Last updated: 2019-02-15
workflowr checks: (Click a bullet for more information) ✖ R Markdown file: uncommitted changes
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20181119)
The command set.seed(20181119)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: a970cce
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/EdgeR-LRT.Rmd
Modified: analysis/EdgeR-QLF.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Load data
source("code/summary_functions.R")
library(dplyr)
library(gtools)
library(data.table)
load("data/DE_input.Rd")
glocus <- "VPS45"
Nperm <- 5
dim(dm)[1]
NULL
gcount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg[glocus,] >0 & nlocus==1]]
# negative control cells defined as neg gRNA targeted cells
ncount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg["neg",] >0 & nlocus==1]]
coldata <- data.frame(row.names = c(colnames(gcount),colnames(ncount)),
condition=c(rep('G',dim(gcount)[2]),rep('N',dim(ncount)[2])))
countall <- cbind(gcount,ncount)
totalcount <- apply(countall,1,sum)
cellpercent <- apply(countall,1,function(x) length(x[x>0])/length(x))
edgeR quasi-likelihood F-tests function
library(edgeR)
run_edgeR <- function(y,plotit=T) {
# y is DGElist object
y <- calcNormFactors(y)
group= y$samples[,"group"]
design <- model.matrix(~group)
y <- estimateDisp(y,design)
fitqlf <- glmQLFit(y,design)
qlf <- glmQLFTest(fitqlf,coef=2)
out <- topTags(qlf, n=Inf, adjust.method = "BH")
if (plotit==T) {
summ_pvalues(qlf$table$PValue)
outsig <- subset(out$table,FDR <0.1)
print(paste0("There are ",dim(outsig)[1], " genes passed FDR <0.1 cutoff"))
print(knitr::kable(signif(as.matrix(head(out$table[order(out$table$PValue),])),digit=2)))
}
return(out)
}
y <- DGEList(counts= countall,group=coldata$condition)
resm <- run_edgeR(y)
Version | Author | Date |
---|---|---|
01a5914 | simingz | 2019-02-14 |
49ecf6e | simingz | 2018-12-16 |
[1] "There are 18 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 59 0 0.0e+00
LGALS1 -2.3 6.6 45 0 1.2e-06
APOE -1.8 6.4 45 0 1.2e-06
TSPO -1.6 6.4 41 0 6.2e-06
LBX1 -2.0 6.4 39 0 9.0e-06
LHX5 -1.5 6.3 37 0 7.8e-05
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall,group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
MYC -3.3 7.4 76 0 0.0e+00
LY6H 2.8 6.6 54 0 0.0e+00
APOE 1.8 6.4 41 0 6.0e-06
S100A11 1.8 6.4 39 0 1.6e-05
NEUROD1 1.7 6.4 39 0 2.4e-05
LGALS1 2.1 6.6 35 0 5.6e-05
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
LY6H -2.9 6.6 65 0.0e+00 0.0e+00
