Last updated: 2018-08-30

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180618)

    The command set.seed(20180618) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: fa8da96

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    R/.Rhistory
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/pipeline/.Rhistory
    
    Untracked files:
        Untracked:  ..gif
        Untracked:  .DS_Store
        Untracked:  R/.DS_Store
        Untracked:  R/myheatmap.R
        Untracked:  analysis/.DS_Store
        Untracked:  analysis/10x_heatmap.pdf
        Untracked:  analysis/SLSL_marker_based_logcpm.pdf
        Untracked:  analysis/biomarkers.R
        Untracked:  analysis/cellref.pdf
        Untracked:  analysis/consistency_check.R
        Untracked:  analysis/dropseq_heatmap.pdf
        Untracked:  analysis/dropseq_sc3_result.Rdata
        Untracked:  analysis/dropseq_slsl1.Rdata
        Untracked:  analysis/marker-based.pdf
        Untracked:  analysis/normalization_test.R
        Untracked:  analysis/pbmcheat.pdf
        Untracked:  analysis/pbmcref.pdf
        Untracked:  analysis/pipeline/0_dropseq/
        Untracked:  analysis/pipeline/1_10X/
        Untracked:  analysis/pipeline/2_zeisel/
        Untracked:  analysis/pipeline/3_smallsets/
        Untracked:  analysis/writeup/cite.log
        Untracked:  analysis/writeup/paper.aux
        Untracked:  analysis/writeup/paper.bbl
        Untracked:  analysis/writeup/paper.blg
        Untracked:  analysis/writeup/paper.log
        Untracked:  analysis/writeup/paper.out
        Untracked:  analysis/writeup/paper.synctex.gz
        Untracked:  analysis/writeup/paper.tex
        Untracked:  analysis/writeup/writeup.aux
        Untracked:  analysis/writeup/writeup.bbl
        Untracked:  analysis/writeup/writeup.blg
        Untracked:  analysis/writeup/writeup.dvi
        Untracked:  analysis/writeup/writeup.log
        Untracked:  analysis/writeup/writeup.out
        Untracked:  analysis/writeup/writeup.synctex.gz
        Untracked:  analysis/writeup/writeup.tex
        Untracked:  analysis/writeup/writeup2.aux
        Untracked:  analysis/writeup/writeup2.bbl
        Untracked:  analysis/writeup/writeup2.blg
        Untracked:  analysis/writeup/writeup2.log
        Untracked:  analysis/writeup/writeup2.out
        Untracked:  analysis/writeup/writeup2.pdf
        Untracked:  analysis/writeup/writeup2.synctex.gz
        Untracked:  analysis/writeup/writeup2.tex
        Untracked:  analysis/writeup/writeup3.aux
        Untracked:  analysis/writeup/writeup3.log
        Untracked:  analysis/writeup/writeup3.out
        Untracked:  analysis/writeup/writeup3.synctex.gz
        Untracked:  analysis/writeup/writeup3.tex
        Untracked:  data/unnecessary_in_building/
        Untracked:  dropseq_heatmap.pdf
        Untracked:  normalized_out_1.Rdata
        Untracked:  not_normalized_out_1.Rdata
        Untracked:  src/.gitignore
        Untracked:  tutorial2.Rmd
    
    Unstaged changes:
        Modified:   NAMESPACE
        Modified:   R/RcppExports.R
        Modified:   analysis/example_dropseq.Rmd
        Modified:   analysis/pipeline/.DS_Store
        Modified:   analysis/writeup/.DS_Store
        Modified:   data/.DS_Store
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 64d04da tk382 2018-08-29 add toc
    html f6c8902 tk382 2018-08-29 Build site.


