Last updated: 2018-11-02
workflowr checks: (Click a bullet for more information) ✖ R Markdown file: uncommitted changes
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20181026)
The command set.seed(20181026)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: d810265
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Untracked files:
Untracked: analysis/10x-180504-alignment.Rmd
Untracked: plots/180504_pca_tsne.pdf
Untracked: plots/supplementary_figures/
Unstaged changes:
Modified: analysis/10x-180504-general-analysis.Rmd
Modified: analysis/index.Rmd
Modified: code/out/run-alignment_10x-180504-ccregout
Deleted: plots/fig1_180504.pdf
Deleted: plots/sfig1_180504_qcplots.pdf
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Analysis of the 10x samples: - tSNE plots - Cell cycle regression - PCA - Alignment - Marker gene expression - tSNE colored on metadata
Loading the required packages and datasets.
library(Seurat)
Loading required package: ggplot2
Loading required package: cowplot
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
Loading required package: Matrix
library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
all10x <- readRDS('output/10x-180504')
all10x.ccregout <- readRDS('output/10x-180504-ccregout')
VlnPlot(all10x, features.plot='nGene', group.by='sample_name', point.size.use=-1, x.lab.rot=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
VlnPlot(all10x, features.plot='nUMI', group.by='sample_name', point.size.use=-1, x.lab.rot=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
VlnPlot(all10x, features.plot='percent.mito', group.by='sample_name', point.size.use=-1, x.lab.rot=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
GenePlot(all10x, 'nUMI', 'nGene')
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
Below are several tSNE plots of the 10x-180504 data. tSNE was performed on the first 15 principal components of the log-normalized scaled (nUMI and percent.mito regressed out) data.
Visceral and perirenal seem a bit mixed, and supraclavicular and subcutaneous too.
TSNEPlot(all10x, pt.size=0.1, group.by='sample_name', do.label=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
tSNE plots of samples within their depot. Peri2 and Peri3 seem to overlap really well, as well as Supra1 and Supra2, and Visce1 and Visce3.
plot_grid(t1, t2, t3, t4)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
tSNE colored on subtissue.
TSNEPlot(all10x, group.by='depot', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
tSNE colored by cell cycle phase.
TSNEPlot(all10x, group.by='Phase', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
Some clustering with different resolutions. res=0.5
TSNEPlot(all10x, pt.size=0.1, group.by='res.0.5', do.label=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
res=0.7
TSNEPlot(all10x, pt.size=0.1, group.by='res.0.7', do.label=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
res=1
TSNEPlot(all10x, pt.size=0.1, group.by='res.1', do.label=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
T-SNE of the data with cell cycle effects regressed out. There does not seem to be a lot of structure within clusters now.
TSNEPlot(all10x.ccregout, pt.size=0.1, group.by='sample_name')
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
No cell cycle effect anymore.
TSNEPlot(all10x.ccregout, pt.size=0.1, group.by='Phase')
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
Subtissues
plot_grid(t1, t2, t3, t4)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
TSNEPlot(all10x.ccregout, pt.size=0.1, group.by='depot')
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
Some PCA plots. PC1 seems to capture cell cycle effects, and PC2 seems to capture some of the sample variability.
PCAPlot(all10x, group.by='Phase', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
PCAPlot(all10x, group.by='sample_name', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
PCA plot of the cell cycle regressed out data. There is no cell cycle effect anymore.
PCAPlot(all10x.ccregout, group.by='Phase', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
PCAPlot(all10x.ccregout, group.by='sample_name', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
FeaturePlot(all10x, c("nGene"), cols.use = c("grey","blue"), no.legend=F)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
FeaturePlot(all10x, c("percent.mito"), cols.use = c("grey","blue"), no.legend=F)
FeaturePlot(all10x, c("nUMI"), cols.use = c("grey","blue"), no.legend=F)
Diff
TSNEPlot(all10x, group.by='diff', pt.size=0.1)
all10x@meta.data['diff_int'] <- unlist(lapply(as.vector(unlist(all10x@meta.data$diff)), function(x){return(strtoi(strsplit(x, '%')))}))
FeaturePlot(all10x, features.plot='diff_int', cols.use=c('gray', 'blue'), no.legend=F)
ucp1.ctrl
TSNEPlot(all10x, group.by='ucp1.ctrl', pt.size=0.1)
ucp1.ne
TSNEPlot(all10x, group.by='ucp1.ne', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
bmi
TSNEPlot(all10x, group.by='bmi', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
age
TSNEPlot(all10x, group.by='age', pt.size=0.1)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
VlnPlot(all10x, group.by='sample_name', features.plot=c('nGene'), point.size.use = -1, x.lab.rot=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
VlnPlot(all10x, group.by='sample_name', features.plot=c('nUMI'), point.size.use = -1, x.lab.rot=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
VlnPlot(all10x, group.by='sample_name', features.plot=c('percent.mito'), point.size.use = -1, x.lab.rot=T)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
Sample composition in cluster 12.
