Last updated: 2018-07-19

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 31482e2

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/gene_cov/
        Untracked:  data/leafcutter/
        Untracked:  data/nuc6up/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 31482e2 Briana Mittleman 2018-07-19 gapdh
    html 3193223 Briana Mittleman 2018-07-18 Build site.
    Rmd 9d32076 Briana Mittleman 2018-07-18 add actb example
    html 0464829 Briana Mittleman 2018-07-17 Build site.
    Rmd cc5cc50 Briana Mittleman 2018-07-17 test region smash results
    html d61f590 Briana Mittleman 2018-07-17 Build site.
    Rmd 89ebcac Briana Mittleman 2018-07-17 add smash test


In this analysis I will use the tutorial I did for the SMASH package on chip seq data to test it on the three prime seq data. In order to complete this I need to make a matrix with genome location counts for where reads start for positions 880001:1011072 on chr1, I am using this region because I already know it fits the \(2^{x}\) criterion. I need the matrix to be individual by basepair. I can use genome cov in all of the total fractions then merge the results together to make a matrix.

Create Coverage files

#!/bin/bash

#SBATCH --job-name=5gencov
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=5gencov.out
#SBATCH --error=5gencov.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env 

#imput sorted bam file 
bam=$1

describer=$(echo ${bam} | sed -e 's/.*\YL-SP-//' | sed -e "s/-sort.bam$//")


bedtools genomecov-ibam $1 -d  -5 > /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.${describer}.bed

run on /project2/gilad/briana/threeprimeseq/data/sort/YL-SP-18486-N_S10_R1_001-sort.bam

wrap this function:

#!/bin/bash

#SBATCH --job-name=w_5gencov
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=w_5gencov.out
#SBATCH --error=w_5gencov.err
#SBATCH --partition=broadwl
#SBATCH --mem=16G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env 

for i in $(ls /project2/gilad/briana/threeprimeseq/data/sort/*.bam); do
        sbatch 5primegencov.sh $i 
    done

Test example region

First I will get ch1 880001:1011072 for each individual.

#!/bin/bash

#SBATCH --job-name=test.reg
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=test.reg.out
#SBATCH --error=test.reg.err
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18486-T_S9_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18486-T_S9_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18497-T_S11_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18497-T_S11_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 &5& $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18500-T_S19_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18500-T_S19_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18505-T_S1_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18505-T_S1_R1_001.testregion.bed

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' gencov5prime.18508-T_S5_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18508-T_S5_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}'/project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18853-T_S31_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18853-T_S31_R1_001.testregion.bed



awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18870-T_S23_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18870-T_S23_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19128-T_S29_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19128-T_S29_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19141-T_S17_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19141-T_S17_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19193-T_S21_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19193-T_S21_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19209-T_S15_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19209-T_S15_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19233-T_S7_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19223-T_S7_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19225-T_S27_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19225-T_S27_R1_001.testregion.bed

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19238-T_S3_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19238-T_S3_R1_001.testregion.bed

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19239-T_S13_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19239-T_S13_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19257-T_S25_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19257-T_S25_R1_001.testregion.bed

3 didnt work. Try these again.


#!/bin/bash

#SBATCH --job-name=test.reg2
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=test.reg2.out
#SBATCH --error=test.reg2.err
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18508-T_S5_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18508-T_S5_R1_001.testregion.bed

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18853-T_S31_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18853-T_S31_R1_001.testregion.bed

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18500-T_S19_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18500-T_S19_R1_001.testregion.bed

Now I will pull in these regions and merge them to make a matrix I can put into smashr.

