Last updated: 2019-01-29

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20181220)

    The command set.seed(20181220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 8607dea

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    dsc-mash-gtex/
    
    Untracked files:
        Untracked:  .DS_Store
        Untracked:  code/Demo_SumstatQuery.R
        Untracked:  data/.DS_Store
        Untracked:  data/cor_tissues_non_ash_voom_pearson.rda
        Untracked:  data/gene_names_GTEX_V6.txt
        Untracked:  data/genewide_ash_out_tissue_mat_halfuniform_non_mode.rda
        Untracked:  data/order_index.rda
        Untracked:  data/samples_id.txt
        Untracked:  data/tissuewide_pearson_halfuniform_tissuewide_non_mode.rda
        Untracked:  output/.DS_Store
        Untracked:  output/GTExV6/
        Untracked:  output/GTExV6pipeline/
        Untracked:  output/corshrink_noise_gene_1.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 8607dea zouyuxin 2019-01-29 wflow_publish(“analysis/GTExV6pipeline.Rmd”)
    html 5d17b16 zouyuxin 2019-01-29 Build site.
    Rmd cadbb28 zouyuxin 2019-01-29 wflow_publish(“analysis/GTExV6pipeline.Rmd”)
    html 02da57c zouyuxin 2019-01-27 Build site.
    Rmd 378989c zouyuxin 2019-01-27 wflow_publish(“analysis/GTExV6pipeline.Rmd”)


library(mashr)
Loading required package: ashr
library(knitr)
library(kableExtra)
library(ggplot2)
library(gridExtra)
gtex <- readRDS(gzcon(url("https://github.com/stephenslab/gtexresults/blob/master/data/MatrixEQTLSumStats.Portable.Z.rds?raw=TRUE")))
missing.tissues <- c(7, 8, 19, 20, 24, 25, 31, 34, 37)
gtex.colors <- read.table("https://github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt?raw=TRUE", sep = '\t', comment.char = '')[-missing.tissues, 2]
gtex.colors <- as.character(gtex.colors)
gene.names = as.character(read.table('data/gene_names.txt')[,1])

The results are from mashr_flashr_pipeline. We include the data driven covariance matrices based on the first three principal components and factors from flash.

Flash model based on effects:

factors = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.flash.model.rds')$factors
par(mfrow = c(2, 3))
for(k in 1:13){
  barplot(factors[,k], col=gtex.colors, names.arg = FALSE, axes = FALSE, main=paste0("Factor ", k))
}

Expand here to see past versions of flash EE factors plot-1.png:
Version Author Date
02da57c zouyuxin 2019-01-27

Expand here to see past versions of flash EE factors plot-2.png:
Version Author Date
02da57c zouyuxin 2019-01-27

Expand here to see past versions of flash EE factors plot-3.png:
Version Author Date
02da57c zouyuxin 2019-01-27

Flash model based on z scores:

factors = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.flash.model.rds')$factors
par(mfrow = c(2, 3))
for(k in 1:18){
  barplot(factors[,k], col=gtex.colors, names.arg = FALSE, axes = FALSE, main=paste0("Factor ", k))
}

Expand here to see past versions of flash EZ factors plot-1.png:
Version Author Date
02da57c zouyuxin 2019-01-27

Expand here to see past versions of flash EZ factors plot-2.png:
Version Author Date
02da57c zouyuxin 2019-01-27

Expand here to see past versions of flash EZ factors plot-3.png:
Version Author Date
02da57c zouyuxin 2019-01-27