NEUROD1 -1.8 6.4 47 0.0e+00 1.7e-06
APOE -1.8 6.4 44 0.0e+00 1.7e-06
LGALS1 -2.1 6.6 39 0.0e+00 1.6e-05
GAL -1.6 6.4 34 0.0e+00 9.9e-05
TFF3 -1.2 6.4 29 3.9e-06 1.9e-02
[1] "There are 18 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H 2.7 6.6 52 0 2.0e-07
LGALS1 2.4 6.6 47 0 7.0e-07
NEUROD1 1.9 6.4 49 0 8.0e-07
S100A11 1.9 6.4 45 0 8.0e-07
APOE 1.7 6.4 37 0 2.7e-05
KCNMA1 -1.5 6.4 32 0 1.7e-04
[1] "There are 13 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H -2.6 6.6 50 0e+00 4.0e-07
S100A11 -1.9 6.4 44 0e+00 3.1e-06
APOE -1.8 6.4 41 0e+00 8.0e-06
LBX1 2.3 6.4 37 0e+00 6.0e-05
LGALS1 -2.0 6.6 34 0e+00 8.6e-05
LHX5 1.5 6.3 34 1e-07 4.6e-04
[1] "There are 19 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
NEUROD1 -2.0 6.4 58 0e+00 1.0e-07
LY6H 2.7 6.6 50 0e+00 2.0e-07
APOE 1.9 6.4 45 0e+00 1.2e-06
MT1F -1.6 6.4 33 0e+00 1.8e-04
CYP26A1 1.8 6.5 32 0e+00 2.2e-04
MYC -2.0 7.4 31 1e-07 3.0e-04
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0.00 | 0.08 | 1.00 | 0.54 | 1.00 | 0.76 | 1.00 | 0.31 | 1.00 | 0.17 | 1.00 |
APOE | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CALB1 | 0 | 0.00 | 0.13 | 1.00 | 0.16 | 1.00 | 0.95 | 1.00 | 0.11 | 1.00 | 0.34 | 1.00 |
EDN1 | 0 | 0.06 | 0.00 | 1.00 | 0.05 | 1.00 | 0.01 | 1.00 | 0.04 | 1.00 | 0.19 | 1.00 |
FIBIN | 0 | 0.02 | 0.48 | 1.00 | 0.99 | 1.00 | 0.72 | 1.00 | 0.43 | 1.00 | 0.58 | 1.00 |
H1F0 | 0 | 0.04 | 0.00 | 0.25 | 0.00 | 0.33 | 0.03 | 1.00 | 0.00 | 0.37 | 0.00 | 0.62 |
LBX1 | 0 | 0.00 | 0.06 | 1.00 | 0.07 | 1.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.96 |
LGALS1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
LHX5 | 0 | 0.00 | 0.41 | 1.00 | 0.36 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 |
LY6H | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MT1F | 0 | 0.00 | 0.02 | 1.00 | 0.00 | 0.66 | 0.00 | 0.01 | 0.02 | 1.00 | 0.00 | 0.00 |
NEUROD1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
NEUROG1 | 0 | 0.00 | 0.33 | 1.00 | 0.01 | 1.00 | 0.00 | 0.02 | 0.47 | 1.00 | 0.06 | 1.00 |
PI15 | 0 | 0.01 | 0.00 | 0.31 | 0.00 | 0.40 | 0.00 | 0.03 | 0.00 | 0.17 | 0.00 | 0.00 |
RGS4 | 0 | 0.08 | 0.01 | 1.00 | 0.22 | 1.00 | 0.56 | 1.00 | 0.00 | 0.21 | 0.77 | 1.00 |
SLF2 | 0 | 0.08 | 0.96 | 1.00 | 0.30 | 1.00 | 0.24 | 1.00 | 0.06 | 1.00 | 0.89 | 1.00 |
SST | 0 | 0.01 | 0.00 | 0.06 | 0.12 | 1.00 | 0.06 | 1.00 | 0.03 | 1.00 | 0.00 | 0.01 |
TSPO | 0 | 0.00 | 0.16 | 1.00 | 0.02 | 1.00 | 0.16 | 1.00 | 0.21 | 1.00 | 0.00 | 0.53 |