test_18468=read.table("../data/smash_testregion/gencov5prime.18486-T_S9_R1_001.testregion.bed", col.names=c("chr", "base", "T18486"))

test_18497=read.table("../data/smash_testregion/gencov5prime.18497-T_S11_R1_001.testregion.bed", col.names=c("chr", "base", "T18497"))

test_18500=read.table("../data/smash_testregion/gencov5prime.18500-T_S19_R1_001.testregion.bed", col.names=c("chr", "base", "T18500"))  

test_18505=read.table("../data/smash_testregion/gencov5prime.18505-T_S1_R1_001.testregion.bed", col.names=c("chr", "base", "T18505"))

test_18508=read.table("../data/smash_testregion/gencov5prime.18508-T_S5_R1_001.testregion.bed", col.names=c("chr", "base", "T18508"))

test_18853=read.table("../data/smash_testregion/gencov5prime.18853-T_S31_R1_001.testregion.bed", col.names=c("chr", "base", "T18853"))

test_18870=read.table("../data/smash_testregion/gencov5prime.18870-T_S23_R1_001.testregion.bed", col.names=c("chr", "base", "T18870"))

test_19128=read.table("../data/smash_testregion/gencov5prime.19128-T_S29_R1_001.testregion.bed", col.names=c("chr", "base", "T19128"))

test_19239=read.table("../data/smash_testregion/gencov5prime.19239-T_S13_R1_001.testregion.bed", col.names=c("chr", "base", "T19239"))

test_19257=read.table("../data/smash_testregion/gencov5prime.19257-T_S25_R1_001.testregion.bed", col.names=c("chr", "base", "T19257"))

test_19141=read.table("../data/smash_testregion/gencov5prime.19141-T_S17_R1_001.testregion.bed", col.names=c("chr", "base", "T19141"))

test_19193=read.table("../data/smash_testregion/gencov5prime.19193-T_S21_R1_001.testregion.bed", col.names=c("chr", "base", "T19193"))

test_19209=read.table("../data/smash_testregion/gencov5prime.19209-T_S15_R1_001.testregion.bed", col.names=c("chr", "base", "T19209"))

test_19223=read.table("../data/smash_testregion/gencov5prime.19223-T_S7_R1_001.testregion.bed", col.names=c("chr", "base", "T19223"))

test_19225=read.table("../data/smash_testregion/gencov5prime.19225-T_S27_R1_001.testregion.bed", col.names=c("chr", "base", "T19225"))

test_19238=read.table("../data/smash_testregion/gencov5prime.19238-T_S3_R1_001.testregion.bed", col.names=c("chr", "base", "T19238"))

Load Packages:

library(devtools)
Warning: package 'devtools' was built under R version 3.4.4
library(scales)
library(smashr)
library(tidyr)
library(workflowr)
Loading required package: rmarkdown
This is workflowr version 1.0.1
Run ?workflowr for help getting started
library(dplyr)
Warning: package 'dplyr' was built under R version 3.4.4

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Bind all of the count

test_matrix=cbind(test_18468$T18486, test_18497$T18497, test_18500$T18500, test_18505$T18505, test_18508$T18508, test_18853$T18853, test_18870$T18870, test_19128$T19128, test_19141$T19141, test_19193$T19193, test_19209$T19209, test_19223$T19223, test_19225$T19225, test_19238$T19238, test_19239$T19239, test_19257$T19257) %>% t

Run smash:

