Last updated: 2019-01-29
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20181220)
The command set.seed(20181220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: cadbb28
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: dsc-mash-gtex/
Untracked files:
Untracked: .DS_Store
Untracked: code/Demo_SumstatQuery.R
Untracked: data/.DS_Store
Untracked: data/cor_tissues_non_ash_voom_pearson.rda
Untracked: data/gene_names_GTEX_V6.txt
Untracked: data/genewide_ash_out_tissue_mat_halfuniform_non_mode.rda
Untracked: data/order_index.rda
Untracked: data/samples_id.txt
Untracked: data/tissuewide_pearson_halfuniform_tissuewide_non_mode.rda
Untracked: output/.DS_Store
Untracked: output/GTExV6/
Untracked: output/GTExV6pipeline/
Untracked: output/corshrink_noise_gene_1.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
library(mashr)
Loading required package: ashr
library(knitr)
library(kableExtra)
library(ggplot2)
library(gridExtra)
gtex <- readRDS(gzcon(url("https://github.com/stephenslab/gtexresults/blob/master/data/MatrixEQTLSumStats.Portable.Z.rds?raw=TRUE")))
missing.tissues <- c(7, 8, 19, 20, 24, 25, 31, 34, 37)
gtex.colors <- read.table("https://github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt?raw=TRUE", sep = '\t', comment.char = '')[-missing.tissues, 2]
gtex.colors <- as.character(gtex.colors)
gene.names = as.character(read.table('data/gene_names.txt')[,1])
The results are from mashr_flashr_pipeline. We include the data driven covariance matrices based on the first three principal components and factors from flash
.
factors = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.flash.model.rds')$factors
par(mfrow = c(2, 3))
for(k in 1:13){
barplot(factors[,k], col=gtex.colors, names.arg = FALSE, axes = FALSE, main=paste0("Factor ", k))
}
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
factors = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.flash.model.rds')$factors
par(mfrow = c(2, 3))
for(k in 1:18){
barplot(factors[,k], col=gtex.colors, names.arg = FALSE, axes = FALSE, main=paste0("Factor ", k))
}
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
# read model
m_simple_EE = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.mash_model_V_simple.rds')
m_simple_EE$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.mash_model_V_simple.posterior.rds')
m_simple_EZ = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.mash_model_V_simple.rds')
m_simple_EZ$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.mash_model_V_simple.posterior.rds')
m_mle_EE = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.mash_model_V_mle.rds')
m_mle_EE$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.mash_model_V_mle.posterior.rds')
m_mle_EZ = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.mash_model_V_mle.rds')
m_mle_EZ$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.mash_model_V_mle.posterior.rds')
m_Vgene_EE_kushal = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_corshrink_xcondition_kushal.mash_model.rds')
m_Vgene_EE_kushal$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_corshrink_xcondition_kushal.posterior.rds')
m_Vgene_EZ_kushal = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_corshrink_xcondition_kushal.mash_model.rds')
m_Vgene_EZ_kushal$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_corshrink_xcondition_kushal.posterior.rds')
m_Vgene_EE_nullz = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_corshrink_xcondition_nullz.mash_model.rds')
m_Vgene_EE_nullz$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_corshrink_xcondition_nullz.posterior.rds')
m_Vgene_EZ_nullz = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_corshrink_xcondition_nullz.mash_model.rds')
m_Vgene_EZ_nullz$result = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_corshrink_xcondition_nullz.posterior.rds')
V.simple = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_simple.rds')