cluster12 <- SubsetData(all10x, cells.use=rownames(all10x@meta.data)[which(all10x@meta.data$res.0.5 %in% 12)])
rotate_x <- function(data, column_to_plot, labels_vec, rot_angle) {
plt <- barplot(data[[column_to_plot]], col='steelblue', xaxt="n")
text(plt, par("usr")[3], labels = labels_vec, srt = rot_angle, adj = c(1.1,1.1), xpd = TRUE, cex=1)
}
rotate_x((cluster12@meta.data %>% count(sample_name))[,2], 'n', as.vector(unlist((cluster12@meta.data %>% count(sample_name))[,1])), 45)
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
fig1
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
#Supplementary figures
sfig1 <- plot_grid(
VlnPlot(all10x, group.by='sample_name', features.plot=c('nGene'), point.size.use = -1, x.lab.rot=T, size.x.use=8),
VlnPlot(all10x, group.by='sample_name', features.plot=c('nUMI'), point.size.use = -1, x.lab.rot=T, size.x.use=8),
VlnPlot(all10x, group.by='sample_name', features.plot=c('percent.mito'), point.size.use = -1, x.lab.rot=T, size.x.use=8),
labels=c('a', 'b', 'c'), nrow=1
)
save_plot("plots/supplementary_figures/sfig_180504_qcplots.pdf", sfig1, base_width=12, base_height=3)
sfig1
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
sfig2 <- plot_grid(PCElbowPlot(all10x, num.pc=50))
save_plot("plots/supplementary_figures/sfig_180504_pcelbow.pdf", sfig2, base_width=8, base_height=5)
sfig2
Version | Author | Date |
---|---|---|
1f7e0da | PytrikFolkertsma | 2018-10-30 |
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux
Matrix products: default
BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 dplyr_0.7.6 Seurat_2.3.4 Matrix_1.2-14
[5] cowplot_0.9.3 ggplot2_3.0.0
loaded via a namespace (and not attached):
[1] Rtsne_0.13 colorspace_1.3-2 class_7.3-14
[4] modeltools_0.2-22 ggridges_0.5.0 mclust_5.4.1
[7] rprojroot_1.3-2 htmlTable_1.12 base64enc_0.1-3
[10] rstudioapi_0.7 proxy_0.4-22 flexmix_2.3-14
[13] bit64_0.9-7 mvtnorm_1.0-8 codetools_0.2-15
[16] splines_3.4.3 R.methodsS3_1.7.1 robustbase_0.93-2
[19] knitr_1.20 Formula_1.2-3 jsonlite_1.5
[22] workflowr_1.1.1 ica_1.0-2 cluster_2.0.7-1
[25] kernlab_0.9-27 png_0.1-7 R.oo_1.22.0
[28] compiler_3.4.3 httr_1.3.1 backports_1.1.2
[31] assertthat_0.2.0 lazyeval_0.2.1 lars_1.2
[34] acepack_1.4.1 htmltools_0.3.6 tools_3.4.3
[37] igraph_1.2.2 gtable_0.2.0 glue_1.3.0
[40] RANN_2.6 reshape2_1.4.3 Rcpp_0.12.18
[43] trimcluster_0.1-2.1 gdata_2.18.0 ape_5.1
[46] nlme_3.1-137 iterators_1.0.10 fpc_2.1-11.1
[49] gbRd_0.4-11 lmtest_0.9-36 stringr_1.3.1
[52] irlba_2.3.2 gtools_3.8.1 DEoptimR_1.0-8
[55] MASS_7.3-50 zoo_1.8-3 scales_1.0.0
[58] doSNOW_1.0.16 parallel_3.4.3 RColorBrewer_1.1-2
[61] yaml_2.2.0 reticulate_1.10 pbapply_1.3-4
[64] gridExtra_2.3 rpart_4.1-13 segmented_0.5-3.0
[67] latticeExtra_0.6-28 stringi_1.2.4 foreach_1.4.4
[70] checkmate_1.8.5 caTools_1.17.1.1 bibtex_0.4.2
[73] Rdpack_0.9-0 SDMTools_1.1-221 rlang_0.2.2
[76] pkgconfig_2.0.2 dtw_1.20-1 prabclus_2.2-6
[79] bitops_1.0-6 evaluate_0.11 lattice_0.20-35
[82] ROCR_1.0-7 purrr_0.2.5 bindr_0.1.1
[85] labeling_0.3 htmlwidgets_1.2 bit_1.1-14
[88] tidyselect_0.2.4 plyr_1.8.4 magrittr_1.5
[91] R6_2.2.2 snow_0.4-2 gplots_3.0.1
[94] Hmisc_4.1-1 pillar_1.3.0 whisker_0.3-2
[97] foreign_0.8-70 withr_2.1.2 fitdistrplus_1.0-9
[100] mixtools_1.1.0 survival_2.42-6 nnet_7.3-12
[103] tsne_0.1-3 tibble_1.4.2 crayon_1.3.4
[106] hdf5r_1.0.0 KernSmooth_2.23-15 rmarkdown_1.10
[109] grid_3.4.3 data.table_1.11.4 git2r_0.23.0
[112] metap_1.0 digest_0.6.15 diptest_0.75-7
[115] tidyr_0.8.1 R.utils_2.7.0 stats4_3.4.3
[118] munsell_0.5.0
This reproducible R Markdown analysis was created with workflowr 1.1.1