y <- DGEList(counts= countall[totalcount>0,],group=coldata$condition)
resm <- run_edgeR(y)
Version
Author
Date
[1] "There are 26 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 59 0 0.0e+00
LGALS1 -2.3 6.6 45 0 6.0e-07
APOE -1.8 6.4 45 0 6.0e-07
TSPO -1.6 6.4 41 0 3.3e-06
LBX1 -2.0 6.4 39 0 4.8e-06
LHX5 -1.5 6.3 37 0 4.1e-05
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[totalcount>0,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
0-2.png" width=“672” style=“display: block; margin: auto;” />
[1] "There are 16 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
CLDN5 3.4 6.8 69 0.0e+00 0.0e+00
LY6H -2.8 6.6 58 0.0e+00 0.0e+00
APOE -1.8 6.4 43 0.0e+00 1.9e-06
NEUROD1 -1.7 6.4 38 0.0e+00 2.4e-05
LGALS1 -1.7 6.6 26 7.0e-07 2.2e-03
SPARCL1 -1.0 6.3 40 6.5e-06 1.7e-02
0-4.png" width=“672” style=“display: block; margin: auto;” />
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
APOE 1.9 6.4 46 0e+00 8.0e-07
NEUROD1 -1.8 6.4 48 0e+00 8.0e-07
LY6H 2.5 6.6 42 0e+00 2.5e-06
MT1F -1.6 6.4 33 0e+00 1.3e-04
LGALS1 1.9 6.6 30 1e-07 3.6e-04
GAL 1.5 6.4 27 4e-07 1.2e-03
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0.00 | 0.24 | 0.68 | 0.47 | 0.87 | 0.77 | 0.98 | 0.58 | 0.93 | 0.01 | 0.66 |
APOE | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CALB1 | 0 | 0.00 | 0.00 | 0.13 | 0.13 | 0.71 | 0.00 | 0.06 | 0.10 | 0.73 | 0.00 | 0.00 |
CMTM8 | 0 | 0.06 | 0.24 | 0.68 | 0.92 | 0.99 | 0.09 | 0.74 | 0.08 | 0.73 | 0.95 | 0.99 |
EDN1 | 0 | 0.03 | 0.00 | 0.02 | 0.00 | 0.02 | 0.03 | 0.74 | 0.00 | 0.24 | 0.00 | 0.47 |
FAM228B | 0 | 0.07 | 0.04 | 0.67 | 0.22 | 0.71 | 0.84 | 0.99 | 0.26 | 0.73 | 0.75 | 0.96 |
FIBIN | 0 | 0.01 | 0.82 | 0.98 | 0.87 | 0.99 | 0.92 | 0.99 | 0.61 | 0.93 | 0.01 | 0.66 |
GAL | 0 | 0.10 | 0.00 | 0.00 | 0.03 | 0.71 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.57 |
GAP43 | 0 | 0.07 | 0.61 | 0.90 | 0.26 | 0.72 | 0.67 | 0.94 | 0.92 | 0.99 | 0.01 | 0.54 |
H1F0 | 0 | 0.02 | 0.00 | 0.29 | 0.00 | 0.50 | 0.60 | 0.93 | 0.00 | 0.36 | 0.00 | 0.29 |
KRT18 | 0 | 0.07 | 0.00 | 0.27 | 0.04 | 0.71 | 0.00 | 0.38 | 0.02 | 0.73 | 0.00 | 0.28 |
LBX1 | 0 | 0.00 | 0.22 | 0.68 | 0.11 | 0.71 | 0.04 | 0.74 | 0.04 | 0.73 | 0.00 | 0.00 |
LGALS1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
LHX5 | 0 | 0.00 | 0.56 | 0.88 | 0.16 | 0.71 | 0.00 | 0.00 | 0.07 | 0.73 | 0.00 | 0.00 |
LINC00338 | 0 | 0.08 | 0.89 | 1.00 | 0.33 | 0.78 | 0.03 | 0.74 | 0.47 | 0.89 | 0.31 | 0.76 |