corrplot::corrplot(V.simple, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'Simple', mar=c(0,0,5,0))
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
# dev.off()
V.mle.EE = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EE.FL_PC3.V_mle.rds')
corrplot::corrplot(V.mle.EE, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'MLE EE', mar=c(0,0,5,0))
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
V.mle.EZ = readRDS('output/GTExV6pipeline/MatrixEQTLSumStats.Portable.Z.EZ.FL_PC3.V_mle.rds')
corrplot::corrplot(V.mle.EZ, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'MLE EZ', mar=c(0,0,5,0))
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
logliks = c(get_loglik(m_simple_EE), get_loglik(m_mle_EE), get_loglik(m_Vgene_EE_kushal), get_loglik(m_Vgene_EE_nullz))
logliks_EZ = c(get_loglik(m_simple_EZ), get_loglik(m_mle_EZ), get_loglik(m_Vgene_EZ_kushal), get_loglik(m_Vgene_EZ_nullz))
tmp = cbind(logliks, logliks_EZ)
row.names(tmp) = c('Simple', 'MLE', 'Vgene Kushal', 'Vgene null z')
colnames(tmp) = c('EE', 'EZ')
tmp %>% kable() %>% kable_styling()
EE | EZ | |
---|---|---|
Simple | 936478.4 | 937254.7 |
MLE | 940058.8 | 940457.4 |
Vgene Kushal | 886368.9 | 907004.4 |
Vgene null z | 1021859.8 | 1036059.9 |
par(mfrow=c(1,2))
barplot(get_estimated_pi(m_simple_EE), las=2, cex.names = 0.7, main = 'Simple EE')
barplot(get_estimated_pi(m_mle_EE), las=2, cex.names = 0.7, main = 'MLE EE')
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
barplot(get_estimated_pi(m_Vgene_EE_kushal), las=2, cex.names = 0.7, main = 'V gene specific EE Kushal')
barplot(get_estimated_pi(m_Vgene_EE_nullz), las=2, cex.names = 0.7, main = 'V gene specific EE null z')
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
barplot(get_estimated_pi(m_simple_EZ), las=2, cex.names = 0.7, main = 'Simple EZ')
barplot(get_estimated_pi(m_mle_EZ), las=2, cex.names = 0.7, main = 'MLE EZ')
barplot(get_estimated_pi(m_Vgene_EZ_kushal), las=2, cex.names = 0.7, main = 'V gene specific EZ Kushal')
barplot(get_estimated_pi(m_Vgene_EZ_nullz), las=2, cex.names = 0.7, main = 'V gene specific EZ null z')
Number of significant:
numsig_EE = c(length(get_significant_results(m_simple_EE)),
length(get_significant_results(m_mle_EE)),
length(get_significant_results(m_Vgene_EE_kushal)),
length(get_significant_results(m_Vgene_EE_nullz)))
numsig_EZ = c(length(get_significant_results(m_simple_EZ)),
length(get_significant_results(m_mle_EZ)),
length(get_significant_results(m_Vgene_EZ_kushal)),
length(get_significant_results(m_Vgene_EZ_nullz)))
tmp = cbind(numsig_EE, numsig_EZ)
row.names(tmp) = c('Simple', 'MLE', 'Vgene Kushal', 'Vgene null z')
colnames(tmp) = c('EE', 'EZ')
tmp %>% kable() %>% kable_styling()
EE | EZ | |
---|---|---|
Simple | 13068 | 13519 |
MLE | 12654 | 12986 |
Vgene Kushal | 15767 | 16066 |
Vgene null z | 15916 | 15967 |
The gene significant in simple EZ
, not in current EZ
:
ind = setdiff(get_significant_results(m_simple_EZ), get_significant_results(m_mle_EZ))[9]
stronggene = data.frame(gtex$strong.b[ind,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = row.names(stronggene)
stronggene$se = gtex$strong.s[ind,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle(paste0(gene.names[ind], ' raw')) + ylim(c(-1,1)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneSimple = data.frame(m_simple_EZ$result$PosteriorMean[ind,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = row.names(stronggeneSimple)
stronggeneSimple$se = m_simple_EZ$result$PosteriorSD[ind,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle(paste0(gene.names[ind],' Simple EZ')) + ylim(c(-1,1)) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneMLE = data.frame(m_mle_EZ$result$PosteriorMean[ind,])
colnames(stronggeneMLE) = 'EffectSize'
stronggeneMLE$Group = row.names(stronggeneMLE)
stronggeneMLE$se = m_mle_EZ$result$PosteriorSD[ind,]