Read Data : PBMC 27K

Read data. Keep the gene names separately.

orig = readMM('data/unnecessary_in_building/pbmc3k/matrix.mtx')
orig_genenames = read.table('data/unnecessary_in_building/pbmc3k/genes.tsv',
                            stringsAsFactors = FALSE)

Quality Control and Cell Selections

Get summary of the cells. The function “cellFilter” removes abnormal cells based on the read counts. The arguments minGene and maxGene restrict the number of genes detected in each cell. In 10X and Drop-seq data, having lower limit of 500 and upper limit of 2000 are generally appropriate. The cells with greater than 2000 detected genes are likeliy to be doublets, and those with less than 500 have too many dropouts. The default values are -Inf and Inf, so users are recommended to inspect the histogram of gene counts and determine the bounds. The function also requires the gene names to discover the mito-genes. Cells with high mitochondrial read proportion can indicate apoptosis. The default is 0.1.

nGene = Matrix::colSums(orig > 0)
hist(nGene)

Expand here to see past versions of cell_filter-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

summaryX = cellFilter(X = orig, 
                      genenames = orig_genenames$V2,
                      minGene = 500, 
                      maxGene = 2000, 
                      maxMitoProp = 0.1)
tmpX = summaryX$X
nUMI = summaryX$nUMI
nGene = summaryX$nGene
percent.mito = summaryX$percent.mito
det.rate = summaryX$det.rate

par(mfrow = c(1,4))
boxplot(nUMI, main='nUMI'); 
boxplot(nGene, main='nGene'); 
boxplot(percent.mito, main='mitogene prop'); 
boxplot(det.rate, main='detection rate')

Expand here to see past versions of cell_filter-2.png:
Version Author Date
f6c8902 tk382 2018-08-29

Gene Filtering

Next find variable genes using normalized dispersion. First, remove the genes where counts are 0 in all the cells, so that we use genes with at least one UMI count detected in at least one cell are used. Then genes are placed into a number of bins (user’s choice in “bins” parameter in “dispersion” function, default is 20) based on their mean expression, and normalized dispersion is calculated as the absolute difference between dispersion and median dispersion of the expression mean, normalized by the median absolute deviation within each bin. (Grace Zheng et al., 2017)

X = tmpX[Matrix::rowSums(tmpX) > 0, ]
genenames = orig_genenames[Matrix::rowSums(tmpX) > 0, ]
disp = dispersion(X, bins = 20)
plot(disp$z ~ disp$genemeans,
     xlab = "mean expression",
     ylab = "normalized dispersion")

Expand here to see past versions of basic_gene_filtering-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

select = which(abs(disp$z) > 1)
X = X[select, ]
genenames = genenames[select,]

UMI Normalization

Use quantile-normalization to make the distribution of each cell the same.

X = quantile_normalize(as.matrix(X))

Correct Detection Rate

#take log
logX = as.matrix(log(X + 1))

#check dependency
out = correct_detection_rate(logX, det.rate)

Expand here to see past versions of log_transform_and_det_correction-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

#regress out
log.cpm = logX #not correct the detection rate (no strict linear pattern)
#if there is a pattern, log.cpm = out$residual

Dimension reduction and visualization

pc.base = irlba(log.cpm, 20)
tsne.base = Rtsne(pc.base$v[,1:10], dims=2, perplexity = 100, pca=FALSE)
rm(pc.base)
plot(tsne.base$Y, cex=0.5)

Expand here to see past versions of tsne-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

Run SLSL

out = SLSL(log.cpm, log=FALSE,
           filter = FALSE,
           correct_detection_rate = FALSE,
           klist = c(200,250,300),
           sigmalist = c(1,1.5,2),
           kernel_type = "pearson",
           verbose=FALSE)
tab = table(out$result)
plot(tsne.base$Y, col=rainbow(7)[out$result],
     xlab = 'tsne1', ylab='tsne2', main="SLSL result", cex = 0.5)

Expand here to see past versions of slsl-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

S = as.matrix(out$S)
ind = sort(out$result, index.return=TRUE)$ix
palette.gr.marray <- colorRampPalette(c("ivory", "pink", "red", "brown"))(50)
heatmap.2(S[ind, ind],
          trace = "none",
          col = palette.gr.marray,
          Colv = F,
          Rowv = F, 
          sepcolor = "gray",
          dendrogram = "none",
          labRow = NA,
          labCol = NA,
          key = F,
          breaks = seq(min(S), max(S),length=51),
          cexRow = 1,
          symbreaks = T)

Important Features

We use Kolgomorov-Smirov test to select some of the genes for the clusters not found in SC3 result to verify that our clustering result is based on real signals.