res = smash.poiss(test_matrix[1,]+test_matrix[2,],post.var=TRUE)
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Squarem-1
Objective fn: 316440
Objective fn: 75069.3  Extrapolation: 0  Steplength: 1
Objective fn: 20919.7  Extrapolation: 1  Steplength: 1.7761
Objective fn: 17547  Extrapolation: 1  Steplength: 4
Objective fn: 17138.8  Extrapolation: 1  Steplength: 4.55255
Objective fn: 16836.6  Extrapolation: 1  Steplength: 1.86253
Objective fn: 16818.8  Extrapolation: 1  Steplength: 6.42316
Objective fn: 16816  Extrapolation: 1  Steplength: 1.66778
Objective fn: 16815.9  Extrapolation: 1  Steplength: 7.08232
Due to absence of package REBayes, switching to EM algorithm
Squarem-1
Objective fn: 547800
Objective fn: 101309  Extrapolation: 0  Steplength: 1
Objective fn: 37390.2  Extrapolation: 1  Steplength: 1.89191
Objective fn: 32343.6  Extrapolation: 1  Steplength: 4
Objective fn: 31416.8  Extrapolation: 1  Steplength: 5.23485
Objective fn: 31019  Extrapolation: 1  Steplength: 2.24046
Objective fn: 31004.3  Extrapolation: 1  Steplength: 5.95071
Objective fn: 31003.4  Extrapolation: 1  Steplength: 2.25357
Objective fn: 31003.3  Extrapolation: 1  Steplength: 6.79538
Due to absence of package REBayes, switching to EM algorithm
Squarem-1
Objective fn: 882921
Objective fn: 118772  Extrapolation: 0  Steplength: 1
Objective fn: 49764.5  Extrapolation: 1  Steplength: 1.87244
Objective fn: 44341.9  Extrapolation: 1  Steplength: 4
Objective fn: 43183.7  Extrapolation: 1  Steplength: 4.56042
Objective fn: 41597.4  Extrapolation: 1  Steplength: 1.93991
Objective fn: 41582.5  Extrapolation: 1  Steplength: 7.15247
Objective fn: 41416.1  Extrapolation: 1  Steplength: 1.69043
Objective fn: 41408.8  Extrapolation: 1  Steplength: 9.74108
Objective fn: 41406.9  Extrapolation: 1  Steplength: 1.59935
Objective fn: 41406.9  Extrapolation: 1  Steplength: 5.74521
Objective fn: 41406.8  Extrapolation: 1  Steplength: 3.48951
Due to absence of package REBayes, switching to EM algorithm
Squarem-1
Objective fn: 1.2791e+06
Objective fn: 88217.7  Extrapolation: 0  Steplength: 1
Objective fn: 48098  Extrapolation: 1  Steplength: 3.21173
Objective fn: 41534.8  Extrapolation: 1  Steplength: 3.31029
Objective fn: 39112.5  Extrapolation: 1  Steplength: 1.9387
Objective fn: 38929.7  Extrapolation: 1  Steplength: 4
Objective fn: 38852.8  Extrapolation: 1  Steplength: 1.89245
Objective fn: 38845.6  Extrapolation: 1  Steplength: 5.02972
Objective fn: 38844.1  Extrapolation: 1  Steplength: 1.53262
Objective fn: 38843.9  Extrapolation: 1  Steplength: 6.32374
Due to absence of package REBayes, switching to EM algorithm
Squarem-1
Objective fn: 1.19992e+06
Objective fn: 127113  Extrapolation: 0  Steplength: 1
Objective fn: 103768  Extrapolation: 1  Steplength: 2.87597
Objective fn: 100999  Extrapolation: 1  Steplength: 4
Objective fn: 99983.8  Extrapolation: 1  Steplength: 3.04432
Objective fn: 99154  Extrapolation: 1  Steplength: 4.6448
Objective fn: 98661.4  Extrapolation: 1  Steplength: 2.95052
Objective fn: 98391.1  Extrapolation: 1  Steplength: 5.09439
Objective fn: 98302.4  Extrapolation: 1  Steplength: 2.05767
Objective fn: 98288.2  Extrapolation: 1  Steplength: 13.5878
Objective fn: 98224.6  Extrapolation: 1  Steplength: 1.53983
Objective fn: 98212.4  Extrapolation: 1  Steplength: 16
Objective fn: 98207  Extrapolation: 1  Steplength: 2.54441
Objective fn: 98203.1  Extrapolation: 1  Steplength: 8.20699
Objective fn: 98202  Extrapolation: 1  Steplength: 2.00162