LY6H | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MT1F | 0 | 0.00 | 0.00 | 0.03 | 0.00 | 0.48 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.55 |
NEUROD1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
NEUROG1 | 0 | 0.00 | 0.99 | 1.00 | 0.02 | 0.65 | 0.05 | 0.74 | 0.06 | 0.73 | 0.33 | 0.78 |
OTP | 0 | 0.07 | 0.00 | 0.09 | 0.00 | 0.17 | 0.00 | 0.08 | 0.00 | 0.20 | 0.00 | 0.17 |
PI15 | 0 | 0.00 | 0.00 | 0.09 | 0.00 | 0.26 | 0.00 | 0.05 | 0.00 | 0.20 | 0.00 | 0.02 |
RGS4 | 0 | 0.04 | 0.58 | 0.88 | 0.01 | 0.65 | 0.42 | 0.86 | 0.79 | 0.99 | 0.76 | 0.96 |
SLF2 | 0 | 0.04 | 0.57 | 0.88 | 0.33 | 0.78 | 0.56 | 0.93 | 0.77 | 0.98 | 0.53 | 0.89 |
SMOC2 | 0 | 0.10 | 0.14 | 0.68 | 0.02 | 0.65 | 0.46 | 0.89 | 0.03 | 0.73 | 0.03 | 0.71 |
SST | 0 | 0.00 | 0.02 | 0.62 | 0.00 | 0.08 | 0.11 | 0.74 | 0.05 | 0.73 | 0.00 | 0.02 |
TSPO | 0 | 0.00 | 0.45 | 0.84 | 0.99 | 1.00 | 0.02 | 0.74 | 0.13 | 0.73 | 0.14 | 0.71 |
y <- DGEList(counts= countall[cellpercent > 0.03,],group=coldata$condition)
resm <- run_edgeR(y)
Version | Author | Date |
---|---|---|
01a5914 | simingz | 2019-02-14 |
49ecf6e | simingz | 2018-12-16 |
[1] "There are 20 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 61 0 0.0e+00
LGALS1 -2.3 6.6 47 0 2.0e-07
APOE -1.9 6.4 47 0 2.0e-07
TSPO -1.6 6.4 43 0 1.0e-06
A2M -1.6 6.9 35 0 1.9e-05
MT1F -1.6 6.4 34 0 3.5e-05
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.03,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
[1] "There are 12 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
MYC 3.2 7.4 70 0e+00 0.0e+00
LY6H -2.9 6.6 66 0e+00 0.0e+00
APOE -2.0 6.4 59 0e+00 0.0e+00
LGALS1 -2.5 6.6 53 0e+00 0.0e+00
SSTR2 1.7 6.4 32 0e+00 7.9e-05
DENND2A -1.4 6.3 75 1e-07 2.2e-04
[1] "There are 21 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H 2.9 6.6 59 0e+00 0.0e+00
APOE 1.8 6.4 43 0e+00 1.9e-06
ELAVL4 1.7 6.4 32 0e+00 1.3e-04
STMN4 1.9 6.5 32 0e+00 1.4e-04
LGALS1 1.9 6.6 31 1e-07 1.7e-04
KCNMA1 1.4 6.4 28 3e-07 5.2e-04
[1] "There are 12 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
MYC 3.3 7.4 72 0.0e+00 0.0e+00
LY6H 2.8 6.6 54 0.0e+00 0.0e+00
LGALS1 2.3 6.6 43 0.0e+00 1.3e-06
APOE 1.7 6.4 36 0.0e+00 1.9e-05
CYP26A1 1.8 6.5 35 0.0e+00 2.7e-05
GAL 1.3 6.4 23 3.2e-06 6.3e-03
[1] "There are 19 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LY6H -2.8 6.6 60 0.0e+00 0.0e+00
APOE -2.0 6.4 53 0.0e+00 0.0e+00
LGALS1 -2.4 6.6 49 0.0e+00 1.0e-07
KCNMA1 1.4 6.4 26 6.0e-07 1.7e-03
RASD1 -1.5 6.5 21 8.0e-06 1.9e-02
NPTX2 -1.3 6.4 20 1.2e-05 2.4e-02
