of the rows in the data are totally missing. With the large errors for those missing values, the EE model ignores the information in those missing positions. In contrast, the EZ model cannot distinguish the nearly 0 z scores caused by the small observed effects from those caused by the large errors.
The large number of conditions is the main cause of the weired weights.LargeR
The small sample size could be the other reason. Increasing the sample size could improve the estimated weights. However, decreasing might also obtain the correct weights. When the number of conditions is large, we need more data to provide information. When the sample size is small, the model may not stable and the weights may not reliable. Sample Size
But in Miss Whole Row, the EE model with R = 60, deleting missing values results in non-zero weights. However, I expect the reuslt from data containing missing values is similar with the reuslt from data deleting missing values. Because the missing rows contain almost no information.
The Flash hierarchical model on Movie Lens data: Flash_Movie
This reproducible R Markdown analysis was created with workflowr 1.1.1