Objective fn: 98199.8  Extrapolation: 1  Steplength: 16.5155
Objective fn: 98198.5  Extrapolation: 1  Steplength: 1.62338
Objective fn: 98199  Extrapolation: 1  Steplength: 44.8518
Objective fn: 98195.9  Extrapolation: 1  Steplength: 1.4749
Objective fn: 98195.6  Extrapolation: 0  Steplength: 1
Objective fn: 98195.4  Extrapolation: 0  Steplength: 1
Objective fn: 98195.2  Extrapolation: 0  Steplength: 1
Objective fn: 98195.1  Extrapolation: 0  Steplength: 1
Objective fn: 98194.8  Extrapolation: 1  Steplength: 16
Objective fn: 98194.6  Extrapolation: 0  Steplength: 1
Objective fn: 98194.5  Extrapolation: 0  Steplength: 1
Objective fn: 98194.4  Extrapolation: 0  Steplength: 1
Objective fn: 98194.2  Extrapolation: 1  Steplength: 16
Objective fn: 98194  Extrapolation: 0  Steplength: 1
Objective fn: 98193.9  Extrapolation: 0  Steplength: 1
Objective fn: 98193.7  Extrapolation: 1  Steplength: 16
Objective fn: 98193.6  Extrapolation: 0  Steplength: 1
Objective fn: 98193.5  Extrapolation: 0  Steplength: 1
Objective fn: 98193.4  Extrapolation: 0  Steplength: 1
Objective fn: 98193  Extrapolation: 1  Steplength: 16
Objective fn: 98192.9  Extrapolation: 0  Steplength: 1
Objective fn: 98192.8  Extrapolation: 0  Steplength: 1
Objective fn: 98192.7  Extrapolation: 0  Steplength: 1
Objective fn: 98192.1  Extrapolation: 1  Steplength: 16
Objective fn: 98192  Extrapolation: 0  Steplength: 1
Objective fn: 98191.9  Extrapolation: 0  Steplength: 1
Objective fn: 98190.9  Extrapolation: 1  Steplength: 16
Objective fn: 98190.8  Extrapolation: 0  Steplength: 1
Objective fn: 98190.6  Extrapolation: 0  Steplength: 1
Objective fn: 98189.2  Extrapolation: 1  Steplength: 16
Objective fn: 98189  Extrapolation: 0  Steplength: 1
Objective fn: 98186.8  Extrapolation: 1  Steplength: 16
Objective fn: 98186.6  Extrapolation: 0  Steplength: 1
Objective fn: 98183.6  Extrapolation: 1  Steplength: 16
Objective fn: 98183.3  Extrapolation: 0  Steplength: 1
Objective fn: 98179.6  Extrapolation: 1  Steplength: 16
Objective fn: 98179.1  Extrapolation: 0  Steplength: 1
Objective fn: 98175  Extrapolation: 1  Steplength: 16
Objective fn: 98174.4  Extrapolation: 0  Steplength: 1
Objective fn: 98171  Extrapolation: 1  Steplength: 16
Objective fn: 98170.2  Extrapolation: 0  Steplength: 1
Objective fn: 98169.6  Extrapolation: 0  Steplength: 1
Objective fn: 98167.5  Extrapolation: 1  Steplength: 16
Objective fn: 98166.5  Extrapolation: 0  Steplength: 1
Objective fn: 98165.9  Extrapolation: 0  Steplength: 1
Objective fn: 98165.4  Extrapolation: 0  Steplength: 1
Objective fn: 98164.7  Extrapolation: 1  Steplength: 16
Objective fn: 98163.9  Extrapolation: 0  Steplength: 1
Objective fn: 98163.3  Extrapolation: 0  Steplength: 1
Objective fn: 98163  Extrapolation: 0  Steplength: 1
Objective fn: 98162.7  Extrapolation: 0  Steplength: 1
Objective fn: 98162.6  Extrapolation: 1  Steplength: 16
Objective fn: 98162.1  Extrapolation: 0  Steplength: 1
Objective fn: 98161.8  Extrapolation: 0  Steplength: 1
Objective fn: 98161.6  Extrapolation: 0  Steplength: 1
Objective fn: 98161.5  Extrapolation: 0  Steplength: 1
Objective fn: 98161.4  Extrapolation: 0  Steplength: 1
Objective fn: 98161.3  Extrapolation: 0  Steplength: 1
Objective fn: 98161.2  Extrapolation: 1  Steplength: 16
Objective fn: 98161.1  Extrapolation: 0  Steplength: 1
Objective fn: 98161  Extrapolation: 0  Steplength: 1
Objective fn: 98160.9  Extrapolation: 0  Steplength: 1
Objective fn: 98160.9  Extrapolation: 0  Steplength: 1
