Last updated: 2018-07-17

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 89ebcac

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/gene_cov/
        Untracked:  data/leafcutter/
        Untracked:  data/nuc6up/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/ssFC200.cov.bed
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 89ebcac Briana Mittleman 2018-07-17 add smash test


In this analysis I will use the tutorial I did for the SMASH package on chip seq data to test it on the three prime seq data. In order to complete this I need to make a matrix with genome location counts for where reads start for positions 880001:1011072 on chr1, I am using this region because I already know it fits the \(2^{x}\) criterion. I need the matrix to be individual by basepair. I can use genome cov in all of the total fractions then merge the results together to make a matrix.

#!/bin/bash

#SBATCH --job-name=5gencov
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=5gencov.out
#SBATCH --error=5gencov.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env 

#imput sorted bam file 
bam=$1

describer=$(echo ${bam} | sed -e 's/.*\YL-SP-//' | sed -e "s/-sort.bam$//")


bedtools genomecov-ibam $1 -d  -5 > /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.${describer}.bed

run on /project2/gilad/briana/threeprimeseq/data/sort/YL-SP-18486-N_S10_R1_001-sort.bam

wrap this function:

#!/bin/bash

#SBATCH --job-name=w_5gencov
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=w_5gencov.out
#SBATCH --error=w_5gencov.err
#SBATCH --partition=broadwl
#SBATCH --mem=16G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env 

for i in $(ls /project2/gilad/briana/threeprimeseq/data/sort/*.bam); do
        sbatch 5primegencov.sh $i 
    done

First I will get ch1 880001:1011072 for each individual.

#!/bin/bash

#SBATCH --job-name=test.reg
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=test.reg.out
#SBATCH --error=test.reg.err
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18486-T_S9_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18486-T_S9_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18497-T_S11_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18497-T_S11_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 &5& $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18500-T_S19_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18500-T_S19_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18505-T_S1_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18505-T_S1_R1_001.testregion.bed

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' gencov5prime.18508-T_S5_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18508-T_S5_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}'/project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18853-T_S31_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18853-T_S31_R1_001.testregion.bed



awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.18870-T_S23_R1_001.bed   > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.18870-T_S23_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19128-T_S29_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19128-T_S29_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19141-T_S17_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19141-T_S17_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19193-T_S21_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19193-T_S21_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19209-T_S15_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19209-T_S15_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19233-T_S7_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19223-T_S7_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19225-T_S27_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19225-T_S27_R1_001.testregion.bed

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19238-T_S3_R1_001.bed > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19238-T_S3_R1_001.testregion.bed

awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19239-T_S13_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19239-T_S13_R1_001.testregion.bed


awk '$1 == 1 && $2 >= 880001 && $2 <= 1011072 {print}' /project2/gilad/briana/threeprimeseq/data/test.smash/gencov5prime.19257-T_S25_R1_001.bed  > /project2/gilad/briana/threeprimeseq/data/test.region/gencov5prime.19257-T_S25_R1_001.testregion.bed

Session information

sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.0.1   Rcpp_0.12.17      digest_0.6.15    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.21.0      magrittr_1.5      evaluate_0.10.1  
[10] stringi_1.2.2     whisker_0.3-2     R.oo_1.22.0      
[13] R.utils_2.6.0     rmarkdown_1.8.5   tools_3.4.2      
[16] stringr_1.3.1     yaml_2.1.19       compiler_3.4.2   
[19] htmltools_0.3.6   knitr_1.18       



This reproducible R Markdown analysis was created with workflowr 1.0.1