gene_selected_names = c('S100A4','B2M','LGALS1','S100A9','S100A8', 'LST1')
gene_selected = match(gene_selected_names, genenames$V2)
ind = gene_selected
df = data.frame(tsne1 = tsne.base$Y[,1], tsne2 = tsne.base$Y[,2],
                S100A4 = log.cpm[ind[1], ],
                B2M = log.cpm[ind[2], ],
                LGALS1 = log.cpm[ind[3],],
                S100A9 = log.cpm[ind[4], ],
                S100A8 = log.cpm[ind[5],],
                LST1 = log.cpm[ind[6], ])
g1 = ggplot(df, aes(x=tsne1, y=tsne2, col = S100A4)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('S100A4')
g2 = ggplot(df, aes(x=tsne1, y=tsne2, col = B2M)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('B2M')
g3 = ggplot(df, aes(x=tsne1, y=tsne2, col = LGALS1)) + geom_point(size=0.1) + 
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('LGALS1')
g4 = ggplot(df, aes(x=tsne1, y=tsne2, col = S100A9)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('S100A9')
g5 = ggplot(df, aes(x=tsne1, y=tsne2, col = S100A8)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('S100A8')
g6 = ggplot(df, aes(x=tsne1, y=tsne2, col = LST1)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('LST1')

grid.arrange(g1,g2,g3, g4,g5,g6,nrow=2)

Expand here to see past versions of markers1-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

Known Markers

I also check the markers provided in the past works about the same data set. The gene names used below are from either Seurat’s tutorial or the original 10X paper about PBMC cells Zheng et al.

#list comes from 10X paper and Seurat
ind = which(genenames$V2 %in% c('CD3D', 'CD8A', 'NKG7', 'FCER1A', 'CD16', 'S100A8',
                                     'MS4A1', 'GNLY', 'CD3E', 'CD14', 'FCGR3A',
                                     'LYZ','PPBP'))
genenames$V2[ind]
[1] "S100A8" "FCER1A" "GNLY"   "PPBP"   "LYZ"    "NKG7"  
df = data.frame(tsne1 = tsne.base$Y[,1], tsne2 = tsne.base$Y[,2],
                S100A8 = log.cpm[ind[1], ],
                FCER1A = log.cpm[ind[2], ],
                GNLY = log.cpm[ind[3], ],
                PPBP = log.cpm[ind[4], ],
                LYZ = log.cpm[ind[5], ],
                NKG7 = log.cpm[ind[6], ])

g1 = ggplot(df, aes(x=tsne1, y=tsne2, col = S100A8)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('S100A8')
g2 = ggplot(df, aes(x=tsne1, y=tsne2, col = FCER1A)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('FCER1A')
g3 = ggplot(df, aes(x=tsne1, y=tsne2, col = GNLY)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('GNLY')
g4 = ggplot(df, aes(x=tsne1, y=tsne2, col = PPBP)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('PPBP')
g5 = ggplot(df, aes(x=tsne1, y=tsne2, col = LYZ)) + geom_point(size=0.1) + scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('LYZ')
g6 = ggplot(df, aes(x=tsne1, y=tsne2, col = NKG7)) + geom_point(size=0.1) + scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('NKG7')


grid.arrange(g1,g2,g3,g4,
             g5,g6, nrow=2)

Expand here to see past versions of biomarkers-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.5

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] bindrcpp_0.2.2              gridExtra_2.3              
 [3] SC3_1.8.0                   SingleCellExperiment_1.2.0 
 [5] SummarizedExperiment_1.10.1 DelayedArray_0.6.2         
 [7] BiocParallel_1.14.2         Biobase_2.40.0             
 [9] GenomicRanges_1.32.6        GenomeInfoDb_1.16.0        
[11] IRanges_2.14.10             S4Vectors_0.18.3           
[13] BiocGenerics_0.26.0         SCNoisyClustering_0.1.0    
[15] plotly_4.8.0                gplots_3.0.1               
[17] diceR_0.5.1                 Rtsne_0.13                 
[19] igraph_1.2.2                scatterplot3d_0.3-41       
[21] pracma_2.1.4                fossil_0.3.7               
[23] shapefiles_0.7              foreign_0.8-71             
[25] maps_3.3.0                  sp_1.3-1                   
[27] caret_6.0-80                lattice_0.20-35            
[29] reshape_0.8.7               dplyr_0.7.6                
[31] quadprog_1.5-5              inline_0.3.15              
[33] matrixStats_0.54.0          irlba_2.3.2                
[35] Matrix_1.2-14               ggplot2_3.0.0              
[37] MultiAssayExperiment_1.6.0 