Objective fn: 98160.9  Extrapolation: 0  Steplength: 1
Objective fn: 98160.9  Extrapolation: 1  Steplength: 16
Objective fn: 98160.8  Extrapolation: 0  Steplength: 1
Objective fn: 98160.8  Extrapolation: 0  Steplength: 1
Objective fn: 98160.8  Extrapolation: 0  Steplength: 1
Objective fn: 98160.8  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 1  Steplength: 16
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 1  Steplength: 16
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 1  Steplength: 16
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 1  Steplength: 16
Objective fn: 98161.6  Extrapolation: 1  Steplength: 25.5964
Objective fn: 98160.7  Extrapolation: 1  Steplength: 4.9659
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 1  Steplength: 16
Objective fn: 98160.7  Extrapolation: 0  Steplength: 1
Objective fn: 98160.6  Extrapolation: 0  Steplength: 1
Objective fn: 98160.6  Extrapolation: 0  Steplength: 1
Objective fn: 98160.7  Extrapolation: 1  Steplength: 16
Objective fn: 98161.4  Extrapolation: 1  Steplength: 28.4418
Objective fn: 98160.6  Extrapolation: 1  Steplength: 4.88053
Objective fn: 98161.5  Extrapolation: 1  Steplength: 64
Objective fn: 98160.9  Extrapolation: 1  Steplength: 1.58458
Objective fn: 98160.6  Extrapolation: 1  Steplength: 5.74946
Objective fn: 98160.7  Extrapolation: 1  Steplength: 18.0007
Objective fn: 98160.6  Extrapolation: 1  Steplength: 1.31963
Objective fn: 98160.8  Extrapolation: 1  Steplength: 14.5938
Objective fn: 98160.6  Extrapolation: 1  Steplength: 5.87148
Objective fn: 98160.6  Extrapolation: 1  Steplength: 2.79445
Objective fn: 98160.6  Extrapolation: 1  Steplength: 10.536
Objective fn: 98160.6  Extrapolation: 1  Steplength: 1.26176
Objective fn: 98160.6  Extrapolation: 0  Steplength: 1
Objective fn: 98160.6  Extrapolation: 0  Steplength: 1
Objective fn: 98160.6  Extrapolation: 1  Steplength: 64
Objective fn: 98160.7  Extrapolation: 1  Steplength: 11.4375
Objective fn: 98160.6  Extrapolation: 1  Steplength: 3.26847
Objective fn: 98160.6  Extrapolation: 1  Steplength: 4.39932
Objective fn: 98160.6  Extrapolation: 1  Steplength: 3.21355
Objective fn: 98160.6  Extrapolation: 1  Steplength: 7.1878
Objective fn: 98160.6  Extrapolation: 1  Steplength: 1.51531
Objective fn: 98160.5  Extrapolation: 1  Steplength: 256
Objective fn: 98160.5  Extrapolation: 1  Steplength: 1.39451
Objective fn: 98160.7  Extrapolation: 1  Steplength: 479.942
Objective fn: 98160.5  Extrapolation: 1  Steplength: 1.41467
Objective fn: 98160.6  Extrapolation: 1  Steplength: 14.2088
Objective fn: 98160.5  Extrapolation: 1  Steplength: 2.52095
Objective fn: 98160.5  Extrapolation: 1  Steplength: 9.92198
Objective fn: 98160.5  Extrapolation: 1  Steplength: 2.79295
Due to absence of package REBayes, switching to EM algorithm
Squarem-1
Objective fn: 687462
Objective fn: 233579  Extrapolation: 0  Steplength: 1
Objective fn: 163301  Extrapolation: 1  Steplength: 2.96537
Objective fn: 101350  Extrapolation: 0  Steplength: 1
Objective fn: 87205.9  Extrapolation: 1  Steplength: 3.31731
Objective fn: 83310  Extrapolation: 1  Steplength: 1.41235
Objective fn: 83078.4  Extrapolation: 1  Steplength: 4
Objective fn: 83067.1  Extrapolation: 1  Steplength: 2.82442
Objective fn: 83065.1  Extrapolation: 1  Steplength: 2.48778
Objective fn: 83064.6  Extrapolation: 1  Steplength: 2.94018
Objective fn: 83064.5  Extrapolation: 1  Steplength: 2.28751
Objective fn: 83064.5  Extrapolation: 1  Steplength: 3.24189
bppos = 880001:1011072