# read model
m_simple_EE = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.mash_model_V_simple.rds')
m_simple_EE$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.mash_model_V_simple.posterior.rds')
m_simple_EZ = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.mash_model_V_simple.rds')
m_simple_EZ$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.mash_model_V_simple.posterior.rds')

m_mle_EE = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.mash_model_V_mle.rds')
m_mle_EE$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.mash_model_V_mle.posterior.rds')
m_mle_EZ = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.mash_model_V_mle.rds')
m_mle_EZ$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.mash_model_V_mle.posterior.rds')

m_Vgene_EE_kushal = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_corshrink_xcondition_kushal.mash_model.rds')
m_Vgene_EE_kushal$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_corshrink_xcondition_kushal.posterior.rds')
m_Vgene_EZ_kushal = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_corshrink_xcondition_kushal.mash_model.rds')
m_Vgene_EZ_kushal$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_corshrink_xcondition_kushal.posterior.rds')

m_Vgene_EE_nullz = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_corshrink_xcondition_nullz.mash_model.rds')
m_Vgene_EE_nullz$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_corshrink_xcondition_nullz.posterior.rds')
m_Vgene_EZ_nullz = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_corshrink_xcondition_nullz.mash_model.rds')
m_Vgene_EZ_nullz$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_corshrink_xcondition_nullz.posterior.rds')

Estimated null cor V

V.simple = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_simple.rds')
corrplot::corrplot(V.simple, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'Simple', mar=c(0,0,5,0))

Expand here to see past versions of V-1.png:
Version Author Date
02da57c zouyuxin 2019-01-27

# dev.off()

V.mle.EE = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_mle.rds')
corrplot::corrplot(V.mle.EE, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'MLE EE', mar=c(0,0,5,0))

Expand here to see past versions of V-2.png:
Version Author Date
02da57c zouyuxin 2019-01-27

V.mle.EZ = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_mle.rds')
corrplot::corrplot(V.mle.EZ, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'MLE EZ', mar=c(0,0,5,0))

Expand here to see past versions of V-3.png:
Version Author Date
02da57c zouyuxin 2019-01-27

Results

logliks = c(get_loglik(m_simple_EE), get_loglik(m_mle_EE), get_loglik(m_Vgene_EE_kushal), get_loglik(m_Vgene_EE_nullz))
logliks_EZ = c(get_loglik(m_simple_EZ), get_loglik(m_mle_EZ), get_loglik(m_Vgene_EZ_kushal), get_loglik(m_Vgene_EZ_nullz))
tmp = cbind(logliks, logliks_EZ)
row.names(tmp) = c('Simple', 'MLE', 'Vgene Kushal', 'Vgene null z')
colnames(tmp) = c('EE', 'EZ')
tmp %>% kable() %>% kable_styling()
EE EZ
Simple 936478.4 937254.7
MLE 940058.8 940457.4
Vgene Kushal 886368.9 907004.4
Vgene null z 1021859.8 1036059.9
par(mfrow=c(1,2))
barplot(get_estimated_pi(m_simple_EE), las=2, cex.names = 0.7, main = 'Simple EE')
barplot(get_estimated_pi(m_mle_EE), las=2, cex.names = 0.7, main = 'MLE EE')

Expand here to see past versions of plot weights-1.png:
Version Author Date
02da57c zouyuxin 2019-01-27

barplot(get_estimated_pi(m_Vgene_EE_kushal), las=2, cex.names = 0.7, main = 'V gene specific EE Kushal')
barplot(get_estimated_pi(m_Vgene_EE_nullz), las=2, cex.names = 0.7, main = 'V gene specific EE null z')

Expand here to see past versions of plot weights-2.png:
Version Author Date
5d17b16 zouyuxin 2019-01-29
02da57c zouyuxin 2019-01-27

barplot(get_estimated_pi(m_simple_EZ), las=2, cex.names = 0.7, main = 'Simple EZ')
barplot(get_estimated_pi(m_mle_EZ), las=2, cex.names = 0.7, main = 'MLE EZ')

Expand here to see past versions of plot weights-3.png:
Version Author Date
5d17b16 zouyuxin 2019-01-29

barplot(get_estimated_pi(m_Vgene_EZ_kushal), las=2, cex.names = 0.7, main = 'V gene specific EZ Kushal')
barplot(get_estimated_pi(m_Vgene_EZ_nullz), las=2, cex.names = 0.7, main = 'V gene specific EZ null z')

