<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />


<meta name="author" content="Lei Sun" />

<meta name="date" content="2017-05-09" />

<title>Improvement on Implementation with Rmosek: Regularization</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" />

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">truncash</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
<li>
  <a href="license.html">License</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/LSun/truncash">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

<div class="fluid-row" id="header">



<h1 class="title toc-ignore">Improvement on Implementation with <code>Rmosek</code>: Regularization</h1>
<h4 class="author"><em>Lei Sun</em></h4>
<h4 class="date"><em>2017-05-09</em></h4>

</div>


<!-- The file analysis/chunks.R contains chunks that define default settings
shared across the workflowr files. -->
<!-- Update knitr chunk options -->
<!-- Insert the date the file was last updated -->
<p><strong>Last updated:</strong> 2017-12-21</p>
<!-- Insert the code version (Git commit SHA1) if Git repository exists and R
 package git2r is installed -->
<p><strong>Code version:</strong> 6e42447</p>
<!-- Add your analysis here -->
<section id="introduction" class="level2">
<h2>Introduction</h2>
<p>The <span class="math inline">\(w\)</span> optimization problem we hope to solve has two constraints. If we are not imposing these two constraints, chances are the optimization will be <a href="gaussian_derivatives_3.html">unstable</a>, especially when we don’t know <span class="math inline">\(L\)</span> for sure beforehand. However, these two constraints are hard to be converted directly and strictly to convex or even tractable forms.</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{w} &amp; -\sum\limits_{j = 1}^n\log\left(\sum\limits_{l=1}^Lw_l\left(\sum\limits_{k = 1}^K\hat\pi_k  f_{jkl}\right) + \sum\limits_{k = 1}^K\hat\pi_kf_{jk0}\right) + 
\sum\limits_{l = 1}^L\lambda_l^w
\phi
\left(\left|w_l\right|\right)
\\
\text{subject to} &amp; \sum\limits_{l=1}^L w_l \varphi^{(l)}\left(z\right) + \varphi\left(z\right) \geq 0, \forall z\in \mathbb{R}\\
&amp; w_l \text{ decay reasonably fast.}
\end{array}
\]</span></p>
<p>One observation is that without the constraints, the optimization goes unstable as <span class="math inline">\(\hat w\)</span> get uncontrollably large. Therefore, a natural idea to replace these two constraints would be to bound, penalize, or regularize <span class="math inline">\(w\)</span>, to prevent them from being too large.</p>
<p>On the other hand, as indicated the <a href="gaussian_derivatives.html">theory</a> and <a href="mosek_reg.html">examples</a> of good fitting by Gaussian derivatives, <span class="math inline">\(w_l\)</span> is getting smaller as <span class="math inline">\(l\)</span> increases. Moreover, oftentimes, really small <span class="math inline">\(w_l\)</span> could still make a difference and thus indispensable. Therefore, although we need to stop <span class="math inline">\(\hat w\)</span> getting too large, we cerntainly don’t want to shrink them unnecessarily and unwarrantedly to zero.</p>
<p>Ideally, the goal of <span class="math inline">\(\sum\limits_{l = 1}^L\lambda_l^w \phi \left(\left|w_l\right|\right)\)</span> regularizing <span class="math inline">\(w\)</span> should be to</p>

