Last updated: 2018-06-11
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180609)
The command set.seed(20180609)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: b47adc3
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rproj.user/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | b47adc3 | Jason Willwerscheid | 2018-06-11 | wflow_publish(“analysis/mashvflash.Rmd”) |
html | 6508f2b | Jason Willwerscheid | 2018-06-09 | Build site. |
Rmd | 861d4b3 | Jason Willwerscheid | 2018-06-09 | readd mashvflash analysis |
html | 861d4b3 | Jason Willwerscheid | 2018-06-09 | readd mashvflash analysis |
Rmd | a76f3cf | Jason Willwerscheid | 2018-06-09 | add mashvflash rmd |
html | a76f3cf | Jason Willwerscheid | 2018-06-09 | add mashvflash rmd |
# FLASH v MASH ------------------------------------------------------
flash_v_mash <- function(Y, true_Y, nfactors) {
data <- flash_set_data(Y, S = 1)
fl <- fit_flash(data, nfactors)
m <- fit_mash(Y)
# Sample from FLASH fit
fl_sampler <- flash_lf_sampler(Y, fl, ebnm_fn=ebnm_pn, fixed="factors")
nsamp <- 200
fl_samp <- fl_sampler(nsamp)
res <- list()
res$fl_mse <- flash_pm_mse(fl_samp, true_Y)
res$m_mse <- mash_pm_mse(m, true_Y)
res$fl_ci <- flash_ci_acc(fl_samp, true_Y)
res$m_ci <- mash_ci_acc(m, true_Y)
res$fl_lfsr <- flash_lfsr(fl_samp, true_Y)
res$m_lfsr <- mash_lfsr(m, true_Y)
res
}
plot_res <- function(res) {
old_par <- par("mfrow")
par(mfrow=c(1, 2))
x <- seq(0.025, 0.475, by=0.05)
plot(x, res$fl_lfsr, type='l', ylim=c(0, 0.6), xlab="FLASH", ylab="lfsr")
abline(0, 1)
plot(x, res$m_lfsr, type='l', ylim=c(0, 0.6), xlab="MASH", ylab="lfsr")
abline(0, 1)
par(mfrow=old_par)
}
# Fit using FLASH ---------------------------------------------------
fit_flash <- function(data, nfactors) {
p <- ncol(data$Y)
fl <- flash_add_greedy(data, nfactors, var_type = "zero")
fl <- flash_add_fixed_f(data, diag(rep(1, p)), fl)
flash_backfit(data, fl, nullcheck = F, var_type = "zero")
}
# Fit using MASH ---------------------------------------------------
fit_mash <- function(Y) {
data <- mash_set_data(Y)
U.c = cov_canonical(data)
m.1by1 <- mash_1by1(data)
strong <- get_significant_results(m.1by1, 0.05)
U.pca <- cov_pca(data, 5, strong)
U.ed <- cov_ed(data, U.pca, strong)
mash(data, c(U.c,U.ed))
}
# MSE of posterior means (FLASH) ------------------------------------
flash_pm_mse <- function(fl_samp, true_Y) {
n <- nrow(true_Y)
p <- ncol(true_Y)
nsamp <- length(fl_samp)
post_means <- matrix(0, nrow=n, ncol=p)
for (i in 1:nsamp) {
post_means <- post_means + fl_samp[[i]]
}
post_means <- post_means / nsamp
sum((post_means - true_Y)^2) / (n * p)
}
# Compare with just using FLASH LF:
# sum((flash_get_lf(fl)- true_flash_Y)^2) / (n * p)
# MSE for MASH ------------------------------------------------------
mash_pm_mse <- function(m, true_Y) {
n <- nrow(true_Y)
p <- ncol(true_Y)
sum((get_pm(m) - true_Y)^2) / (n * p)
}
# CI coverage for FLASH ---------------------------------------------
flash_ci_acc <- function(fl_samp, true_Y) {
n <- nrow(true_Y)
p <- ncol(true_Y)
nsamp <- length(fl_samp)
flat_samp <- matrix(0, nrow=n*p, ncol=nsamp)
for (i in 1:nsamp) {
flat_samp[, i] <- as.vector(fl_samp[[i]])
}
CI <- t(apply(flat_samp, 1, function(x) {quantile(x, c(0.025, 0.975))}))
sum((as.vector(true_Y) > CI[, 1])
& (as.vector(true_Y < CI[, 2]))) / (n * p)
}
# CI coverage for MASH ----------------------------------------------
mash_ci_acc <- function(m, true_Y) {
sum((true_Y > get_pm(m) - 1.96 * get_psd(m))
& (true_Y < get_pm(m) + 1.96 * get_psd(m))) / (n * p)
}
# LFSR for FLASH ----------------------------------------------------
flash_lfsr <- function(fl_samp, true_Y, step=0.05) {
