Last updated: 2018-09-28

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: f5f9258

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    analysis/figure/
        Ignored:    dsc/code/Wavelab850/MEXSource/CPAnalysis.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/DownDyadHi.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/DownDyadLo.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FAIPT.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FCPSynthesis.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FMIPT.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWPSynthesis.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWT2_PO.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWT_PBS.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWT_PO.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWT_TI.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IAIPT.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IMIPT.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IWT2_PO.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IWT_PBS.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IWT_PO.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IWT_TI.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/LMIRefineSeq.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/MedRefineSeq.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/UpDyadHi.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/UpDyadLo.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/WPAnalysis.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dct_ii.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dct_iii.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dct_iv.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dst_ii.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dst_iii.mexmac
    
    Unstaged changes:
        Modified:   NOTES.txt
    
    Staged changes:
        New:        analysis/temp.R
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd f5f9258 Peter Carbonetto 2018-09-28 workflowr::wflow_publish(“gaussian.mean.est.Rmd”)


TO DO: Give overview of this report.

Set up environment

Load the ggplot2 and cowplot packages, and the functions definining the mean and variances used to simulate the data.

library(ggplot2)
# Warning: package 'ggplot2' was built under R version 3.4.4
library(cowplot)
# Warning: package 'cowplot' was built under R version 3.4.4
# 
# Attaching package: 'cowplot'
# The following object is masked from 'package:ggplot2':
# 
#     ggsave
source("../code/signals.R")

Load results

Load the results of the simulation experiments.

load("../output/gaus-dscr.RData")

Summarize results on data sets with constant variances

This plot reproduces Fig. 2 of the manuscript comparing the accuracy of estimated mean curves in the data sets simulated from the “Spikes” mean function with constant variance.

First extract the data used to generate this plot.

homo.data.smash <-
  res[res$.id    == "sp.3.v1" &
      res$method == "smash.s8",]
homo.data.smash.homo <-
  res[res$.id    == "sp.3.v1" &
      res$method == "smash.homo.s8",]
homo.data.tithresh <-
  res[res$.id == "sp.3.v1" &
      res$method == "tithresh.homo.s8",]
homo.data.ebayes <-
  res[res$.id    == "sp.3.v1" &
      res$method == "ebayesthresh",]
homo.data.smash.true <-
  res[res$.id == "sp.3.v1" &
  res$method  == "smash.true.s8",]
homo.data <-
  res[res$.id == "sp.3.v1" &
  (res$method == "smash.s8" |
   res$method == "ebayesthresh" |
   res$method == "tithresh.homo.s8"),]

Transform these data into a data frame suitable for ggplot2.

pdat <-
  rbind(data.frame(method      = "smash",
                   method.type = "est",
                   mise        = homo.data.smash$mise),
        data.frame(method      = "smash.homo",
                   method.type = "homo",
                   mise        = homo.data.smash.homo$mise),
        data.frame(method      = "tithresh",
                   method.type = "homo",
                   mise        = homo.data.tithresh$mise),
        data.frame(method      = "ebayesthresh",
                   method.type = "homo",
                   mise        = homo.data.ebayes$mise),
        data.frame(method      = "smash.true",
                   method.type = "true",
                   mise        = homo.data.smash.true$mise))
pdat <-
  transform(pdat,
            method = factor(method,
                            names(sort(tapply(pdat$mise,pdat$method,mean),
                                       decreasing = TRUE))))

Create the combined boxplot and violin plot using ggplot2.

p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
     geom_violin(fill = "skyblue",color = "skyblue") +
     geom_boxplot(width = 0.15,outlier.shape = NA) +
     scale_y_continuous(breaks = seq(6,16,2)) +
     scale_fill_manual(values = c("darkorange","dodgerblue","gold"),
                       guide = FALSE) +
     coord_flip() +
     labs(x = "",y = "MISE") +
     theme(axis.line = element_blank(),
           axis.ticks.y = element_blank())
print(p)

Session information

sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.6
# 
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
# [1] cowplot_0.9.3 ggplot2_3.0.0
# 
# loaded via a namespace (and not attached):
#  [1] Rcpp_0.12.18      later_0.7.2       dscr_0.1-7       
#  [4] compiler_3.4.3    pillar_1.2.1      git2r_0.21.0     
#  [7] plyr_1.8.4        workflowr_1.1.1   bindr_0.1.1      
# [10] R.methodsS3_1.7.1 R.utils_2.6.0     tools_3.4.3      
# [13] digest_0.6.16     evaluate_0.10.1   tibble_1.4.2     
# [16] gtable_0.2.0      pkgconfig_2.0.1   rlang_0.2.1      
# [19] shiny_1.1.0       yaml_2.2.0        bindrcpp_0.2.2   
# [22] withr_2.1.2       stringr_1.3.0     dplyr_0.7.5      
# [25] knitr_1.20        rprojroot_1.3-2   grid_3.4.3       
# [28] tidyselect_0.2.4  glue_1.2.0        R6_2.2.2         
# [31] rmarkdown_1.9     purrr_0.2.5       magrittr_1.5     
# [34] whisker_0.3-2     promises_1.0.1    backports_1.1.2  
# [37] scales_0.5.0      htmltools_0.3.6   assertthat_0.2.0 
# [40] xtable_1.8-2      mime_0.5          colorspace_1.4-0 
# [43] httpuv_1.4.3      stringi_1.1.7     lazyeval_0.2.1   
# [46] munsell_0.4.3     R.oo_1.21.0

This reproducible R Markdown analysis was created with workflowr 1.1.1