</section>
<section id="ideas-on-lambda_lw-and-phi" class="level2">
<h2>Ideas on <span class="math inline">\(\lambda_l^w\)</span> and <span class="math inline">\(\phi\)</span></h2>
<p>Remember that in <a href="gaussian_derivatives.html">theory</a>, if we are writing the random empirical density of the correlated marginally <span class="math inline">\(N\left(0, 1\right)\)</span> random samples as</p>
<p><span class="math display">\[
f_0\left(z\right) = \varphi\left(z\right) + \sum\limits_{l = 1}^\infty W_k\varphi^{(l)}\left(z\right) \  ,
\]</span> then</p>
<p><span class="math display">\[
\text{var}\left(W_l\right) = \frac{\alpha_l}{l!} \  ,
\]</span> where</p>
<p><span class="math display">\[
\alpha_l = \frac{1}{\frac{n\left(n - 1\right)}{2}}\sum_\limits{i &lt; j}\rho_{ij}^l := \bar{\rho_{ij}^l} \  .
\]</span></p>
<p>Therefore, naturally <span class="math inline">\(w_l\)</span> should decay somehow in the order of</p>
<p><span class="math display">\[
\left|w_l\right| \leadsto \sqrt{\text{var}\left(W_l\right)} =
\frac{\sqrt{\bar{\rho_{ij}^l}}}{\sqrt{l!}} \  .
\]</span></p>
<section id="normalization" class="level3">
<h3>Normalization</h3>
<p>The order of decay suggests that we should work with <a href="mosek_reg_2.html">normalized coefficients</a>, so that</p>
<p><span class="math display">\[
\left|w_l^n\right| = \sqrt{l!}\left|w_l\right| \leadsto 
\sqrt{\bar{\rho_{ij}^l}} \  .
\]</span> This piece of information on the order of magnitude of the normalized <span class="math inline">\(w_l^n\)</span> provides a hint to determine <span class="math inline">\(\lambda_l^w\)</span>, for example,</p>
</section>
<section id="regularizing-even-orders-only" class="level3">
<h3>Regularizing even orders only</h3>
<p>Odd orders of Gaussian derivatives are generally associated with mean shift and skewness of <span class="math inline">\(f_0\)</span>, so they are generally very small, but if they are indeed not zero, they are important however they are small.</p>
<p>Meanwhile, when <span class="math inline">\(l\)</span> is odd, <span class="math inline">\(\bar{\rho_{ij}^l}\)</span> could be very small, and not in order of <span class="math inline">\(\bar{\rho^l}\)</span> for some <span class="math inline">\(\rho \in \left(0, 1\right)\)</span>, so it’s very difficult to come up with a good <span class="math inline">\(\lambda_l^w\)</span> when <span class="math inline">\(l\)</span> is odd.</p>
<p>Therefore, it might be better to leave the odd orders alone and regularize the even orders only.</p>
</section>
<section id="penalty-l_1-and-l_2" class="level3">
<h3>Penalty: <span class="math inline">\(l_1\)</span> and <span class="math inline">\(l_2\)</span></h3>
<p>Generally speaking, <span class="math inline">\(l_1\)</span> imposes sparsity by shrinking small estimates exactly to zero, which is both good and bad for our case, whereas <span class="math inline">\(l_2\)</span> penalizes large estimates severely but doesn’t force exact sparsity, which could also be good or bad.</p>
<p>We’ll implement both and see what happens.</p>
</section>
<section id="lambda_lw" class="level3">
<h3><span class="math inline">\(\lambda_l^w\)</span></h3>
<p><span class="math inline">\(\lambda_l^w\)</span> is determined to help ensure</p>
<p><span class="math display">\[
\left|w_l^n\right| = \sqrt{l!}\left|w_l\right| \leadsto 
\sqrt{\bar{\rho_{ij}^l}} \  ,
\]</span></p>
<p>Given <span class="math inline">\(\rho \in \left(0, 1\right)\)</span>, for <span class="math inline">\(l_1\)</span> regularization, <span class="math inline">\(\lambda_l^n \sim \lambda / \sqrt{\rho^l}\)</span>; for <span class="math inline">\(l_2\)</span> regularization, <span class="math inline">\(\lambda_l^n \sim \lambda / \rho^l\)</span>.</p>
</section>
<section id="l" class="level3">
<h3><span class="math inline">\(L\)</span></h3>
<p>So far, <span class="math inline">\(L = 9\)</span> has been able to handle all the example we’ve tried. Without constraints or regularization, <span class="math inline">\(L = 9\)</span> is usually too large for cases where, say, <span class="math inline">\(L = 4\)</span> is enough, and a larger than necessary <span class="math inline">\(L\)</span> could lead to numerical instability.</p>
<p>Hence, we’ll experiment with <span class="math inline">\(L = 12\)</span>, assuming it’s enough for all the correlation induced distortions in practice, and assuming the regularization could prevent the optimization from going crazy.</p>
</section>
</section>
<section id="summary" class="level2">
<h2>Summary</h2>
<p>The <span class="math inline">\(w\)</span> optimization problem becomes</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{w, g} &amp; 
-\sum\limits_{j = 1}^n
\log\left(g_j\right) 
+
\text{Regularization}