n <- nrow(true_Y)
p <- ncol(true_Y)
nsamp <- length(fl_samp)
lfsr <- matrix(0, nrow=n, ncol=p)
for (i in 1:nsamp) {
lfsr <- lfsr + (fl_samp[[i]] > 0) + 0.5*(fl_samp[[i]] == 0)
}
signs <- lfsr >= nsamp / 2
correct_signs <- true_Y > 0
gotitright <- signs == correct_signs
lfsr <- pmin(lfsr, 100 - lfsr) / 100
nsteps <- floor(.5 / step)
fsr_by_lfsr <- rep(0, nsteps)
for (k in 1:nsteps) {
idx <- (lfsr >= (step * (k - 1)) & lfsr < (step * k))
fsr_by_lfsr[k] <- ifelse(sum(idx) == 0, 0,
1 - sum(gotitright[idx]) / sum(idx))
}
fsr_by_lfsr
}
# LFSR for MASH -----------------------------------------------------
mash_lfsr <- function(m, true_Y, step=0.05) {
lfsr <- get_lfsr(m)
signs <- get_pm(m) > 0
correct_signs <- true_Y > 0
gotitright <- signs == correct_signs
nsteps <- floor(.5 / step)
fsr_by_lfsr <- rep(0, nsteps)
for (k in 1:nsteps) {
idx <- (lfsr >= (step * (k - 1)) & lfsr < (step * k))
fsr_by_lfsr[k] <- ifelse(sum(idx) == 0, 0,
1 - sum(gotitright[idx]) / sum(idx))
}
fsr_by_lfsr
}
# Simulate from FLASH model -----------------------------------------
n <- 1000
p <- 10
flash_factors <- 5
# Use one factor of all ones and one more interesting factor
nfactors <- 2
k <- p + nfactors
ff <- matrix(0, nrow=k, ncol=p)
ff[1, ] <- rep(10, p)
ff[2, ] <- c(seq(10, 2, by=-2), rep(0, p - 5))
diag(ff[3:k, ]) <- 3
ll <- matrix(rnorm(n * k), nrow=n, ncol=k)
true_flash_Y <- ll %*% ff
flash_Y <- true_flash_Y + rnorm(n*p)
# RESULTS
flash_res <- flash_v_mash(flash_Y, true_flash_Y, flash_factors)
fitting factor/loading 1
fitting factor/loading 2
fitting factor/loading 3
fitting factor/loading 4
fitting factor/loading 5
- Computing 1000 x 463 likelihood matrix.
- Likelihood calculations took 0.11 seconds.
- Fitting model with 463 mixture components.
- Model fitting took 0.10 seconds.
- Computing posterior matrices.
- Computation allocated took 0.02 seconds.
# Simulate from basic FLASH model -----------------------------------
ff <- ff[1:nfactors, ]
ll <- matrix(rnorm(n * nfactors), nrow=n, ncol=nfactors)
true_basic_Y <- ll %*% ff
basic_Y <- true_basic_Y + rnorm(n*p)
# RESULTS
basic_res <- flash_v_mash(basic_Y, true_basic_Y, flash_factors)
fitting factor/loading 1
fitting factor/loading 2
fitting factor/loading 3
- Computing 1000 x 463 likelihood matrix.
- Likelihood calculations took 0.10 seconds.
- Fitting model with 463 mixture components.
Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
consider reducing rtol
Warning in mixIP(matrix_lik = structure(c(4.36775456135722e-15, 0, 0,
0, : Optimization step yields mixture weights that are either too small,
or negative; weights have been corrected and renormalized after the
optimization.
- Model fitting took 0.30 seconds.
- Computing posterior matrices.
- Computation allocated took 0.29 seconds.
# Simulate from MASH model ------------------------------------------
Sigma <- list()
Sigma[[1]] <- matrix(1, nrow=p, ncol=p)
Sigma[[2]] <- matrix(0, nrow=p, ncol=p)
for (i in 1:p) {
for (j in 1:p) {
Sigma[[2]][i, j] <- max(1 - abs(i - j) / 4, 0)
}
}
for (k in 1:p) {
Sigma[[k + 2]] <- matrix(0, nrow=p, ncol=p)
Sigma[[k + 2]][k, k] <- 1
}
which_sigma <- sample(1:12, 1000, T, prob=c(.3, .3, rep(.4/p, p)))
true_mash_Y <- matrix(0, nrow=n, ncol=p)
for (i in 1:n) {
true_mash_Y[i, ] <- 5*mvrnorm(1, rep(0, p), Sigma[[which_sigma[i]]])
}
mash_Y <- true_mash_Y + rnorm(n * p)
# RESULTS
mash_res <- flash_v_mash(mash_Y, true_mash_Y, flash_factors)
fitting factor/loading 1
fitting factor/loading 2
fitting factor/loading 3
fitting factor/loading 4
fitting factor/loading 5
- Computing 1000 x 400 likelihood matrix.