loaded via a namespace (and not attached):
  [1] backports_1.1.2           workflowr_1.1.1          
  [3] plyr_1.8.4                lazyeval_0.2.1           
  [5] splines_3.5.1             digest_0.6.15            
  [7] foreach_1.4.4             htmltools_0.3.6          
  [9] gdata_2.18.0              magrittr_1.5             
 [11] cluster_2.0.7-1           doParallel_1.0.11        
 [13] ROCR_1.0-7                sfsmisc_1.1-2            
 [15] recipes_0.1.3             gower_0.1.2              
 [17] dimRed_0.1.0              R.utils_2.6.0            
 [19] colorspace_1.3-2          rrcov_1.4-4              
 [21] WriteXLS_4.0.0            crayon_1.3.4             
 [23] RCurl_1.95-4.11           jsonlite_1.5             
 [25] RcppArmadillo_0.8.600.0.0 bindr_0.1.1              
 [27] survival_2.42-6           iterators_1.0.10         
 [29] glue_1.3.0                DRR_0.0.3                
 [31] registry_0.5              gtable_0.2.0             
 [33] ipred_0.9-6               zlibbioc_1.26.0          
 [35] XVector_0.20.0            kernlab_0.9-26           
 [37] ddalpha_1.3.4             DEoptimR_1.0-8           
 [39] abind_1.4-5               scales_0.5.0             
 [41] mvtnorm_1.0-8             pheatmap_1.0.10          
 [43] rngtools_1.3.1            bibtex_0.4.2             
 [45] Rcpp_0.12.18              viridisLite_0.3.0        
 [47] xtable_1.8-2              magic_1.5-8              
 [49] mclust_5.4.1              lava_1.6.2               
 [51] prodlim_2018.04.18        htmlwidgets_1.2          
 [53] httr_1.3.1                RColorBrewer_1.1-2       
 [55] pkgconfig_2.0.1           R.methodsS3_1.7.1        
 [57] nnet_7.3-12               labeling_0.3             
 [59] later_0.7.3               tidyselect_0.2.4         
 [61] rlang_0.2.1               reshape2_1.4.3           
 [63] munsell_0.5.0             tools_3.5.1              
 [65] pls_2.6-0                 broom_0.5.0              
 [67] evaluate_0.11             geometry_0.3-6           
 [69] stringr_1.3.1             yaml_2.2.0               
 [71] ModelMetrics_1.1.0        knitr_1.20               
 [73] robustbase_0.93-2         caTools_1.17.1.1         
 [75] purrr_0.2.5               nlme_3.1-137             
 [77] doRNG_1.7.1               mime_0.5                 
 [79] whisker_0.3-2             R.oo_1.22.0              
 [81] RcppRoll_0.3.0            compiler_3.5.1           
 [83] e1071_1.7-0               tibble_1.4.2             
 [85] pcaPP_1.9-73              stringi_1.2.4            
 [87] pillar_1.3.0              data.table_1.11.4        
 [89] bitops_1.0-6              httpuv_1.4.5             
 [91] R6_2.2.2                  promises_1.0.1           
 [93] KernSmooth_2.23-15        codetools_0.2-15         
 [95] MASS_7.3-50               gtools_3.8.1             
 [97] assertthat_0.2.0          CVST_0.2-2               
 [99] pkgmaker_0.27             rprojroot_1.3-2          
[101] withr_2.1.2               GenomeInfoDbData_1.1.0   
[103] grid_3.5.1                rpart_4.1-13             
[105] timeDate_3043.102         tidyr_0.8.1              
[107] class_7.3-14              rmarkdown_1.10           
[109] git2r_0.23.0              shiny_1.1.0              
[111] lubridate_1.7.4          

This reproducible R Markdown analysis was created with workflowr 1.1.1