Last updated: 2018-10-02

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180501)

    The command set.seed(20180501) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: ba36f40

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    analysis/figure/
    
    Untracked files:
        Untracked:  analysis/literature.Rmd
    
    Unstaged changes:
        Modified:   analysis/index.Rmd
        Modified:   analysis/sigma.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd ba36f40 Dongyue Xie 2018-10-02 smash robust


We see that smash.gaus still gives similar mean estimations given inaccurate variance(to ones given accurate variance) in previous section. We now try some more examples on this.

spike mean

library(smashr)
n = 2^9
t = 1:n/n
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) +
            1.5  * exp(-2000 * (x - 0.33)^2) +
        3    * exp(-8000 * (x - 0.47)^2) + 
            2.25 * exp(-16000 * (x - 0.69)^2) +
        0.5  * exp(-32000 * (x - 0.83)^2))
mu.s = spike.f(t)

# Scale the signal to be between 0.2 and 0.8.
mu.t = (1 + mu.s)/5
plot(mu.t, type = "l",main='main function')

# Create the baseline variance function. (The function V2 from Cai &
# Wang 2008 is used here.)
var.fn = (1e-04 + 4 * (exp(-550 * (t - 0.2)^2) +
  exp(-200 * (t - 0.5)^2) + exp(-950 * (t - 0.8)^2)))/1.35+1
#plot(var.fn, type = "l")

# Set the signal-to-noise ratio.
rsnr = sqrt(3)
sigma.t = sqrt(var.fn)/mean(sqrt(var.fn)) * sd(mu.t)/rsnr^2

set.seed(12345)
y=mu.t+rnorm(n,0,sigma.t)
plot(y,col='grey80',main='n=512,SNR=3')
lines(smash.gaus(y))
lines(smash.gaus(y,mean(sigma.t)),col=2)
lines(smash.gaus(y,sigma.t),col=3)
lines(mu.t,col='grey80')
legend('topleft',c('smashu','smash.mean.sigma','smash.true.sigma','true mean'),col=c(1,2,3,'grey80'),lty=c(1,1,1,1))

plot(sqrt(smash.gaus(y,joint=T)$var.res),type='l',ylim=c(0.02,0.05),main='sigma')
lines(rep(mean(sigma.t),n),col=2)
lines(sigma.t,col=3)

mean(sigma.t)
mean(sqrt(smash.gaus(y,joint=T)$var.res))

Decrease n:

n = 64
t = 1:n/n
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) +
            1.5  * exp(-2000 * (x - 0.33)^2) +
        3    * exp(-8000 * (x - 0.47)^2) + 
            2.25 * exp(-16000 * (x - 0.69)^2) +
        0.5  * exp(-32000 * (x - 0.83)^2))
mu.s = spike.f(t)

# Scale the signal to be between 0.2 and 0.8.
mu.t = (1 + mu.s)/5
#plot(mu.t, type = "l",main='main function')

# Create the baseline variance function. (The function V2 from Cai &
# Wang 2008 is used here.)
var.fn = (1e-04 + 4 * (exp(-550 * (t - 0.2)^2) +
  exp(-200 * (t - 0.5)^2) + exp(-950 * (t - 0.8)^2)))/1.35+1
#plot(var.fn, type = "l")

# Set the signal-to-noise ratio.
rsnr = sqrt(3)
sigma.t = sqrt(var.fn)/mean(sqrt(var.fn)) * sd(mu.t)/rsnr^2

set.seed(12345)
y=mu.t+rnorm(n,0,sigma.t)
plot(y,col='grey80',main='n=64,SNR=3')
lines(smash.gaus(y))
lines(smash.gaus(y,mean(sigma.t)),col=2)
lines(smash.gaus(y,sigma.t),col=3)
lines(mu.t,col='grey80')
legend('topleft',c('smashu','smash.mean.sigma','smash.true.sigma','true mean'),col=c(1,2,3,'grey80'),lty=c(1,1,1,1))

plot(sqrt(smash.gaus(y,joint=T)$var.res),type='l',ylim=c(0.01,0.08),main='sigma')
lines(rep(mean(sigma.t),n),col=2)
lines(sigma.t,col=3)

mean(sigma.t)
[1] 0.03423118
mean(sqrt(smash.gaus(y,joint=T)$var.res))
[1] 0.07396342

Decrease SNR:

n = 512
t = 1:n/n
spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) +
            1.5  * exp(-2000 * (x - 0.33)^2) +
        3    * exp(-8000 * (x - 0.47)^2) + 
            2.25 * exp(-16000 * (x - 0.69)^2) +
        0.5  * exp(-32000 * (x - 0.83)^2))
mu.s = spike.f(t)

# Scale the signal to be between 0.2 and 0.8.
mu.t = (1 + mu.s)/5
#plot(mu.t, type = "l",main='main function')

# Create the baseline variance function. (The function V2 from Cai &
# Wang 2008 is used here.)
var.fn = (1e-04 + 4 * (exp(-550 * (t - 0.2)^2) +
  exp(-200 * (t - 0.5)^2) + exp(-950 * (t - 0.8)^2)))/1.35+1
#plot(var.fn, type = "l")

# Set the signal-to-noise ratio.
rsnr = sqrt(1)
sigma.t = sqrt(var.fn)/mean(sqrt(var.fn)) * sd(mu.t)/rsnr^2

set.seed(12345)
y=mu.t+rnorm(n,0,sigma.t)
plot(y,col='grey80',main='n=512,SNR=1')
lines(smash.gaus(y))
lines(smash.gaus(y,mean(sigma.t)),col=2)
lines(smash.gaus(y,sigma.t),col=3)
lines(mu.t,col='grey80')
legend('topleft',c('smashu','smash.mean.sigma','smash.true.sigma','true mean'),col=c(1,2,3,'grey80'),lty=c(1,1,1,1))

plot(sqrt(smash.gaus(y,joint=T)$var.res),type='l',ylim=c(0.07,0.15),main='sigma')
lines(rep(mean(sigma.t),n),col=2)
lines(sigma.t,col=3)

mean(sigma.t)
[1] 0.0955747
mean(sqrt(smash.gaus(y,joint=T)$var.res))
[1] 0.09278895

Summary

  1. smash.gaus is sensitive to the scale of variance instead of the shape of variance.
  2. As long as n is large enough so that smash can give good estimation of scale of variance and roughly satifactory shape, then smash.gaus can still give similar mean estimation.

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] smashr_1.2-0

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      knitr_1.20        whisker_0.3-2    
 [4] magrittr_1.5      workflowr_1.1.1   REBayes_1.3      
 [7] MASS_7.3-50       pscl_1.5.2        doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35   foreach_1.4.4    
[13] ashr_2.2-7        stringr_1.3.1     caTools_1.17.1.1 
[16] tools_3.5.1       parallel_3.5.1    grid_3.5.1       
[19] data.table_1.11.6 R.oo_1.22.0       git2r_0.23.0     
[22] iterators_1.0.10  htmltools_0.3.6   assertthat_0.2.0 
[25] yaml_2.2.0        rprojroot_1.3-2   digest_0.6.17    
[28] Matrix_1.2-14     bitops_1.0-6      codetools_0.2-15 
[31] R.utils_2.7.0     evaluate_0.11     rmarkdown_1.10   
[34] wavethresh_4.6.8  stringi_1.2.4     compiler_3.5.1   
[37] Rmosek_8.0.69     backports_1.1.2   R.methodsS3_1.7.1
[40] truncnorm_1.0-8  

This reproducible R Markdown analysis was created with workflowr 1.1.1