Expand here to see past versions of plot weights-4.png:
Version Author Date
5d17b16 zouyuxin 2019-01-29

Number of significant:

numsig_EE = c(length(get_significant_results(m_simple_EE)), 
              length(get_significant_results(m_mle_EE)), 
              length(get_significant_results(m_Vgene_EE_kushal)), 
              length(get_significant_results(m_Vgene_EE_nullz)))
numsig_EZ = c(length(get_significant_results(m_simple_EZ)), 
              length(get_significant_results(m_mle_EZ)),
              length(get_significant_results(m_Vgene_EZ_kushal)),
              length(get_significant_results(m_Vgene_EZ_nullz)))
tmp = cbind(numsig_EE, numsig_EZ)
row.names(tmp) = c('Simple', 'MLE', 'Vgene Kushal', 'Vgene null z')
colnames(tmp) = c('EE', 'EZ')
tmp %>% kable() %>% kable_styling()
EE EZ
Simple 13068 13519
MLE 12654 12986
Vgene Kushal 15767 16066
Vgene null z 15916 15967

The gene significant in Simple EZ, not in MLE EZ:

ind = setdiff(get_significant_results(m_simple_EZ), get_significant_results(m_mle_EZ))[9]
stronggene = data.frame(gtex$strong.b[ind,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = row.names(stronggene)
stronggene$se = gtex$strong.s[ind,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle(paste0(gene.names[ind], ' raw')) + ylim(c(-1,1)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneSimple = data.frame(m_simple_EZ$result$PosteriorMean[ind,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = row.names(stronggeneSimple)
stronggeneSimple$se = m_simple_EZ$result$PosteriorSD[ind,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle(paste0(gene.names[ind],' Simple EZ')) + ylim(c(-1,1)) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneMLE = data.frame(m_mle_EZ$result$PosteriorMean[ind,])
colnames(stronggeneMLE) = 'EffectSize'
stronggeneMLE$Group = row.names(stronggeneMLE)
stronggeneMLE$se = m_mle_EZ$result$PosteriorSD[ind,]
p3 = ggplot(stronggeneMLE, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1,1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' MLE EZ')) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneVgeneKushal = data.frame(m_Vgene_EZ_kushal$result$PosteriorMean[ind,])
colnames(stronggeneVgeneKushal) = 'EffectSize'
stronggeneVgeneKushal$Group = row.names(stronggeneVgeneKushal)
stronggeneVgeneKushal$se = m_Vgene_EZ_kushal$result$PosteriorSD[ind,]
p4 = ggplot(stronggeneVgeneKushal, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1,1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Kushal EZ')) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneVgeneNullZ = data.frame(m_Vgene_EZ_nullz$result$PosteriorMean[ind,])
colnames(stronggeneVgeneNullZ) = 'EffectSize'
stronggeneVgeneNullZ$Group = row.names(stronggeneVgeneNullZ)
stronggeneVgeneNullZ$se = m_Vgene_EZ_nullz$result$PosteriorSD[ind,]
p5 = ggplot(stronggeneVgeneNullZ, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1,1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Null EZ')) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

grid.arrange(p1, p2, p3, p4, p5, nrow = 2)

Expand here to see past versions of unnamed-chunk-3-1.png:
Version Author Date
5d17b16 zouyuxin 2019-01-29
02da57c zouyuxin 2019-01-27

