Last updated: 2018-09-28
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: f5f9258
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: analysis/figure/
Ignored: dsc/code/Wavelab850/MEXSource/CPAnalysis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/DownDyadHi.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/DownDyadLo.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FAIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FCPSynthesis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FMIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWPSynthesis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT2_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_PBS.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_TI.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IAIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IMIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT2_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_PBS.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_TI.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/LMIRefineSeq.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/MedRefineSeq.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/UpDyadHi.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/UpDyadLo.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/WPAnalysis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_ii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_iii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_iv.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dst_ii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dst_iii.mexmac
Unstaged changes:
Modified: NOTES.txt
Staged changes:
New: analysis/temp.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | f5f9258 | Peter Carbonetto | 2018-09-28 | workflowr::wflow_publish(“gaussian.mean.est.Rmd”) |
TO DO: Give overview of this report.
Load the ggplot2 and cowplot packages, and the functions definining the mean and variances used to simulate the data.
library(ggplot2)
# Warning: package 'ggplot2' was built under R version 3.4.4
library(cowplot)
# Warning: package 'cowplot' was built under R version 3.4.4
#
# Attaching package: 'cowplot'
# The following object is masked from 'package:ggplot2':
#
# ggsave
source("../code/signals.R")
Load the results of the simulation experiments.
load("../output/gaus-dscr.RData")
This plot reproduces Fig. 2 of the manuscript comparing the accuracy of estimated mean curves in the data sets simulated from the “Spikes” mean function with constant variance.
First extract the data used to generate this plot.
homo.data.smash <-
res[res$.id == "sp.3.v1" &
res$method == "smash.s8",]
homo.data.smash.homo <-
res[res$.id == "sp.3.v1" &
res$method == "smash.homo.s8",]
homo.data.tithresh <-
res[res$.id == "sp.3.v1" &
res$method == "tithresh.homo.s8",]
homo.data.ebayes <-
res[res$.id == "sp.3.v1" &
res$method == "ebayesthresh",]
homo.data.smash.true <-
res[res$.id == "sp.3.v1" &
res$method == "smash.true.s8",]
homo.data <-
res[res$.id == "sp.3.v1" &
(res$method == "smash.s8" |
res$method == "ebayesthresh" |
res$method == "tithresh.homo.s8"),]
Transform these data into a data frame suitable for ggplot2.
pdat <-
rbind(data.frame(method = "smash",
method.type = "est",
mise = homo.data.smash$mise),
data.frame(method = "smash.homo",
method.type = "homo",
mise = homo.data.smash.homo$mise),
data.frame(method = "tithresh",
method.type = "homo",
mise = homo.data.tithresh$mise),
data.frame(method = "ebayesthresh",
method.type = "homo",
mise = homo.data.ebayes$mise),
data.frame(method = "smash.true",
method.type = "true",
mise = homo.data.smash.true$mise))
pdat <-
transform(pdat,
method = factor(method,
names(sort(tapply(pdat$mise,pdat$method,mean),
decreasing = TRUE))))
Create the combined boxplot and violin plot using ggplot2.
p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
geom_violin(fill = "skyblue",color = "skyblue") +
geom_boxplot(width = 0.15,outlier.shape = NA) +
scale_y_continuous(breaks = seq(6,16,2)) +
scale_fill_manual(values = c("darkorange","dodgerblue","gold"),
guide = FALSE) +
coord_flip() +
labs(x = "",y = "MISE") +
theme(axis.line = element_blank(),
axis.ticks.y = element_blank())
print(p)
sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.6
#
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
#
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] cowplot_0.9.3 ggplot2_3.0.0
#
# loaded via a namespace (and not attached):
# [1] Rcpp_0.12.18 later_0.7.2 dscr_0.1-7
# [4] compiler_3.4.3 pillar_1.2.1 git2r_0.21.0
# [7] plyr_1.8.4 workflowr_1.1.1 bindr_0.1.1
# [10] R.methodsS3_1.7.1 R.utils_2.6.0 tools_3.4.3
# [13] digest_0.6.16 evaluate_0.10.1 tibble_1.4.2
# [16] gtable_0.2.0 pkgconfig_2.0.1 rlang_0.2.1
# [19] shiny_1.1.0 yaml_2.2.0 bindrcpp_0.2.2
# [22] withr_2.1.2 stringr_1.3.0 dplyr_0.7.5
# [25] knitr_1.20 rprojroot_1.3-2 grid_3.4.3
# [28] tidyselect_0.2.4 glue_1.2.0 R6_2.2.2
# [31] rmarkdown_1.9 purrr_0.2.5 magrittr_1.5
# [34] whisker_0.3-2 promises_1.0.1 backports_1.1.2
# [37] scales_0.5.0 htmltools_0.3.6 assertthat_0.2.0
# [40] xtable_1.8-2 mime_0.5 colorspace_1.4-0
# [43] httpuv_1.4.3 stringi_1.1.7 lazyeval_0.2.1
# [46] munsell_0.4.3 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.1.1