p3 = ggplot(stronggeneMLE, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1,1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' MLE EZ')) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneVgeneKushal = data.frame(m_Vgene_EZ_kushal$result$PosteriorMean[ind,])
colnames(stronggeneVgeneKushal) = 'EffectSize'
stronggeneVgeneKushal$Group = row.names(stronggeneVgeneKushal)
stronggeneVgeneKushal$se = m_Vgene_EZ_kushal$result$PosteriorSD[ind,]
p4 = ggplot(stronggeneVgeneKushal, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1,1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Kushal EZ')) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneVgeneNullZ = data.frame(m_Vgene_EZ_nullz$result$PosteriorMean[ind,])
colnames(stronggeneVgeneNullZ) = 'EffectSize'
stronggeneVgeneNullZ$Group = row.names(stronggeneVgeneNullZ)
stronggeneVgeneNullZ$se = m_Vgene_EZ_nullz$result$PosteriorSD[ind,]
p5 = ggplot(stronggeneVgeneNullZ, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1,1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Null EZ')) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
grid.arrange(p1, p2, p3, p4, p5, nrow = 2)
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
The gene MCPH1
:
ind = 13837
stronggene = data.frame(gtex$strong.b[13837,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = row.names(stronggene)
stronggene$se = gtex$strong.s[13837,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle('ENSG00000249898 row') + ylim(c(-1.3,1.1)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneSimple = data.frame(m_simple_EZ$result$PosteriorMean[13837,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = row.names(stronggeneSimple)
stronggeneSimple$se = m_simple_EZ$result$PosteriorSD[13837,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.1)) + coord_flip() + ggtitle('ENSG00000249898 Simple EZ') +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneMLE = data.frame(m_mle_EZ$result$PosteriorMean[13837,])
colnames(stronggeneMLE) = 'EffectSize'
stronggeneMLE$Group = row.names(stronggeneMLE)
stronggeneMLE$se = m_mle_EZ$result$PosteriorSD[13837,]
p3 = ggplot(stronggeneMLE, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle('ENSG00000249898 MLE EZ') + ylim(c(-1.3,1.1)) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneVgeneKushal = data.frame(m_Vgene_EZ_kushal$result$PosteriorMean[ind,])
colnames(stronggeneVgeneKushal) = 'EffectSize'
stronggeneVgeneKushal$Group = row.names(stronggeneVgeneKushal)
stronggeneVgeneKushal$se = m_Vgene_EZ_kushal$result$PosteriorSD[ind,]
p4 = ggplot(stronggeneVgeneKushal, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Kushal EZ')) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneVgeneNullZ = data.frame(m_Vgene_EZ_nullz$result$PosteriorMean[ind,])
colnames(stronggeneVgeneNullZ) = 'EffectSize'
stronggeneVgeneNullZ$Group = row.names(stronggeneVgeneNullZ)
stronggeneVgeneNullZ$se = m_Vgene_EZ_nullz$result$PosteriorSD[ind,]
p5 = ggplot(stronggeneVgeneNullZ, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Null EZ')) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
grid.arrange(p1, p2, p3, p4, p5, nrow = 2)
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
The gene significant in V gene specific EZ (null) tissuewide
, not in mle EZ
:
ind = setdiff(get_significant_results(m_Vgene_EZ_nullz), get_significant_results(m_mle_EZ))[10]
stronggene = data.frame(gtex$strong.b[ind,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = row.names(stronggene)
stronggene$se = gtex$strong.s[ind,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle(paste0(gene.names[ind],' row')) + ylim(c(-1.3,1.4)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneSimple = data.frame(m_simple_EZ$result$PosteriorMean[ind,])
colnames(stronggeneSimple) = 'EffectSize'
stronggeneSimple$Group = row.names(stronggeneSimple)
stronggeneSimple$se = m_simple_EZ$result$PosteriorSD[ind,]
p2 = ggplot(stronggeneSimple, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.4)) + coord_flip() + ggtitle(paste0(gene.names[ind],' Simple EZ')) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneMLE = data.frame(m_mle_EZ$result$PosteriorMean[ind,])