The gene MCPH1:

ind = 13837
stronggene = data.frame(gtex$strong.b[13837,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = row.names(stronggene)
stronggene$se = gtex$strong.s[13837,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle('ENSG00000249898 row') + ylim(c(-1.3,1.1)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneSimple = data.frame(m_simple_EZ$result$PosteriorMean[13837,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = row.names(stronggeneSimple)
stronggeneSimple$se = m_simple_EZ$result$PosteriorSD[13837,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.1)) + coord_flip() + ggtitle('ENSG00000249898 Simple EZ') + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneMLE = data.frame(m_mle_EZ$result$PosteriorMean[13837,])
colnames(stronggeneMLE) = 'EffectSize'
stronggeneMLE$Group = row.names(stronggeneMLE)
stronggeneMLE$se = m_mle_EZ$result$PosteriorSD[13837,]
p3 = ggplot(stronggeneMLE, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle('ENSG00000249898 MLE EZ') + ylim(c(-1.3,1.1)) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneVgeneKushal = data.frame(m_Vgene_EZ_kushal$result$PosteriorMean[ind,])
colnames(stronggeneVgeneKushal) = 'EffectSize'
stronggeneVgeneKushal$Group = row.names(stronggeneVgeneKushal)
stronggeneVgeneKushal$se = m_Vgene_EZ_kushal$result$PosteriorSD[ind,]
p4 = ggplot(stronggeneVgeneKushal, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Kushal EZ')) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneVgeneNullZ = data.frame(m_Vgene_EZ_nullz$result$PosteriorMean[ind,])
colnames(stronggeneVgeneNullZ) = 'EffectSize'
stronggeneVgeneNullZ$Group = row.names(stronggeneVgeneNullZ)
stronggeneVgeneNullZ$se = m_Vgene_EZ_nullz$result$PosteriorSD[ind,]
p5 = ggplot(stronggeneVgeneNullZ, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Null EZ')) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))


grid.arrange(p1, p2, p3, p4, p5, nrow = 2)

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
5d17b16 zouyuxin 2019-01-29
02da57c zouyuxin 2019-01-27

The gene significant in V gene specific EZ (null) tissuewide, not in mle EZ:

ind = setdiff(get_significant_results(m_Vgene_EZ_nullz), get_significant_results(m_mle_EZ))[10]
stronggene = data.frame(gtex$strong.b[ind,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = row.names(stronggene)
stronggene$se = gtex$strong.s[ind,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle(paste0(gene.names[ind],' row')) + ylim(c(-1.3,1.4)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneSimple = data.frame(m_simple_EZ$result$PosteriorMean[ind,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = row.names(stronggeneSimple)
stronggeneSimple$se = m_simple_EZ$result$PosteriorSD[ind,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.4)) + coord_flip() + ggtitle(paste0(gene.names[ind],' Simple EZ')) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneMLE = data.frame(m_mle_EZ$result$PosteriorMean[ind,])
colnames(stronggeneMLE) = 'EffectSize'
stronggeneMLE$Group = row.names(stronggeneMLE)
stronggeneMLE$se = m_mle_EZ$result$PosteriorSD[ind,]
p3 = ggplot(stronggeneMLE, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle(paste0(gene.names[ind],' MLE EZ')) + ylim(c(-1.3,1.4)) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneVgeneKushal = data.frame(m_Vgene_EZ_kushal$result$PosteriorMean[ind,])
colnames(stronggeneVgeneKushal) = 'EffectSize'
stronggeneVgeneKushal$Group = row.names(stronggeneVgeneKushal)
stronggeneVgeneKushal$se = m_Vgene_EZ_kushal$result$PosteriorSD[ind,]
p4 = ggplot(stronggeneVgeneKushal, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1,1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Kushal EZ')) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneVgeneNullZ = data.frame(m_Vgene_EZ_nullz$result$PosteriorMean[ind,])
colnames(stronggeneVgeneNullZ) = 'EffectSize'
stronggeneVgeneNullZ$Group = row.names(stronggeneVgeneNullZ)
stronggeneVgeneNullZ$se = m_Vgene_EZ_nullz$result$PosteriorSD[ind,]
p5 = ggplot(stronggeneVgeneNullZ, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.4)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Null EZ')) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))


grid.arrange(p1, p2, p3, p4, p5, nrow = 2)

Expand here to see past versions of unnamed-chunk-5-1.png:
Version Author Date
5d17b16 zouyuxin 2019-01-29
02da57c zouyuxin 2019-01-27