\\
\text{subject to}
&amp; Aw + a = g \\
&amp; g \geq 0\  ,
\end{array}
\]</span> where <span class="math inline">\(A_{n \times L} = \left[a_1,\ldots, a_L\right]\)</span> and <span class="math inline">\(a\)</span> are computed with normalized Gaussian derivatives and Hermite polynomials.</p>
<p>Let <span class="math inline">\(\lambda &gt; 0\)</span>, <span class="math inline">\(\rho \in \left(0, 1\right)\)</span>, the regularization term has two forms as follows.</p>
<section id="l_1-regularization" class="level3">
<h3><span class="math inline">\(l_1\)</span> regularization</h3>
<p><span class="math display">\[
\begin{array}{l}
\sum\limits_{l = 1}^L\lambda_l^{w^s}\left|w_l^s\right| \  ,\\
\lambda_l^{w^s} = \begin{cases}
0, &amp; l \text{ is odd;} \\
\lambda / \rho^{l/2}, &amp; l \text{ is even.}
\end{cases}
\end{array}
\]</span></p>
</section>
<section id="l_2-regularization" class="level3">
<h3><span class="math inline">\(l_2\)</span> regularization</h3>
<p><span class="math display">\[
\begin{array}{l}
\sum\limits_{l = 1}^L \lambda_l^{w^s}{w_l^s}^2 \  ,\\
\lambda_l^{w^s} = \begin{cases}
0, &amp; l \text{ is odd;} \\
\lambda / \rho^{l}, &amp; l \text{ is even.}
\end{cases}
\end{array}
\]</span></p>
</section>
</section>
<section id="dual-problem-for-l_1-regularization." class="level2">
<h2>Dual problem for <span class="math inline">\(l_1\)</span> regularization.</h2>
<p>The primal form is</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{w, g} &amp; 
-\sum\limits_{j = 1}^n
\log\left(g_j\right) 
+
\sum\limits_{l = 1}^L\lambda_l^{w^s}\left|w_l^s\right|
\\
\text{subject to}
&amp; Aw + a = g \\
&amp; g \geq 0\  ,
\end{array}
\]</span> The dual form is</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{v} &amp; 
-\sum\limits_{j = 1}^n
\log\left(v_j\right) 
+ a^Tv - n
\\
\text{subject to}
&amp; -\lambda \leq A^Tv \leq \lambda \\
&amp; v \geq 0\  .
\end{array}
\]</span></p>
</section>
<section id="dual-problem-for-l_2-regularization." class="level2">
<h2>Dual problem for <span class="math inline">\(l_2\)</span> regularization.</h2>
<p>The primal form is</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{w, g} &amp; 
-\sum\limits_{j = 1}^n
\log\left(g_j\right) 
+
\sum\limits_{l = 1}^L\lambda_l^{w^s}{w_l^s}^2
\\
\text{subject to}
&amp; Aw + a = g \\
&amp; g \geq 0\  ,
\end{array}
\]</span> The dual form is</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{v} &amp; 
-\sum\limits_{j = 1}^n
\log\left(v_j\right) 
+ a^Tv - n
+ \frac14 v^T \left(A \Lambda^{-1} A^T\right)v
\\
\text{subject to}
&amp; a_j^Tv = 0 \    \text{ if }\lambda_j = 0 \  ,\\
&amp; v \geq 0\  ,
\end{array}
\]</span> where <span class="math inline">\(\Lambda = \begin{bmatrix}\lambda_1 &amp; &amp; \\ &amp; \ddots &amp; \\ &amp; &amp; \lambda_L \end{bmatrix}\)</span>, and <span class="math inline">\({\Lambda^{-1}}_{jj} = 0\)</span> when <span class="math inline">\(\lambda_j = 0\)</span>.</p>
</section>
<section id="choosing-lambda-and-rho" class="level2">
<h2>Choosing <span class="math inline">\(\lambda\)</span> and <span class="math inline">\(\rho\)</span></h2>
<p>Let’s start with <span class="math inline">\(\rho = 0.9\)</span> and <span class="math inline">\(\lambda = 0.1\)</span>.</p>
</section>
<section id="session-information" class="level2">
<h2>Session information</h2>
<!-- Insert the session information into the document -->
<pre class="r"><code>sessionInfo()</code></pre>
<pre><code>R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] compiler_3.4.3  backports_1.1.2 magrittr_1.5    rprojroot_1.3-1
 [5] tools_3.4.3     htmltools_0.3.6 yaml_2.1.16     Rcpp_0.12.14   
 [9] stringi_1.1.6   rmarkdown_1.8   knitr_1.17      git2r_0.20.0   
[13] stringr_1.2.0   digest_0.6.13   evaluate_0.10.1</code></pre>
</section>

<hr>
<p>
    This <a href="http://rmarkdown.rstudio.com">R Markdown</a> site was created with <a href="https://github.com/jdblischak/workflowr">workflowr</a>
</p>
<hr>

<!-- To enable disqus, uncomment the section below and provide your disqus_shortname -->

<!-- disqus
  <div id="disqus_thread"></div>
    <script type="text/javascript">
        /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
        var disqus_shortname = 'rmarkdown'; // required: replace example with your forum shortname

        /* * * DON'T EDIT BELOW THIS LINE * * */
        (function() {
            var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
            dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
            (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
        })();
    </script>
    <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
    <a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
-->


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>