[1] "There are 36 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H -2.9 6.6 63 0e+00 0.0e+00
LGALS1 -2.4 6.6 50 0e+00 1.0e-07
APOE -1.7 6.4 37 0e+00 1.4e-05
CALB1 -1.4 6.3 45 2e-07 6.9e-04
HES6 1.3 9.1 28 3e-07 6.9e-04
CYP26A1 1.6 6.5 27 4e-07 7.7e-04
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0.00 | 0.23 | 0.96 | 0.80 | 1.00 | 0.71 | 1.00 | 0.18 | 0.86 | 0.03 | 0.67 |
APOE | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CALB1 | 0 | 0.00 | 0.48 | 0.98 | 0.25 | 0.94 | 0.23 | 0.93 | 0.33 | 0.92 | 0.00 | 0.00 |
CMTM8 | 0 | 0.05 | 0.53 | 0.98 | 0.03 | 0.73 | 0.06 | 0.84 | 0.05 | 0.71 | 0.22 | 0.87 |
EDN1 | 0 | 0.04 | 0.27 | 0.97 | 0.32 | 0.95 | 0.02 | 0.75 | 0.39 | 0.94 | 0.00 | 0.12 |
FAM228B | 0 | 0.06 | 0.39 | 0.97 | 0.96 | 1.00 | 0.80 | 1.00 | 0.83 | 0.99 | 0.55 | 0.95 |
GAL | 0 | 0.08 | 0.00 | 0.53 | 0.00 | 0.22 | 0.00 | 0.01 | 0.00 | 0.26 | 0.00 | 0.31 |
GAP43 | 0 | 0.05 | 0.07 | 0.92 | 0.42 | 0.97 | 0.91 | 1.00 | 0.20 | 0.87 | 0.05 | 0.71 |
GLRX | 0 | 0.08 | 0.12 | 0.92 | 0.21 | 0.93 | 0.25 | 0.94 | 0.00 | 0.03 | 0.01 | 0.53 |
H1F0 | 0 | 0.02 | 0.08 | 0.92 | 0.01 | 0.59 | 0.06 | 0.84 | 0.00 | 0.31 | 0.08 | 0.76 |
KRT18 | 0 | 0.05 | 0.09 | 0.92 | 0.24 | 0.94 | 0.41 | 0.96 | 0.77 | 0.99 | 0.00 | 0.03 |
LGALS1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
LINC00338 | 0 | 0.08 | 0.92 | 0.99 | 0.33 | 0.95 | 0.06 | 0.84 | 0.54 | 0.96 | 0.06 | 0.72 |
LY6H | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MT1F | 0 | 0.00 | 0.00 | 0.16 | 0.00 | 0.05 | 0.00 | 0.01 | 0.00 | 0.15 | 0.00 | 0.29 |
NEUROG1 | 0 | 0.00 | 0.13 | 0.92 | 0.01 | 0.53 | 0.18 | 0.93 | 0.00 | 0.03 | 0.06 | 0.73 |
RGS4 | 0 | 0.05 | 0.09 | 0.92 | 0.17 | 0.92 | 0.07 | 0.84 | 0.02 | 0.63 | 0.03 | 0.67 |
SLF2 | 0 | 0.05 | 0.06 | 0.90 | 0.93 | 1.00 | 0.46 | 0.97 | 0.14 | 0.85 | 0.01 | 0.49 |
SMOC2 | 0 | 0.09 | 0.04 | 0.83 | 0.55 | 0.98 | 0.24 | 0.94 | 0.01 | 0.53 | 0.01 | 0.56 |
TSPO | 0 | 0.00 | 0.00 | 0.53 | 0.97 | 1.00 | 0.01 | 0.67 | 0.00 | 0.47 | 0.68 | 0.97 |
y <- DGEList(counts= countall[cellpercent > 0.1,],group=coldata$condition)
resm <- run_edgeR(y)
Version | Author | Date |
---|---|---|
01a5914 | simingz | 2019-02-14 |
49ecf6e | simingz | 2018-12-16 |
[1] "There are 7 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.3 6.6 47 0.0e+00 5.0e-07
TSPO -1.6 6.4 42 0.0e+00 2.3e-06
A2M -1.6 6.9 35 0.0e+00 3.4e-05
SLF2 1.1 6.5 20 5.0e-05 8.6e-02
KRT18 1.3 7.1 17 5.3e-05 8.6e-02
CMTM8 1.1 6.6 17 5.7e-05 8.6e-02
