Last updated: 2018-09-28
workflowr checks: (Click a bullet for more information) ✖ R Markdown file: uncommitted changes
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 6861273
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: dsc/code/Wavelab850/MEXSource/CPAnalysis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/DownDyadHi.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/DownDyadLo.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FAIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FCPSynthesis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FMIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWPSynthesis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT2_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_PBS.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_TI.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IAIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IMIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT2_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_PBS.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_TI.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/LMIRefineSeq.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/MedRefineSeq.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/UpDyadHi.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/UpDyadLo.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/WPAnalysis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_ii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_iii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_iv.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dst_ii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dst_iii.mexmac
Unstaged changes:
Modified: NOTES.txt
Modified: analysis/gaussian.mean.est.Rmd
Modified: analysis/temp.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
TO DO: Give overview of this report.
Load the ggplot2 and cowplot packages, and the functions definining the mean and variances used to simulate the data.
library(ggplot2)
library(cowplot)
source("../code/signals.R")
Load the results of the simulation experiments.
load("../output/gaus-dscr.RData")
This plot reproduces Fig. 2 of the manuscript comparing the accuracy of estimated mean curves in the data sets simulated from the “Spikes” mean function with constant variance.
First, extract the results used to generate this plot.
homo.data.smash <-
res[res$.id == "sp.3.v1" &
res$method == "smash.s8",]
homo.data.smash.homo <-
res[res$.id == "sp.3.v1" &
res$method == "smash.homo.s8",]
homo.data.tithresh <-
res[res$.id == "sp.3.v1" &
res$method == "tithresh.homo.s8",]
homo.data.ebayes <-
res[res$.id == "sp.3.v1" &
res$method == "ebayesthresh",]
homo.data.smash.true <-
res[res$.id == "sp.3.v1" &
res$method == "smash.true.s8",]
homo.data <-
res[res$.id == "sp.3.v1" &
(res$method == "smash.s8" |
res$method == "ebayesthresh" |
res$method == "tithresh.homo.s8"),]
Transform these results into a data frame suitable for ggplot2.
pdat <-
rbind(data.frame(method = "smash",
method.type = "est",
mise = homo.data.smash$mise),
data.frame(method = "smash.homo",
method.type = "homo",
mise = homo.data.smash.homo$mise),
data.frame(method = "tithresh",
method.type = "homo",
mise = homo.data.tithresh$mise),
data.frame(method = "ebayesthresh",
method.type = "homo",
mise = homo.data.ebayes$mise),
data.frame(method = "smash.true",
method.type = "true",
mise = homo.data.smash.true$mise))
pdat <-
transform(pdat,
method = factor(method,
names(sort(tapply(pdat$mise,pdat$method,mean),
decreasing = TRUE))))
Create the combined boxplot and violin plot using ggplot2.
p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
geom_violin(fill = "skyblue",color = "skyblue") +
geom_boxplot(width = 0.15,outlier.shape = NA) +
scale_y_continuous(breaks = seq(6,16,2)) +
scale_fill_manual(values = c("darkorange","dodgerblue","gold"),
guide = FALSE) +
coord_flip() +
labs(x = "",y = "MISE") +
theme(axis.line = element_blank(),
axis.ticks.y = element_blank())
print(p)
Version | Author | Date |
---|---|---|
6861273 | Peter Carbonetto | 2018-09-28 |
From this plot, we see that three versions of SMASH outperformed EbayesThresh and TI thresholding.
Next, we compare the same methods in simulated data sets with heteroskedastic errors.