plot(bppos,test_matrix[1,]+test_matrix[2,],xlab="position",ylab="counts",pch=16,cex=0.5, col=alpha("black",0.04))

Expand here to see past versions of unnamed-chunk-9-1.png:
Version Author Date
0464829 Briana Mittleman 2018-07-17

plot(bppos,res$est,type='l',xlab="position",ylab="intensity")

Expand here to see past versions of unnamed-chunk-9-2.png:
Version Author Date
0464829 Briana Mittleman 2018-07-17

Create a coverage file with the results.

cov=cbind(test_18468$chr, test_18468$base + 1, test_18468$base, res$est)

Test actb

I want to try this on a region with higher background for example where actb is. I can run a smaller region of \(2^{10}\) bases. chr7:5,566,662-5,567,686. The following script to extract the region is called test.actbregion.sh.

#!/bin/bash

#SBATCH --job-name=test.regactb
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=test.regact.out
#SBATCH --error=test.regact.err
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END

awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18486-T_S9_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18486-T_S9_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18497-T_S11_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18497-T_S11_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18500-T_S19_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18500-T_S19_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18505-T_S1_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18505-T_S1_R1_001.testregion.actb.bed

awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18508-T_S5_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18508-T_S5_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18853-T_S31_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18853-T_S31_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18870-T_S23_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18870-T_S23_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19128-T_S29_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19128-T_S29_R1_001.testregion.actb.bed

awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19141-T_S17_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19141-T_S17_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19193-T_S21_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19193-T_S21_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19209-T_S15_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19209-T_S15_R1_001.testregion.actb.bed

awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19233-T_S7_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19223-T_S7_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19225-T_S27_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19225-T_S27_R1_001.testregion.actb.bed

awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19238-T_S3_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19238-T_S3_R1_001.testregion.actb.bed

awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19239-T_S13_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19239-T_S13_R1_001.testregion.actb.bed


awk '$1 == 7 && $2 >= 5566662 && $2 <= 5567686 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19257-T_S25_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19257-T_S25_R1_001.testregion.actb.bed

18853 did not work, running seperatly.

actb_test_18468=read.table("../data/smash_testregion/gencov5prime.18486-T_S9_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T18486"))

actb_test_18497=read.table("../data/smash_testregion/gencov5prime.18497-T_S11_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T18497"))

actb_test_18500=read.table("../data/smash_testregion/gencov5prime.18500-T_S19_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T18500"))  

actb_test_18505=read.table("../data/smash_testregion/gencov5prime.18505-T_S1_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T18505"))

actb_test_18508=read.table("../data/smash_testregion/gencov5prime.18508-T_S5_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T18508"))

actb_test_18853=read.table("../data/smash_testregion/gencov5prime.18853-T_S31_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T18853"))

actb_test_18870=read.table("../data/smash_testregion/gencov5prime.18870-T_S23_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T18870"))

actb_test_19128=read.table("../data/smash_testregion/gencov5prime.19128-T_S29_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19128"))

actb_test_19239=read.table("../data/smash_testregion/gencov5prime.19239-T_S13_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19239"))

actb_test_19257=read.table("../data/smash_testregion/gencov5prime.19257-T_S25_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19257"))

actb_test_19141=read.table("../data/smash_testregion/gencov5prime.19141-T_S17_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19141"))

actb_test_19193=read.table("../data/smash_testregion/gencov5prime.19193-T_S21_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19193"))

actb_test_19209=read.table("../data/smash_testregion/gencov5prime.19209-T_S15_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19209"))

actb_test_19223=read.table("../data/smash_testregion/gencov5prime.19223-T_S7_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19223"))

actb_test_19225=read.table("../data/smash_testregion/gencov5prime.19225-T_S27_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19225"))

actb_test_19238=read.table("../data/smash_testregion/gencov5prime.19238-T_S3_R1_001.testregion.actb.bed", col.names=c("chr", "base", "T19238"))