save(resm, file="data/edgeR-qlf-10%filter_res.Rd")
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.1,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
[1] "There are 4 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.40 6.6 50 0.0e+00 1.0e-07
GDF15 -1.60 6.6 27 4.0e-07 1.9e-03
KRT18 -1.40 7.1 20 1.1e-05 3.4e-02
AHNAK -1.10 6.4 21 4.2e-05 1.0e-01
FAM83D 1.00 6.5 16 6.8e-05 1.3e-01
ZNF91 -0.93 6.5 15 1.2e-04 1.5e-01
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- --------
LGALS1 2.1 6.6 37 0.0e+00 3.9e-05
LGALS3BP 1.3 6.4 25 3.0e-06 1.5e-02
TOB1 -1.1 6.5 21 8.5e-06 2.3e-02
SORT1 -1.1 6.6 20 9.7e-06 2.3e-02
VAV2 -1.1 6.5 22 1.4e-05 2.7e-02
VWA1 1.1 6.5 19 2.5e-05 3.6e-02
[1] "There are 7 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
MYC 3.3 7.4 75 0.0e+00 0.0e+00
LGALS1 -2.0 6.6 34 0.0e+00 6.6e-05
ACTC1 -1.4 6.4 28 2.0e-07 7.1e-04
GDF15 -1.4 6.6 21 6.6e-06 1.4e-02
RASD1 1.5 6.5 21 8.1e-06 1.4e-02
CHKB -1.2 6.4 36 8.7e-06 1.4e-02
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.20 6.6 43 0.0e+00 2.5e-06
MYC -1.80 7.4 26 7.0e-07 3.2e-03
PDP1 -1.10 6.5 19 2.1e-05 6.7e-02
PALMD -0.99 6.5 15 1.1e-04 2.7e-01
EIF4E2 -0.53 7.6 14 2.2e-04 4.3e-01
JOSD2 -0.87 6.5 13 3.4e-04 4.6e-01
[1] "There are 5 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- --------
MYC -3.30 7.4 79 0.0e+00 0.00000
LGALS1 1.90 6.6 29 1.0e-07 0.00065
MT1X -1.30 6.5 21 5.8e-06 0.01900
PPP1R14C 1.20 6.9 18 2.4e-05 0.05800
RGS16 1.50 6.8 17 5.1e-05 0.09800
CNN1 0.93 6.5 15 1.7e-04 0.22000
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0.00 | 0.01 | 0.43 | 0.13 | 0.88 | 0.01 | 0.72 | 0.01 | 0.77 | 0.65 | 0.98 |
CMTM8 | 0 | 0.09 | 0.00 | 0.35 | 0.00 | 0.45 | 0.12 | 0.94 | 0.04 | 0.86 | 0.00 | 0.62 |
GAP43 | 0 | 0.09 | 0.02 | 0.46 | 0.07 | 0.82 | 0.10 | 0.94 | 0.02 | 0.83 | 0.01 | 0.71 |
KRT18 | 0 | 0.09 | 0.00 | 0.03 | 0.44 | 0.94 | 0.09 | 0.94 | 0.00 | 0.71 | 0.00 | 0.62 |
LGALS1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SLF2 | 0 | 0.09 | 0.02 | 0.49 | 0.49 | 0.95 | 0.84 | 1.00 | 0.87 | 1.00 | 0.49 | 0.97 |
TSPO | 0 | 0.00 | 0.03 | 0.54 | 0.06 | 0.81 | 0.33 | 0.98 | 0.00 | 0.46 | 0.00 | 0.54 |
y <- DGEList(counts= countall[cellpercent > 0.2,],group=coldata$condition)
resm <- run_edgeR(y)
Version | Author | Date |
---|---|---|
01a5914 | simingz | 2019-02-14 |
49ecf6e | simingz | 2018-12-16 |
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
A2M -1.60 6.9 34 0.0e+00 0.00013
SLF2 1.10 6.5 20 4.8e-05 0.12000
