Last updated: 2018-10-02
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180501)
The command set.seed(20180501)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 4f4e8fc
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Untracked files:
Untracked: analysis/literature.Rmd
Unstaged changes:
Modified: analysis/index.Rmd
Modified: analysis/sigma.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
We see that smash.gaus
still gives similar mean estimations given inaccurate variance(to ones given accurate variance) in previous section. We now try some more examples on this.
library(smashr)
n = 2^9
t = 1:n/n
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) +
1.5 * exp(-2000 * (x - 0.33)^2) +
3 * exp(-8000 * (x - 0.47)^2) +
2.25 * exp(-16000 * (x - 0.69)^2) +
0.5 * exp(-32000 * (x - 0.83)^2))
mu.s = spike.f(t)
# Scale the signal to be between 0.2 and 0.8.
mu.t = (1 + mu.s)/5
plot(mu.t, type = "l",main='main function')
Version | Author | Date |
---|---|---|
e7afb4d | Dongyue Xie | 2018-10-02 |
# Create the baseline variance function. (The function V2 from Cai &
# Wang 2008 is used here.)
var.fn = (1e-04 + 4 * (exp(-550 * (t - 0.2)^2) +
exp(-200 * (t - 0.5)^2) + exp(-950 * (t - 0.8)^2)))/1.35+1
#plot(var.fn, type = "l")
# Set the signal-to-noise ratio.
rsnr = sqrt(3)
sigma.t = sqrt(var.fn)/mean(sqrt(var.fn)) * sd(mu.t)/rsnr^2
set.seed(12345)
y=mu.t+rnorm(n,0,sigma.t)
plot(y,col='grey80',main='n=512,SNR=3')
lines(smash.gaus(y))
lines(smash.gaus(y,mean(sigma.t)),col=2)
lines(smash.gaus(y,sigma.t),col=3)
lines(mu.t,col='grey80')
legend('topleft',c('smashu','smash.mean.sigma','smash.true.sigma','true mean'),col=c(1,2,3,'grey80'),lty=c(1,1,1,1))
Version | Author | Date |
---|---|---|
aacfc46 | Dongyue Xie | 2018-10-02 |
plot(sqrt(smash.gaus(y,joint=T)$var.res),type='l',ylim=c(0.02,0.05),main='sigma')
lines(rep(mean(sigma.t),n),col=2)
lines(sigma.t,col=3)
Version | Author | Date |
---|---|---|
aacfc46 | Dongyue Xie | 2018-10-02 |
mean(sigma.t)
[1] 0.03185823
mean(sqrt(smash.gaus(y,joint=T)$var.res))
[1] 0.02924347
Decrease n to 256:
n = 64
t = 1:n/n
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) +
1.5 * exp(-2000 * (x - 0.33)^2) +
3 * exp(-8000 * (x - 0.47)^2) +
2.25 * exp(-16000 * (x - 0.69)^2) +
0.5 * exp(-32000 * (x - 0.83)^2))
mu.s = spike.f(t)
# Scale the signal to be between 0.2 and 0.8.
mu.t = (1 + mu.s)/5
#plot(mu.t, type = "l",main='main function')
# Create the baseline variance function. (The function V2 from Cai &
# Wang 2008 is used here.)
var.fn = (1e-04 + 4 * (exp(-550 * (t - 0.2)^2) +
exp(-200 * (t - 0.5)^2) + exp(-950 * (t - 0.8)^2)))/1.35+1
#plot(var.fn, type = "l")
# Set the signal-to-noise ratio.
rsnr = sqrt(3)
sigma.t = sqrt(var.fn)/mean(sqrt(var.fn)) * sd(mu.t)/rsnr^2
set.seed(12345)
y=mu.t+rnorm(n,0,sigma.t)
plot(y,col='grey80',main='n=256,SNR=3')
lines(smash.gaus(y))
lines(smash.gaus(y,mean(sigma.t)),col=2)
lines(smash.gaus(y,sigma.t),col=3)
lines(mu.t,col='grey80')
legend('topleft',c('smashu','smash.mean.sigma','smash.true.sigma','true mean'),col=c(1,2,3,'grey80'),lty=c(1,1,1,1))
Version | Author | Date |
---|---|---|
e7afb4d | Dongyue Xie | 2018-10-02 |
plot(sqrt(smash.gaus(y,joint=T)$var.res),type='l',ylim=c(0.01,0.08),main='sigma')
lines(rep(mean(sigma.t),n),col=2)
lines(sigma.t,col=3)
Version | Author | Date |
---|---|---|
e7afb4d | Dongyue Xie | 2018-10-02 |
mean(sigma.t)
[1] 0.03423118
mean(sqrt(smash.gaus(y,joint=T)$var.res))
[1] 0.07396342
Decrease n to 64:
n = 64
t = 1:n/n
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) +
1.5 * exp(-2000 * (x - 0.33)^2) +
3 * exp(-8000 * (x - 0.47)^2) +
2.25 * exp(-16000 * (x - 0.69)^2) +
0.5 * exp(-32000 * (x - 0.83)^2))
mu.s = spike.f(t)