Make matrix

actb_test_matrix=cbind(actb_test_18468$T18486, actb_test_18497$T18497, actb_test_18500$T18500, actb_test_18505$T18505, actb_test_18508$T18508, actb_test_18853$T18853, actb_test_18870$T18870, actb_test_19128$T19128, actb_test_19141$T19141, actb_test_19193$T19193, actb_test_19209$T19209, actb_test_19223$T19223, actb_test_19225$T19225, actb_test_19238$T19238, actb_test_19239$T19239, actb_test_19257$T19257) %>% t

Run smash:

actb_res = smash.poiss(actb_test_matrix[1,]+actb_test_matrix[2,],post.var=TRUE)
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm

Make plots:

actb_bppos = 5566662:5567686

plot(actb_bppos,actb_test_matrix[1,]+actb_test_matrix[2,],xlab="position",ylab="counts",pch=16,cex=0.5, col=alpha("black",1), main="Raw data ACTB")

Expand here to see past versions of unnamed-chunk-15-1.png:
Version Author Date
3193223 Briana Mittleman 2018-07-18

plot(actb_bppos,actb_res$est,type='l',xlab="position",ylab="intensity", main="SMASH results ACTB")

Expand here to see past versions of unnamed-chunk-15-2.png:
Version Author Date
3193223 Briana Mittleman 2018-07-18

Test Gapdh

Check on another highly expressed gene to see if this dual peak pattern appears again. I will look at GAPDH. Chr12 6,646,755-6,647,779

#!/bin/bash

#SBATCH --job-name=test.reggap
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=test.reggap.out
#SBATCH --error=test.reggap.err
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END

awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18486-T_S9_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18486-T_S9_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18497-T_S11_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18497-T_S11_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18500-T_S19_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18500-T_S19_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18505-T_S1_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18505-T_S1_R1_001.testregion.gap.bed

awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18508-T_S5_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18508-T_S5_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18853-T_S31_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18853-T_S31_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18870-T_S23_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18870-T_S23_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19128-T_S29_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19128-T_S29_R1_001.testregion.gap.bed

awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19141-T_S17_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19141-T_S17_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19193-T_S21_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19193-T_S21_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19209-T_S15_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19209-T_S15_R1_001.testregion.gap.bed

awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19233-T_S7_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19223-T_S7_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19225-T_S27_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19225-T_S27_R1_001.testregion.gap.bed

awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19238-T_S3_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19238-T_S3_R1_001.testregion.gap.bed

awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19239-T_S13_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19239-T_S13_R1_001.testregion.gap.bed


awk '$1 == 12 && $2 >= 6646755 && $2 <= 6647779 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19257-T_S25_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19257-T_S25_R1_001.testregion.gap.bed

Pull in the data:

gap_test_18468=read.table("../data/smash_testregion/gencov5prime.18486-T_S9_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T18486"))

gap_test_18497=read.table("../data/smash_testregion/gencov5prime.18497-T_S11_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T18497"))

gap_test_18500=read.table("../data/smash_testregion/gencov5prime.18500-T_S19_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T18500"))  

gap_test_18505=read.table("../data/smash_testregion/gencov5prime.18505-T_S1_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T18505"))

gap_test_18508=read.table("../data/smash_testregion/gencov5prime.18508-T_S5_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T18508"))

gap_test_18853=read.table("../data/smash_testregion/gencov5prime.18853-T_S31_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T18853"))

