<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />


<meta name="author" content="Lei Sun" />

<meta name="date" content="2017-05-07" />

<title>Improvement on Implementation with Rmosek: Primal and Dual</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" />

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">truncash</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
<li>
  <a href="license.html">License</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/LSun/truncash">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

<div class="fluid-row" id="header">



<h1 class="title toc-ignore">Improvement on Implementation with <code>Rmosek</code>: Primal and Dual</h1>
<h4 class="author"><em>Lei Sun</em></h4>
<h4 class="date"><em>2017-05-07</em></h4>

</div>


<!-- The file analysis/chunks.R contains chunks that define default settings
shared across the workflowr files. -->
<!-- Update knitr chunk options -->
<!-- Insert the date the file was last updated -->
<p><strong>Last updated:</strong> 2017-12-21</p>
<!-- Insert the code version (Git commit SHA1) if Git repository exists and R
 package git2r is installed -->
<p><strong>Code version:</strong> 6e42447</p>
<!-- Add your analysis here -->
<section id="introduction" class="level2">
<h2>Introduction</h2>
<p>We are experimenting different ways to improve the performance of <code>Rmosek</code>, using typical data sets of correlated <span class="math inline">\(z\)</span> scores.</p>
<pre class="r"><code>z &lt;- read.table(&quot;../output/z_null_liver_777.txt&quot;)</code></pre>
<pre class="r"><code>sel &lt;- c(32, 327, 355, 483, 778)
ord &lt;- c(4, 9, 9, 4, 4)</code></pre>
<pre class="r"><code>source(&quot;../code/gdash.R&quot;)</code></pre>
</section>
<section id="algorithm-and-variations" class="level2">
<h2>Algorithm and variations</h2>
<p>Recall that our <a href="ash_gd.html#optimization_problem">biconvex optimization problem</a> is as follows.</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{\pi,w} &amp; -\sum\limits_{j = 1}^n\log\left(\sum\limits_{k = 1}^K\sum\limits_{l=1}^L\pi_k w_l f_{jkl} + \sum\limits_{k = 1}^K\pi_kf_{jk0}\right) - \sum\limits_{k = 1}^K\left(\lambda_k^\pi - 1\right)\log\pi_k + \sum\limits_{l = 1}^L\lambda_l^w\phi\left(\left|w_l\right|\right)
\\
\text{subject to} &amp; \sum\limits_{k = 1}^K\pi_k = 1\\
&amp; \sum\limits_{l=1}^L w_l \varphi^{(l)}\left(z\right) + \varphi\left(z\right) \geq 0, \forall z\in \mathbb{R}\\
&amp; w_l \text{ decay reasonably fast,}
\end{array}
\]</span> where <span class="math inline">\(- \sum\limits_{k = 1}^K\left(\lambda_k^\pi - 1\right)\log\pi_k\)</span> and <span class="math inline">\(+ \sum\limits_{l = 1}^L\lambda_l^w\phi\left(\left|w_l\right|\right)\)</span> are to regularize <span class="math inline">\(\pi_k\)</span> and <span class="math inline">\(w_l\)</span>, respectively.</p>
<p>This problem can be solved iteratively. Starting with an initial value, each step two convex optimization problems are solved.</p>
<p>With a given <span class="math inline">\(\hat w\)</span>, <span class="math inline">\(\hat\pi\)</span> is solved by</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{\pi} &amp; -\sum\limits_{j = 1}^n\log\left(\sum\limits_{k = 1}^K\pi_k \left(\sum\limits_{l=1}^L \hat w_l f_{jkl} + f_{jk0}\right)\right) - \sum\limits_{k = 1}^K\left(\lambda_k^\pi - 1\right)\log\pi_k\\
\text{subject to} &amp; \sum\limits_{k = 1}^K\pi_k = 1 \  ,\\
\end{array}
\]</span></p>
<p>which is readily available with functions in <code>cvxr</code>.</p>
<p>Meanwhile, with a given <span class="math inline">\(\hat\pi\)</span>, the optimization problem to obtain <span class="math inline">\(\hat w\)</span> becomes</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{w} &amp; -\sum\limits_{j = 1}^n\log\left(\sum\limits_{l=1}^Lw_l\left(\sum\limits_{k = 1}^K\hat\pi_k  f_{jkl}\right) + \sum\limits_{k = 1}^K\hat\pi_kf_{jk0}\right) + 
\sum\limits_{l = 1}^L\lambda_l^w
\phi
\left(\left|w_l\right|\right)
\\
\text{subject to} &amp; \sum\limits_{l=1}^L w_l \varphi^{(l)}\left(z\right) + \varphi\left(z\right) \geq 0, \forall z\in \mathbb{R}\\
&amp; w_l \text{ decay reasonably fast.}
\end{array}
\]</span> The two constraints are important to prevent <a href="gaussian_derivatives_3.html">numerical instability</a>. Yet they are not readily manifested as convex. Ideally, the regularization <span class="math inline">\(\sum\limits_{l = 1}^L\lambda_l^w\phi\left(\left|w_l\right|\right)\)</span> would be able to capture the essence of these two constaints, and at the same time maintain the convexity. Different ideas will be explored.</p>
<p>In this part, we’ll mainly work on the “basic form” of the <span class="math inline">\(w\)</span> optimization problem; that is, the optimization problem without regularization <span class="math inline">\(\sum\limits_{l = 1}^L\lambda_l^w\phi\left(\left|w_l\right|\right)\)</span>.</p>
<p>In the following, we’ll take a look at the basic form in its primal and dual formulations, optimized by <code>w.mosek()</code> and <code>w.mosek.primal</code> functions. First, they are applied to the correlated null, and their performance can be compared with <a href="gaussian_derivatives_2.html">the previous implementation</a> by <code>cvxr</code>. Then, they are applied to the simulated non-null data sets, and the results are compared with those obtained by <code>ASH</code>, as well as the truth.</p>
</section>
<section id="basic-form-primal" class="level2">
<h2>Basic form: primal</h2>
<p>In its most basic form, the <span class="math inline">\(w\)</span> estimation problem is as follows.</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{w} &amp; 
-\sum\limits_{j = 1}^n
\log\left(\sum\limits_{l=1}^Lw_l a_{jl} + a_{j0}\right) 
\\
\text{subject to} &amp; \sum\limits_{l=1}^Lw_l a_{jl} + a_{j0} \geq 0, \forall j \  .\\
\end{array}
\]</span> Let the matrix <span class="math inline">\(A = \left[a_{jl}\right]\)</span>, the vector <span class="math inline">\(a = \left[a_{j0}\right]\)</span>, and we have its equivalent form,</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{w, g} &amp; 
-\sum\limits_{j = 1}^n
\log\left(g_j\right) 
\\
\text{subject to}
&amp; Aw + a = g \\
&amp; g \geq 0\  .
\end{array}
\]</span></p>
<p>This problem can be coded by <code>Rmosek</code> as a “separable convex optimization” (SCOPT) problem.</p>
<section id="correlated-null" class="level3">
<h3>Correlated null</h3>
<pre><code>Fitted w: -0.03653526 0.1999284 0.01047094 -0.02012681 
Time Cost in Seconds: 7.945 2.884 13.152 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek primal fitting plotting-1.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Fitted w: 0.03394291 0.7345604 -0.1532514 0.1883912 -0.05504895 0.02297176 -0.006908406 0.001216017 -0.0003147927 
Time Cost in Seconds: 6.902 1.98 6.669 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek primal fitting plotting-2.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Fitted w: 0.02262546 0.9213963 0.02180428 0.1760983 -0.01379674 0.003968132 -0.004904973 -0.0006085249 -0.0002990675 
