Last updated: 2018-12-17
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20181119)
The command set.seed(20181119)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 49ecf6e
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/Quality_metrics_cache/
Ignored: analysis/figure/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Load data
source("code/summary_functions.R")
library(dplyr)
load("data/DE_input.Rd")
glocus <- "VPS45"
dim(dm)[1]
NULL
gcount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg[glocus,] >0 & nlocus==1]]
# negative control cells defined as neg gRNA targeted cells
ncount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg["neg",] >0 & nlocus==1]]
coldata <- data.frame(row.names = c(colnames(gcount),colnames(ncount)),
condition=c(rep('G',dim(gcount)[2]),rep('N',dim(ncount)[2])))
countall <- cbind(gcount,ncount)
totalcount <- apply(countall,1,sum)
cellpercent <- apply(countall,1,function(x) length(x[x>0])/length(x))
edgeR quasi-likelihood F-tests function
library(edgeR)
run_edgeR <- function(y) {
# y is DGElist object
y <- calcNormFactors(y)
group=coldata$condition
design <- model.matrix(~group)
y <- estimateDisp(y,design)
fitqlf <- glmQLFit(y,design)
qlf <- glmQLFTest(fitqlf,coef=2)
summ_pvalues(qlf$table$PValue)
out <- topTags(qlf, n=Inf, adjust.method = "BH")
outsig <- subset(out$table,FDR <0.1)
print(paste0("There are ",dim(outsig)[1], " genes passed FDR <0.1 cutoff"))
print(knitr::kable(signif(as.matrix(head(out$table[order(out$table$PValue),])),digit=2)))
return(out)
}
y <- DGEList(counts= countall,group=coldata$condition)
res <- run_edgeR(y)
Version | Author | Date |
---|---|---|
49ecf6e | simingz | 2018-12-16 |
[1] "There are 18 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------------------- ------ ------- --- ------- --------
ENSG00000176956.12 -2.8 6.6 59 0 0.0e+00
ENSG00000100097.11 -2.3 6.6 45 0 1.2e-06
ENSG00000130203.9 -1.8 6.4 45 0 1.2e-06
ENSG00000100300.17 -1.6 6.4 41 0 6.0e-06
ENSG00000138136.6 -2.0 6.4 39 0 8.8e-06
ENSG00000089116.3 -1.5 6.3 37 0 7.6e-05
y <- DGEList(counts= countall[totalcount>0,],group=coldata$condition)
res <- run_edgeR(y)
Expand here to see past versions of edgeR>0-1.png:
Version
Author
Date
49ecf6e
simingz
2018-12-16
[1] "There are 26 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------------------- ------ ------- --- ------- --------
ENSG00000176956.12 -2.8 6.6 59 0 0.0e+00
ENSG00000100097.11 -2.3 6.6 45 0 6.0e-07
ENSG00000130203.9 -1.8 6.4 45 0 6.0e-07
ENSG00000100300.17 -1.6 6.4 41 0 3.2e-06
ENSG00000138136.6 -2.0 6.4 39 0 4.6e-06
ENSG00000089116.3 -1.5 6.3 37 0 4.0e-05
y <- DGEList(counts= countall[cellpercent > 0.03,],group=coldata$condition)
res <- run_edgeR(y)
Version | Author | Date |
---|---|---|
49ecf6e | simingz | 2018-12-16 |
[1] "There are 20 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------------------- ------ ------- --- ------- --------
ENSG00000176956.12 -2.8 6.6 61 0 0.0e+00
ENSG00000100097.11 -2.3 6.6 47 0 2.0e-07
ENSG00000130203.9 -1.9 6.4 47 0 2.0e-07
ENSG00000100300.17 -1.6 6.4 43 0 1.0e-06
ENSG00000175899.14 -1.6 6.9 35 0 1.9e-05
ENSG00000198417.6 -1.6 6.4 34 0 3.5e-05
y <- DGEList(counts= countall[cellpercent > 0.1,],group=coldata$condition)
res <- run_edgeR(y)
Version | Author | Date |
---|---|---|
49ecf6e | simingz | 2018-12-16 |
[1] "There are 7 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------------------- ------ ------- --- -------- --------
ENSG00000100097.11 -2.3 6.6 47 0.0e+00 5.0e-07
ENSG00000100300.17 -1.6 6.4 42 0.0e+00 2.3e-06
ENSG00000175899.14 -1.6 6.9 35 0.0e+00 3.4e-05
ENSG00000119906.11 1.1 6.5 20 5.0e-05 8.4e-02
ENSG00000111057.10 1.3 7.1 17 5.3e-05 8.4e-02
ENSG00000170293.8 1.1 6.6 17 5.7e-05 8.4e-02
y <- DGEList(counts= countall[cellpercent > 0.2,],group=coldata$condition)
res <- run_edgeR(y)
Version | Author | Date |
---|---|---|
49ecf6e | simingz | 2018-12-16 |
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------------------- ------ ------- --- -------- --------
ENSG00000175899.14 -1.60 6.9 34 0.0e+00 0.00013
ENSG00000119906.11 1.10 6.5 20 4.8e-05 0.12000
ENSG00000170293.8 1.10 6.6 17 5.9e-05 0.12000
ENSG00000111057.10 1.30 7.1 16 7.3e-05 0.12000
ENSG00000172020.12 -0.91 8.2 16 9.0e-05 0.12000
ENSG00000219626.8 -0.99 6.5 18 9.2e-05 0.12000
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin14.5.0 (64-bit)
Running under: OS X El Capitan 10.11.6
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libLAPACK.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] gridExtra_2.3 lattice_0.20-35 edgeR_3.22.5 limma_3.36.5
[5] Matrix_1.2-14 dplyr_0.7.6
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 compiler_3.5.1 pillar_1.3.0
[4] git2r_0.23.0 highr_0.7 workflowr_1.1.1
[7] bindr_0.1.1 R.methodsS3_1.7.1 R.utils_2.7.0
[10] tools_3.5.1 digest_0.6.18 evaluate_0.12
[13] tibble_1.4.2 gtable_0.2.0 pkgconfig_2.0.2
[16] rlang_0.3.0.1 yaml_2.2.0 bindrcpp_0.2.2
[19] stringr_1.3.1 knitr_1.20 locfit_1.5-9.1
[22] rprojroot_1.3-2 tidyselect_0.2.4 glue_1.3.0
[25] R6_2.3.0 rmarkdown_1.10 purrr_0.2.5
[28] magrittr_1.5 whisker_0.3-2 backports_1.1.2
[31] htmltools_0.3.6 splines_3.5.1 assertthat_0.2.0
[34] stringi_1.2.4 crayon_1.3.4 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1