gap_test_18870=read.table("../data/smash_testregion/gencov5prime.18870-T_S23_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T18870"))

gap_test_19128=read.table("../data/smash_testregion/gencov5prime.19128-T_S29_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19128"))

gap_test_19239=read.table("../data/smash_testregion/gencov5prime.19239-T_S13_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19239"))

gap_test_19257=read.table("../data/smash_testregion/gencov5prime.19257-T_S25_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19257"))

gap_test_19141=read.table("../data/smash_testregion/gencov5prime.19141-T_S17_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19141"))

gap_test_19193=read.table("../data/smash_testregion/gencov5prime.19193-T_S21_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19193"))

gap_test_19209=read.table("../data/smash_testregion/gencov5prime.19209-T_S15_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19209"))

gap_test_19223=read.table("../data/smash_testregion/gencov5prime.19223-T_S7_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19223"))

gap_test_19225=read.table("../data/smash_testregion/gencov5prime.19225-T_S27_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19225"))

gap_test_19238=read.table("../data/smash_testregion/gencov5prime.19238-T_S3_R1_001.testregion.gap.bed", col.names=c("chr", "base", "T19238"))

Make matrix

gap_test_matrix=cbind(gap_test_18468$T18486, gap_test_18497$T18497, gap_test_18500$T18500, gap_test_18505$T18505, gap_test_18508$T18508, gap_test_18853$T18853, gap_test_18870$T18870, gap_test_19128$T19128, gap_test_19141$T19141, gap_test_19193$T19193, gap_test_19209$T19209, gap_test_19223$T19223, gap_test_19225$T19225, gap_test_19238$T19238, gap_test_19239$T19239, gap_test_19257$T19257) %>% t

Run smash:

gap_res = smash.poiss(gap_test_matrix[1,]+gap_test_matrix[2,],post.var=TRUE)
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm
Due to absence of package REBayes, switching to EM algorithm

Make plots:

gap_bppos =6646755:6647779

plot(gap_bppos,gap_test_matrix[1,]+gap_test_matrix[2,],xlab="position",ylab="counts",pch=16,cex=0.5, col=alpha("black",1), main="Raw data GAPDH")

plot(gap_bppos,gap_res$est,type='l',xlab="position",ylab="intensity", main="SMASH results GAPDH")

Session information

sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] dplyr_0.7.5     workflowr_1.0.1 rmarkdown_1.8.5 tidyr_0.7.2    
[5] smashr_1.2-0    scales_0.5.0    devtools_1.13.6

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17      bindr_0.1.1       pillar_1.1.0     
 [4] compiler_3.4.2    git2r_0.21.0      plyr_1.8.4       
 [7] R.methodsS3_1.7.1 R.utils_2.6.0     bitops_1.0-6     
[10] iterators_1.0.10  tools_3.4.2       digest_0.6.15    
[13] tibble_1.4.2      evaluate_0.10.1   memoise_1.1.0    
[16] lattice_0.20-35   pkgconfig_2.0.1   rlang_0.2.1      
[19] Matrix_1.2-12     foreach_1.4.4     yaml_2.1.19      
[22] parallel_3.4.2    bindrcpp_0.2.2    withr_2.1.1      
[25] stringr_1.3.1     knitr_1.18        caTools_1.17.1   
[28] tidyselect_0.2.4  rprojroot_1.3-2   grid_3.4.2       
[31] glue_1.2.0        data.table_1.11.4 R6_2.2.2         
[34] purrr_0.2.5       ashr_2.2-7        magrittr_1.5     
[37] whisker_0.3-2     backports_1.1.2   codetools_0.2-15 
[40] htmltools_0.3.6   MASS_7.3-48       assertthat_0.2.0 
[43] colorspace_1.3-2  wavethresh_4.6.8  stringi_1.2.2    
[46] munsell_0.4.3     doParallel_1.0.11 pscl_1.5.2       
[49] truncnorm_1.0-8   SQUAREM_2017.10-1 R.oo_1.22.0      



This reproducible R Markdown analysis was created with workflowr 1.0.1