Time Cost in Seconds: 5.375 1.932 6.116 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek primal fitting plotting-3.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Fitted w: 0.04540484 -0.1275978 0.009150985 0.01004515 
Time Cost in Seconds: 19.294 2.066 14.959 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek primal fitting plotting-4.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Fitted w: 0.005943196 0.3980709 -0.009222458 0.02630697 
Time Cost in Seconds: 6.636 1.954 6.815 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek primal fitting plotting-5.png" width="672" style="display: block; margin: auto;" /></p>
</section>
<section id="signal-correlated-error" class="level3">
<h3>Signal <span class="math inline">\(+\)</span> correlated error</h3>
<pre><code>Converged: FALSE 
Number of Iteration: 101 
Time Cost in Seconds: 2181.997 255.051 1644.499 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash primal signal plotting-1.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Converged: FALSE 
Number of Iteration: 101 
Time Cost in Seconds: 2634.559 296.365 1970.452 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash primal signal plotting-2.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Converged: TRUE 
Number of Iteration: 45 
Time Cost in Seconds: 553.188 127.588 540.733 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash primal signal plotting-3.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Converged: TRUE 
Number of Iteration: 49 
Time Cost in Seconds: 781.062 126.839 622.938 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash primal signal plotting-4.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Converged: FALSE 
Number of Iteration: 101 
Time Cost in Seconds: 2161.426 247.628 1565.216 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash primal signal plotting-5.png" width="672" style="display: block; margin: auto;" /></p>
</section>
</section>
<section id="basic-form-dual" class="level2">
<h2>Basic form: dual</h2>
<p>The primal <span class="math inline">\(w\)</span> optimization problem has <span class="math inline">\(n + L\)</span> variables and <span class="math inline">\(n\)</span> constraints. When <span class="math inline">\(n\)</span> is large, such as <span class="math inline">\(n = 10K\)</span> in our simulations, the time cost is usually substantial. As the authors of <code>REBayes</code> pointed out, it’s better to work on the dual form, which is</p>
<p><span class="math display">\[
\begin{array}{rl}
\min\limits_{v} &amp; 
-\sum\limits_{j = 1}^n
\log\left(v_j\right) + a^Tv
\\
\text{subject to}
&amp; A^Tv = 0 \\
&amp; v \geq 0\  .
\end{array}
\]</span> The dual form has <span class="math inline">\(n\)</span> variables and more importantly, only <span class="math inline">\(L\)</span> constraints. As <span class="math inline">\(L \ll n\)</span>, the dual form is far more computationally efficient.</p>
<p><code>Rmosek</code> provides optimal solutions to both primal and dual variables, so <span class="math inline">\(\hat w\)</span> is readily available when working on <span class="math inline">\(v\)</span> optimization. But we need to be careful on which dual variables to use, such as <code>$sol$itr$suc</code>, <code>$sol$itr$slc</code>, or others.</p>
<section id="correlated-null-1" class="level3">
<h3>Correlated null</h3>
<pre><code>Fitted w: -0.03642797 0.1971637 0.01074601 -0.02181494 
Time Cost in Seconds: 0.485 0.049 0.388 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek dual fitting plotting-1.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Fitted w: 0.03361434 0.7339189 -0.1544144 0.1875235 -0.0560049 0.02267003 -0.007151714 0.001187682 -0.0003321398 
Time Cost in Seconds: 0.524 0.009 0.372 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek dual fitting plotting-2.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Fitted w: 0.02273596 0.9206369 0.02224234 0.1750273 -0.01339113 0.003607418 -0.004794795 -0.0006395078 -0.0002908422 
Time Cost in Seconds: 0.529 0.008 0.375 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek dual fitting plotting-3.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Fitted w: 0.04544396 -0.1272823 0.008811108 0.009915311 
Time Cost in Seconds: 0.448 0.006 0.322 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek dual fitting plotting-4.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Fitted w: 0.006084177 0.3976595 -0.009103231 0.02610567 
Time Cost in Seconds: 0.489 0.005 0.313 </code></pre>
<p><img src="figure/mosek_reg.rmd/Rmosek dual fitting plotting-5.png" width="672" style="display: block; margin: auto;" /></p>
</section>
<section id="signal-correlated-error-1" class="level3">
<h3>Signal <span class="math inline">\(+\)</span> correlated error</h3>
<pre><code>Converged: TRUE 
Number of Iteration: 21 
Time Cost in Seconds: 46.978 2.71 29.017 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash dual signal plotting-1.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Converged: TRUE 
Number of Iteration: 21 
Time Cost in Seconds: 45.406 5.343 52.01 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash dual signal plotting-2.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Converged: TRUE 
Number of Iteration: 16 
Time Cost in Seconds: 34.293 3.519 26.79 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash dual signal plotting-3.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Converged: TRUE 
Number of Iteration: 31 
Time Cost in Seconds: 64.198 3.902 39.897 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash dual signal plotting-4.png" width="672" style="display: block; margin: auto;" /></p>
<pre><code>Converged: TRUE 
Number of Iteration: 12 
Time Cost in Seconds: 27.247 1.446 15.392 </code></pre>
<p><img src="figure/mosek_reg.rmd/gdash dual signal plotting-5.png" width="672" style="display: block; margin: auto;" /></p>
</section>
</section>
<section id="conclusion" class="level2">
<h2>Conclusion</h2>
<p>Implementation by <code>Rmosek</code> can fully reproduce the results obtained by <code>cvxr</code>. Moreover, the dual form gives the same results as the primal dorm does, with only a fraction of time.</p>
<p>It seems hopeful that we’ll find a key to successfully tackle correlation in simultaneous inference, which has eluded Prof. Brad Efron for more than a decade.</p>
</section>
<section id="session-information" class="level2">
<h2>Session information</h2>
<!-- Insert the session information into the document -->
<pre class="r"><code>sessionInfo()</code></pre>
<pre><code>R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] Rmosek_8.0.69     PolynomF_1.0-1    CVXR_0.94-4       REBayes_1.2      
[5] Matrix_1.2-12     SQUAREM_2017.10-1 EQL_1.0-0         ttutils_1.0-1    