In this scenario, data sets are simulated using the “Spikes” mean function and the “Clipped Blocks” variance function. This plot shows the mean function as a block line, and the +/- 2 standard deviations as orange lines:
t <- (1:1024)/1024
mu <- spikes.fn(t,"mean")
sigma.ini <- sqrt(cblocks.fn(t,"var"))
sd.fn <- sigma.ini/mean(sigma.ini) * sd(mu)/3
par(cex.axis = 1,cex.lab = 1.25)
plot(mu,type = "l", ylim = c(-0.05,1),xlab = "position",ylab = "",
lwd = 1.75,xaxp = c(0,1024,4),yaxp = c(0,1,4))
lines(mu + 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
lines(mu - 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
Extract the results from running these simulations.
hetero.data.smash <-
res[res$.id == "sp.3.v5" & res$method == "smash.s8",]
hetero.data.smash.homo <-
res[res$.id == "sp.3.v5" & res$method == "smash.homo.s8",]
hetero.data.tithresh.homo <-
res[res$.id == "sp.3.v5" & res$method == "tithresh.homo.s8",]
hetero.data.tithresh.rmad <-
res[res$.id == "sp.3.v5" & res$method == "tithresh.rmad.s8",]
hetero.data.tithresh.smash <-
res[res$.id == "sp.3.v5" & res$method == "tithresh.smash.s8",]
hetero.data.tithresh.true <-
res[res$.id == "sp.3.v5" & res$method == "tithresh.true.s8",]
hetero.data.ebayes <-
res[res$.id == "sp.3.v5" & res$method == "ebayesthresh",]
hetero.data.smash.true <-
res[res$.id == "sp.3.v5" & res$method == "smash.true.s8",]
Transform these results into a data frame suitable for ggplot2.
pdat <-
rbind(data.frame(method = "smash",
method.type = "est",
mise = hetero.data.smash$mise),
data.frame(method = "smash.homo",
method.type = "homo",
mise = hetero.data.smash.homo$mise),
data.frame(method = "tithresh.rmad",
method.type = "tithresh",
mise = hetero.data.tithresh.rmad$mise),
data.frame(method = "tithresh.smash",
method.type = "tithresh",
mise = hetero.data.tithresh.smash$mise),
data.frame(method = "tithresh.true",
method.type = "tithresh",
mise = hetero.data.tithresh.true$mise),
data.frame(method = "ebayesthresh",
method.type = "homo",
mise = hetero.data.ebayes$mise),
data.frame(method = "smash.true",
method.type = "true",
mise = hetero.data.smash.true$mise))
pdat <-
transform(pdat,
method = factor(method,
names(sort(tapply(pdat$mise,pdat$method,mean),
decreasing = TRUE))))
Create the combined boxplot and violin plot using ggplot2.
p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
geom_violin(fill = "skyblue",color = "skyblue") +
geom_boxplot(width = 0.15,outlier.shape = NA) +
scale_fill_manual(values=c("darkorange","dodgerblue","limegreen","gold"),
guide = FALSE) +
coord_flip() +
scale_y_continuous(breaks = seq(10,70,10)) +
labs(x = "",y = "MISE") +
theme(axis.line = element_blank(),
axis.ticks.y = element_blank())
print(p)
In this scenario, we see that SMASH, allowing for heteroskedastic errors, outperforms EbayesThresh and all variants of TI thresholding (including TI thresholding with the true variance). Further, SMASH performs almost as well when estimating the variance compared to when provided with the true variance.
In this scenario, data sets are simulated using the “Corner” mean function and the “Doppler” variance function. This plot shows the mean function as a block line, and the +/- 2 standard deviations as orange lines:
mu <- cor.fn(t,"mean")
sigma.ini <- sqrt(doppler.fn(t,"var"))
sd.fn <- sigma.ini/mean(sigma.ini) * sd(mu)/3
plot(mu,type = "l", ylim = c(-0.05,1),xlab = "position",ylab = "",
lwd = 1.75,xaxp = c(0,1024,4),yaxp = c(0,1,4))
lines(mu + 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
lines(mu - 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
Extract the results from running these simulations.