- Likelihood calculations took 0.09 seconds.
- Fitting model with 400 mixture components.
- Model fitting took 0.52 seconds.
- Computing posterior matrices.
- Computation allocated took 0.03 seconds.
In each case below, I follow the vignettes to produce a MASH fit (I use both canonical and data-driven covariance matrices). I fit a FLASH object (fixing the standard errors) by adding up to 10 factors greedily, then adding \(p\) fixed one-hot vectors, and finally backfitting.
The two fits perform similarly. The MASH fit does somewhat better on data generated from the MASH model; more surprisingly, it performs comparably to FLASH on data generated from both the standard two-factor FLASH model. Both do poorly on the “augmented FLASH model” (described below), with MSEs near 1 (which would be obtained by simply using \(Y\) as an estimate).
First I simulate from the basic FLASH model \(Y = LF + E\) with \(E_{ij} \sim N(0, 1)\). Here, \(Y \in \mathbb{R}^{1000 \times 10}\), \(L \in \mathbb{R}^{1000 \times 2}\) has i.i.d. \(N(0, 1)\) entries, and \(F\) is as follows:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 10 10 10 10 10 10 10 10 10 10
[2,] 10 8 6 4 2 0 0 0 0 0
The MSE of the FLASH fit is 0.2, vs. 0.21 for the MASH fit. The proportion of 95% confidence intervals that contain the true value \(LF_{ij}\) is 0.94 for FLASH and 0.96 for MASH. The true false sign rate vs lfsr appears as follows:
Next I simulate from the “augmented” FLASH model \[ Y = L \begin{pmatrix} F \\ 3I_{10} \end{pmatrix} + E \] with \(F\) as above.
The MSE of the FLASH fit is 0.93, vs. 1.05 for the MASH fit. The proportion of 95% confidence intervals that contain the true value is 0.94 for FLASH and 0.93 for MASH. The true false sign rate vs lfsr appears as follows:
Finally I simulate from the MASH model \[ X \sim \sum \pi_i N(0, \Sigma_i),\ Y = X + E \] with \(E_{ij} \sim N(0, 1)\). I set \(\Sigma_1\) to be the all ones matrix, \(\Sigma_2\) to be a banded covariance matrix with non-zero entries on the first three off-diagonals, and \(\Sigma_3\) through \(\Sigma_{12}\) to have a single non-zero entry (corresponding to tissue-specific effects). \(\pi\) is set to \((0.3, 0.3, 0.04, 0.04, \ldots, 0.04)\).
The MSE of the FLASH fit is 0.56, vs. 0.43 for the MASH fit. The proportion of 95% confidence intervals that contain the true value is 0.9 for FLASH and 0.94 for MASH. The true false sign rate vs lfsr appears as follows:
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] MASS_7.3-48 mashr_0.2-7 ashr_2.2-7 flashr_0.5-8
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 pillar_1.2.1
[3] plyr_1.8.4 compiler_3.4.3
[5] git2r_0.21.0 workflowr_1.0.1
[7] R.methodsS3_1.7.1 R.utils_2.6.0
[9] iterators_1.0.9 tools_3.4.3
[11] testthat_2.0.0 digest_0.6.15
[13] tibble_1.4.2 evaluate_0.10.1
[15] memoise_1.1.0 gtable_0.2.0
[17] lattice_0.20-35 rlang_0.2.0
[19] Matrix_1.2-12 foreach_1.4.4
[21] commonmark_1.4 yaml_2.1.17
[23] parallel_3.4.3 mvtnorm_1.0-7
[25] ebnm_0.1-11 withr_2.1.1.9000
[27] stringr_1.3.0 roxygen2_6.0.1.9000
[29] xml2_1.2.0 knitr_1.20
[31] REBayes_1.2 devtools_1.13.4
[33] rprojroot_1.3-2 grid_3.4.3
[35] R6_2.2.2 rmarkdown_1.8
[37] rmeta_3.0 ggplot2_2.2.1
[39] magrittr_1.5 whisker_0.3-2
[41] backports_1.1.2 scales_0.5.0
[43] codetools_0.2-15 htmltools_0.3.6
[45] assertthat_0.2.0 softImpute_1.4
[47] colorspace_1.3-2 stringi_1.1.6
[49] Rmosek_7.1.3 lazyeval_0.2.1
[51] munsell_0.4.3 doParallel_1.0.11
[53] pscl_1.5.2 truncnorm_1.0-8
[55] SQUAREM_2017.10-1 ExtremeDeconvolution_1.3
[57] R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1