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.14      knitr_1.17        magrittr_1.5     
 [4] bit_1.1-12        lattice_0.20-35   R6_2.2.2         
 [7] stringr_1.2.0     tools_3.4.3       grid_3.4.3       
[10] R.oo_1.21.0       git2r_0.20.0      scs_1.1-1        
[13] htmltools_0.3.6   bit64_0.9-7       yaml_2.1.16      
[16] rprojroot_1.3-1   digest_0.6.13     gmp_0.5-13.1     
[19] ECOSolveR_0.3-2   R.utils_2.6.0     evaluate_0.10.1  
[22] rmarkdown_1.8     stringi_1.1.6     compiler_3.4.3   
[25] Rmpfr_0.6-1       backports_1.1.2   R.methodsS3_1.7.1</code></pre>
</section>

<hr>
<p>
    This <a href="http://rmarkdown.rstudio.com">R Markdown</a> site was created with <a href="https://github.com/jdblischak/workflowr">workflowr</a>
</p>
<hr>

<!-- To enable disqus, uncomment the section below and provide your disqus_shortname -->

<!-- disqus
  <div id="disqus_thread"></div>
    <script type="text/javascript">
        /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
        var disqus_shortname = 'rmarkdown'; // required: replace example with your forum shortname

        /* * * DON'T EDIT BELOW THIS LINE * * */
        (function() {
            var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
            dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
            (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
        })();
    </script>
    <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
    <a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
-->


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>