CMTM8 1.10 6.6 17 5.9e-05 0.12000
KRT18 1.30 7.1 16 7.3e-05 0.12000
GAP43 -0.91 8.2 16 9.0e-05 0.12000
FAM228B -0.99 6.5 18 9.2e-05 0.12000
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.2,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
[1] "There are 6 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
MYC -3.1 7.4 73 0.0e+00 0.0e+00
SPP1 2.2 7.0 39 0.0e+00 5.7e-06
DLL3 -1.7 7.5 25 9.0e-07 2.4e-03
VGF 1.3 6.8 21 8.3e-06 1.6e-02
CRABP1 -1.1 10.0 16 7.0e-05 9.9e-02
PLK3 -1.1 6.8 16 7.8e-05 9.9e-02
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- ------
CAV1 1.40 7.1 24 1.5e-06 0.011
SLC4A2 1.10 6.5 21 7.4e-06 0.028
MIS18BP1 -0.92 6.6 15 1.4e-04 0.270
UBQLN2 -0.85 6.6 14 2.0e-04 0.270
RIF1 -0.78 6.8 14 2.1e-04 0.270
TMEM43 -0.85 6.6 14 2.3e-04 0.270
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- -----
MYC -1.50 7.4 18 2.8e-05 0.21
CCZ1B -0.96 6.6 17 5.7e-05 0.22
MALAT1 -0.46 14.0 15 1.1e-04 0.26
WSCD1 0.94 6.6 15 1.4e-04 0.26
PEX14 -0.79 6.7 13 4.6e-04 0.42
SLC3A2 -0.67 8.6 12 4.9e-04 0.42
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- -----
MYC -3.10 7.4 70 0.0e+00 0.00
ATG14 1.20 6.4 29 7.1e-06 0.02
IGFBP5 -1.40 6.7 21 7.7e-06 0.02
SOCS3 -0.93 6.7 16 1.0e-04 0.19
BRAP 0.97 6.4 17 3.3e-04 0.47
UBR5 0.79 6.6 12 5.1e-04 0.47
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
SPP1 -2.00 7.0 38 0.0e+00 1.9e-05
MYC -2.00 7.4 33 0.0e+00 1.1e-04
GCLM -1.00 6.8 17 5.7e-05 1.4e-01
OSGIN1 -1.20 6.7 16 9.9e-05 1.9e-01
SPC25 -0.88 6.9 14 2.1e-04 3.2e-01
NTRK3 -0.94 6.5 15 2.7e-04 3.5e-01
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0 | 0.15 | 0.96 | 0 | 0.42 | 0.14 | 0.82 | 0.1 | 0.96 | 0.67 | 0.99 |
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] gridExtra_2.3 edgeR_3.24.3 limma_3.38.2 Matrix_1.2-15
[5] data.table_1.12.0 gtools_3.8.1 dplyr_0.7.8 lattice_0.20-38
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 highr_0.7 compiler_3.5.1
[4] pillar_1.3.1 git2r_0.23.0 workflowr_1.1.1
[7] bindr_0.1.1 R.methodsS3_1.7.1 R.utils_2.7.0
[10] tools_3.5.1 digest_0.6.18 gtable_0.2.0
[13] evaluate_0.12 tibble_2.0.1 pkgconfig_2.0.2
[16] rlang_0.3.1 yaml_2.2.0 bindrcpp_0.2.2
[19] stringr_1.4.0 knitr_1.20 locfit_1.5-9.1
[22] rprojroot_1.3-2 tidyselect_0.2.5 glue_1.3.0
[25] R6_2.3.0 rmarkdown_1.10 purrr_0.2.5
[28] magrittr_1.5 whisker_0.3-2 backports_1.1.2
[31] htmltools_0.3.6 splines_3.5.1 assertthat_0.2.0
[34] stringi_1.3.1 crayon_1.3.4 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1