hetero.data.smash.2 <-
res[res$.id == "cor.3.v3" & res$method == "smash.s8",]
hetero.data.smash.homo.2 <-
res[res$.id == "cor.3.v3" & res$method == "smash.homo.s8",]
hetero.data.tithresh.homo.2 <-
res[res$.id == "cor.3.v3" & res$method == "tithresh.homo.s8",]
hetero.data.tithresh.rmad.2 <-
res[res$.id == "cor.3.v3" & res$method == "tithresh.rmad.s8",]
hetero.data.tithresh.smash.2 <-
res[res$.id == "cor.3.v3" & res$method == "tithresh.smash.s8",]
hetero.data.tithresh.true.2 <-
res[res$.id == "cor.3.v3" & res$method == "tithresh.true.s8",]
hetero.data.ebayes.2 <-
res[res$.id == "cor.3.v3" & res$method == "ebayesthresh",]
hetero.data.smash.true.2 <-
res[res$.id == "cor.3.v3" & res$method == "smash.true.s8",]
Transform these results into a data frame suitable for ggplot2.
pdat <-
rbind(data.frame(method = "smash",
method.type = "est",
mise = hetero.data.smash.2$mise),
data.frame(method = "smash.homo",
method.type = "homo",
mise = hetero.data.smash.homo.2$mise),
data.frame(method = "tithresh.rmad",
method.type = "tithresh",
mise = hetero.data.tithresh.rmad.2$mise),
data.frame(method = "tithresh.smash",
method.type = "tithresh",
mise = hetero.data.tithresh.smash.2$mise),
data.frame(method = "tithresh.true",
method.type = "tithresh",
mise = hetero.data.tithresh.true.2$mise),
data.frame(method = "ebayesthresh",
method.type = "homo",
mise = hetero.data.ebayes.2$mise),
data.frame(method = "smash.true",
method.type = "true",
mise = hetero.data.smash.true.2$mise))
pdat <-
transform(pdat,
method = factor(method,
names(sort(tapply(pdat$mise,pdat$method,mean),
decreasing = TRUE))))
Create the combined boxplot and violin plot using ggplot2.
p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
geom_violin(fill = "skyblue",color = "skyblue") +
geom_boxplot(width = 0.15,outlier.shape = NA) +
scale_fill_manual(values=c("darkorange","dodgerblue","limegreen","gold"),
guide = FALSE) +
coord_flip() +
scale_y_continuous(breaks = seq(1,5)) +
labs(x = "",y = "MISE") +
theme(axis.line = element_blank(),
axis.ticks.y = element_blank())
print(p)
As before, we see that the SMASH method allowing for heteroskedastic variances outperforms the TI thresholding and EbayesThresh approaches.
sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.6
#
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
#
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] cowplot_0.9.3 ggplot2_3.0.0
#
# loaded via a namespace (and not attached):
# [1] Rcpp_0.12.18 later_0.7.2 dscr_0.1-7
# [4] compiler_3.4.3 pillar_1.2.1 git2r_0.21.0
# [7] plyr_1.8.4 workflowr_1.1.1 bindr_0.1.1
# [10] R.methodsS3_1.7.1 R.utils_2.6.0 tools_3.4.3
# [13] digest_0.6.16 evaluate_0.10.1 tibble_1.4.2
# [16] gtable_0.2.0 pkgconfig_2.0.1 rlang_0.2.1
# [19] shiny_1.1.0 yaml_2.2.0 bindrcpp_0.2.2
# [22] withr_2.1.2 stringr_1.3.0 dplyr_0.7.5
# [25] knitr_1.20 rprojroot_1.3-2 grid_3.4.3
# [28] tidyselect_0.2.4 glue_1.2.0 R6_2.2.2
# [31] rmarkdown_1.9 purrr_0.2.5 magrittr_1.5
# [34] whisker_0.3-2 promises_1.0.1 backports_1.1.2
# [37] scales_0.5.0 htmltools_0.3.6 assertthat_0.2.0
# [40] xtable_1.8-2 mime_0.5 colorspace_1.4-0
# [43] httpuv_1.4.3 stringi_1.1.7 lazyeval_0.2.1
# [46] munsell_0.4.3 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.1.1