colnames(stronggeneMLE) = 'EffectSize'
stronggeneMLE$Group = row.names(stronggeneMLE)
stronggeneMLE$se = m_mle_EZ$result$PosteriorSD[ind,]
p3 = ggplot(stronggeneMLE, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle(paste0(gene.names[ind],' MLE EZ')) + ylim(c(-1.3,1.4)) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneVgeneKushal = data.frame(m_Vgene_EZ_kushal$result$PosteriorMean[ind,])
colnames(stronggeneVgeneKushal) = 'EffectSize'
stronggeneVgeneKushal$Group = row.names(stronggeneVgeneKushal)
stronggeneVgeneKushal$se = m_Vgene_EZ_kushal$result$PosteriorSD[ind,]
p4 = ggplot(stronggeneVgeneKushal, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1,1)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Kushal EZ')) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneVgeneNullZ = data.frame(m_Vgene_EZ_nullz$result$PosteriorMean[ind,])
colnames(stronggeneVgeneNullZ) = 'EffectSize'
stronggeneVgeneNullZ$Group = row.names(stronggeneVgeneNullZ)
stronggeneVgeneNullZ$se = m_Vgene_EZ_nullz$result$PosteriorSD[ind,]
p5 = ggplot(stronggeneVgeneNullZ, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + ylim(c(-1.3,1.4)) + coord_flip() + ggtitle(paste0(gene.names[ind],' V gene specific Null EZ')) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
grid.arrange(p1, p2, p3, p4, p5, nrow = 2)
Version | Author | Date |
---|---|---|
02da57c | zouyuxin | 2019-01-27 |
The pairwise sharing by magnitude
par(mfrow = c(1,2))
clrs=colorRampPalette(rev(c('darkred', 'red','orange','yellow','cadetblue1', 'cyan', 'dodgerblue4', 'blue','darkorchid1','lightgreen','green', 'forestgreen','darkolivegreen')))(200)
x <- get_pairwise_sharing(m_simple_EZ)
colnames(x) <- colnames(get_lfsr(m_simple_EZ))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Simple EZ', mar=c(0,0,5,0))
x <- get_pairwise_sharing(m_mle_EZ)
colnames(x) <- colnames(get_lfsr(m_mle_EZ))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'Current EZ', mar=c(0,0,5,0))
par(mfrow = c(1,2))
clrs=colorRampPalette(rev(c('darkred', 'red','orange','yellow','cadetblue1', 'cyan', 'dodgerblue4', 'blue','darkorchid1','lightgreen','green', 'forestgreen','darkolivegreen')))(200)
x <- get_pairwise_sharing(m_Vgene_EZ_kushal)
colnames(x) <- colnames(get_lfsr(m_Vgene_EZ_kushal))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'V gene specific Kushal EZ', mar=c(0,0,5,0))
x <- get_pairwise_sharing(m_Vgene_EZ_nullz)
colnames(x) <- colnames(get_lfsr(m_Vgene_EZ_nullz))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'V gene specific Null EZ', mar=c(0,0,5,0))
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.2
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gridExtra_2.3 ggplot2_3.1.0 kableExtra_1.0.1 knitr_1.20
[5] mashr_0.2.19.0555 ashr_2.2-26
loaded via a namespace (and not attached):
[1] tidyselect_0.2.5 corrplot_0.84 purrr_0.2.5
[4] lattice_0.20-38 colorspace_1.4-0 htmltools_0.3.6
[7] viridisLite_0.3.0 yaml_2.2.0 rlang_0.3.1
[10] R.oo_1.22.0 mixsqp_0.1-93 pillar_1.3.1
[13] withr_2.1.2 glue_1.3.0 R.utils_2.7.0
[16] bindrcpp_0.2.2 bindr_0.1.1 foreach_1.4.4
[19] plyr_1.8.4 stringr_1.3.1 munsell_0.5.0
[22] gtable_0.2.0 workflowr_1.1.1 rvest_0.3.2
[25] R.methodsS3_1.7.1 mvtnorm_1.0-8 codetools_0.2-16
[28] evaluate_0.12 labeling_0.3 pscl_1.5.2
[31] doParallel_1.0.14 parallel_3.5.1 highr_0.7
[34] Rcpp_1.0.0 readr_1.3.1 backports_1.1.3
[37] scales_1.0.0 rmeta_3.0 webshot_0.5.1
[40] truncnorm_1.0-8 abind_1.4-5 hms_0.4.2
[43] digest_0.6.18 stringi_1.2.4 dplyr_0.7.8
[46] grid_3.5.1 rprojroot_1.3-2 tools_3.5.1
[49] magrittr_1.5 lazyeval_0.2.1 tibble_2.0.1
[52] crayon_1.3.4 whisker_0.3-2 pkgconfig_2.0.2
[55] MASS_7.3-51.1 Matrix_1.2-15 SQUAREM_2017.10-1
[58] xml2_1.2.0 assertthat_0.2.0 rmarkdown_1.11
[61] httr_1.4.0 rstudioapi_0.9.0 iterators_1.0.10
[64] R6_2.3.0 git2r_0.24.0 compiler_3.5.1
This reproducible R Markdown analysis was created with workflowr 1.1.1