# Scale the signal to be between 0.2 and 0.8.
mu.t = (1 + mu.s)/5
#plot(mu.t, type = "l",main='main function')
# Create the baseline variance function. (The function V2 from Cai &
# Wang 2008 is used here.)
var.fn = (1e-04 + 4 * (exp(-550 * (t - 0.2)^2) +
exp(-200 * (t - 0.5)^2) + exp(-950 * (t - 0.8)^2)))/1.35+1
#plot(var.fn, type = "l")
# Set the signal-to-noise ratio.
rsnr = sqrt(3)
sigma.t = sqrt(var.fn)/mean(sqrt(var.fn)) * sd(mu.t)/rsnr^2
set.seed(12345)
y=mu.t+rnorm(n,0,sigma.t)
plot(y,col='grey80',main='n=64,SNR=3')
lines(smash.gaus(y))
lines(smash.gaus(y,mean(sigma.t)),col=2)
lines(smash.gaus(y,sigma.t),col=3)
lines(mu.t,col='grey80')
legend('topleft',c('smashu','smash.mean.sigma','smash.true.sigma','true mean'),col=c(1,2,3,'grey80'),lty=c(1,1,1,1))
Version | Author | Date |
---|---|---|
e7afb4d | Dongyue Xie | 2018-10-02 |
plot(sqrt(smash.gaus(y,joint=T)$var.res),type='l',ylim=c(0.01,0.08),main='sigma')
lines(rep(mean(sigma.t),n),col=2)
lines(sigma.t,col=3)
Version | Author | Date |
---|---|---|
e7afb4d | Dongyue Xie | 2018-10-02 |
mean(sigma.t)
[1] 0.03423118
mean(sqrt(smash.gaus(y,joint=T)$var.res))
[1] 0.07396342
Decrease SNR:
n = 512
t = 1:n/n
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) +
1.5 * exp(-2000 * (x - 0.33)^2) +
3 * exp(-8000 * (x - 0.47)^2) +
2.25 * exp(-16000 * (x - 0.69)^2) +
0.5 * exp(-32000 * (x - 0.83)^2))
mu.s = spike.f(t)
# Scale the signal to be between 0.2 and 0.8.
mu.t = (1 + mu.s)/5
#plot(mu.t, type = "l",main='main function')
# Create the baseline variance function. (The function V2 from Cai &
# Wang 2008 is used here.)
var.fn = (1e-04 + 4 * (exp(-550 * (t - 0.2)^2) +
exp(-200 * (t - 0.5)^2) + exp(-950 * (t - 0.8)^2)))/1.35+1
#plot(var.fn, type = "l")
# Set the signal-to-noise ratio.
rsnr = sqrt(1)
sigma.t = sqrt(var.fn)/mean(sqrt(var.fn)) * sd(mu.t)/rsnr^2
set.seed(12345)
y=mu.t+rnorm(n,0,sigma.t)
plot(y,col='grey80',main='n=512,SNR=1')
lines(smash.gaus(y))
lines(smash.gaus(y,mean(sigma.t)),col=2)
lines(smash.gaus(y,sigma.t),col=3)
lines(mu.t,col='grey80')
legend('topleft',c('smashu','smash.mean.sigma','smash.true.sigma','true mean'),col=c(1,2,3,'grey80'),lty=c(1,1,1,1))
plot(sqrt(smash.gaus(y,joint=T)$var.res),type='l',ylim=c(0.07,0.15),main='sigma')
lines(rep(mean(sigma.t),n),col=2)
lines(sigma.t,col=3)
mean(sigma.t)
[1] 0.0955747
mean(sqrt(smash.gaus(y,joint=T)$var.res))
[1] 0.09278895
smash.gaus
is more sensitive to the scale of variance instead of the shape of variance.smash.gaus
can still give similar mean estimation.sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] smashr_1.2-0
loaded via a namespace (and not attached):
[1] Rcpp_0.12.18 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] ashr_2.2-7 stringr_1.3.1 caTools_1.17.1.1
[16] tools_3.5.1 parallel_3.5.1 grid_3.5.1
[19] data.table_1.11.6 R.oo_1.22.0 git2r_0.23.0
[22] iterators_1.0.10 htmltools_0.3.6 assertthat_0.2.0
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.17
[28] Matrix_1.2-14 bitops_1.0-6 codetools_0.2-15
[31] R.utils_2.7.0 evaluate_0.11 rmarkdown_1.10
[34] wavethresh_4.6.8 stringi_1.2.4 compiler_3.5.1
[37] Rmosek_8.0.69 backports_1.1.2 R.methodsS3_1.7.1
[40] truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1