The pairwise sharing by magnitude

par(mfrow = c(1,2))
clrs=colorRampPalette(rev(c('darkred', 'red','orange','yellow','cadetblue1', 'cyan', 'dodgerblue4', 'blue','darkorchid1','lightgreen','green', 'forestgreen','darkolivegreen')))(200)

x           <- get_pairwise_sharing(m_simple_EZ)
colnames(x) <- colnames(get_lfsr(m_simple_EZ))
rownames(x) <- colnames(x)

corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Simple EZ', mar=c(0,0,5,0))

x           <- get_pairwise_sharing(m_mle_EZ)
colnames(x) <- colnames(get_lfsr(m_mle_EZ))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'MLE EZ', mar=c(0,0,5,0))

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
5d17b16 zouyuxin 2019-01-29

par(mfrow = c(1,2))
clrs=colorRampPalette(rev(c('darkred', 'red','orange','yellow','cadetblue1', 'cyan', 'dodgerblue4', 'blue','darkorchid1','lightgreen','green', 'forestgreen','darkolivegreen')))(200)

x           <- get_pairwise_sharing(m_Vgene_EZ_kushal)
colnames(x) <- colnames(get_lfsr(m_Vgene_EZ_kushal))
rownames(x) <- colnames(x)

corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'V gene specific Kushal EZ', mar=c(0,0,5,0))

x           <- get_pairwise_sharing(m_Vgene_EZ_nullz)
colnames(x) <- colnames(get_lfsr(m_Vgene_EZ_nullz))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'V gene specific Null EZ', mar=c(0,0,5,0))

Expand here to see past versions of unnamed-chunk-7-1.png:
Version Author Date
5d17b16 zouyuxin 2019-01-29

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] gridExtra_2.3     ggplot2_3.1.0     kableExtra_1.0.1  knitr_1.20       
[5] mashr_0.2.19.0555 ashr_2.2-26      

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5  corrplot_0.84     purrr_0.2.5      
 [4] lattice_0.20-38   colorspace_1.4-0  htmltools_0.3.6  
 [7] viridisLite_0.3.0 yaml_2.2.0        rlang_0.3.1      
[10] R.oo_1.22.0       mixsqp_0.1-93     pillar_1.3.1     
[13] withr_2.1.2       glue_1.3.0        R.utils_2.7.0    
[16] bindrcpp_0.2.2    bindr_0.1.1       foreach_1.4.4    
[19] plyr_1.8.4        stringr_1.3.1     munsell_0.5.0    
[22] gtable_0.2.0      workflowr_1.1.1   rvest_0.3.2      
[25] R.methodsS3_1.7.1 mvtnorm_1.0-8     codetools_0.2-16 
[28] evaluate_0.12     labeling_0.3      pscl_1.5.2       
[31] doParallel_1.0.14 parallel_3.5.1    highr_0.7        
[34] Rcpp_1.0.0        readr_1.3.1       backports_1.1.3  
[37] scales_1.0.0      rmeta_3.0         webshot_0.5.1    
[40] truncnorm_1.0-8   abind_1.4-5       hms_0.4.2        
[43] digest_0.6.18     stringi_1.2.4     dplyr_0.7.8      
[46] grid_3.5.1        rprojroot_1.3-2   tools_3.5.1      
[49] magrittr_1.5      lazyeval_0.2.1    tibble_2.0.1     
[52] crayon_1.3.4      whisker_0.3-2     pkgconfig_2.0.2  
[55] MASS_7.3-51.1     Matrix_1.2-15     SQUAREM_2017.10-1
[58] xml2_1.2.0        assertthat_0.2.0  rmarkdown_1.11   
[61] httr_1.4.0        rstudioapi_0.9.0  iterators_1.0.10 
[64] R6_2.3.0          git2r_0.24.0      compiler_3.5.1   

This reproducible R Markdown analysis was created with workflowr 1.1.1