Last updated: 2018-08-03

library(mashr)
Loading required package: ashr

In my simple simulation, the current approach underestimate the null correlation. We need to find better positive definite estimator. We could try to estimate the pairwise correlation, ie. mle of \(\sum{\pi_{lk} N_{2}(0, V + w_{l}U_{k})}\) for any pair of conditions.

Simple simulation in \(R^2\) to illustrate the problem: \[ \hat{\beta}|\beta \sim N_{2}(\hat{\beta}; \beta, \left(\begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix}\right)) \]

\[ \beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right)) \]

\(\Rightarrow\) \[ \hat{\beta} \sim \frac{1}{4}N_{2}(0, \left( \begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix} \right)) + \frac{1}{4}N_{2}(0, \left( \begin{matrix} 2 & 0.5 \\ 0.5 & 1 \end{matrix} \right)) + \frac{1}{4}N_{2}(0, \left( \begin{matrix} 1 & 0.5 \\ 0.5 & 2 \end{matrix} \right)) + \frac{1}{4}N_{2}(0, \left( \begin{matrix} 2 & 1.5 \\ 1.5 & 2 \end{matrix} \right)) \]

set.seed(1)
n = 500; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
beta.0 = beta.1 = beta.2 = beta.3 = matrix(0,n,p)
beta.1[,1] = rnorm(n)
beta.2[,2] = rnorm(n)
beta.3[,1] = rnorm(n)
beta.3[,2] = beta.3[,1]
Beta = rbind(beta.0, beta.1, beta.2, beta.3)
E = MASS::mvrnorm(n*4, rep(0, p), Sigma)
Bhat = Beta + E
SE = 1

Using truncated empirical correlation

mash.data = mash_set_data(Bhat, SE)
Vhat = estimate_null_correlation(mash.data, apply_lower_bound = FALSE)
Vhat
          [,1]      [,2]
[1,] 1.0000000 0.3877533
[2,] 0.3877533 1.0000000

We underestimate the correlation among measurement errors.

Let’s see the result from mash

# Use underestimate cor
mash.data.V = mash_set_data(Bhat, SE, V=Vhat)
U.c = cov_canonical(mash.data.V)
m.V = mash(mash.data.V, U.c)
 - Computing 2000 x 106 likelihood matrix.
 - Likelihood calculations took 0.02 seconds.
 - Fitting model with 106 mixture components.
 - Model fitting took 0.23 seconds.
 - Computing posterior matrices.
 - Computation allocated took 0.02 seconds.
barplot(get_estimated_pi(m.V), las=2, cex.names = 0.7)

The loglikelihood is

get_loglik(m.V)
[1] -6299.462

Let’s see what will happen if we overestimate correlation

# If we overestimate cor
V.o = matrix(c(1,0.75,0.75,1),2,2)
mash.data.Vo = mash_set_data(Bhat, SE, V=V.o)
m.Vo = mash(mash.data.Vo, U.c)
 - Computing 2000 x 106 likelihood matrix.
 - Likelihood calculations took 0.01 seconds.
 - Fitting model with 106 mixture components.
 - Model fitting took 0.15 seconds.
 - Computing posterior matrices.
 - Computation allocated took 0.01 seconds.
barplot(get_estimated_pi(m.Vo), las=2, cex.names = 0.7)

The loglikelihood is

get_loglik(m.Vo)
[1] -6295.582

What will happen if we have correct correlation

# With correct cor
mash.data.correct = mash_set_data(Bhat, SE, V=Sigma)
m.correct = mash(mash.data.correct, U.c)
 - Computing 2000 x 106 likelihood matrix.
 - Likelihood calculations took 0.02 seconds.
 - Fitting model with 106 mixture components.
 - Model fitting took 0.17 seconds.
 - Computing posterior matrices.
 - Computation allocated took 0.00 seconds.
barplot(get_estimated_pi(m.correct), las=2, cex.names = 0.7)

The loglikelihood is

get_loglik(m.correct)
[1] -6297.108

Sol1: mash 1 by 1

We run ash for each condition, and estimate correlation matrix based on the non-significant genes. The estimated cor is closer to the truth. It overestimates the cor.

m.1by1 = mash_1by1(mash.data)
strong = get_significant_results(m.1by1)
V.mash = cor(Bhat[-strong,])
V.mash
         [,1]     [,2]
[1,] 1.000000 0.519426
[2,] 0.519426 1.000000
mash.data.1by1 = mash_set_data(Bhat, SE, V=V.mash)
m.V1by1 = mash(mash.data.1by1, U.c)
 - Computing 2000 x 106 likelihood matrix.
 - Likelihood calculations took 0.02 seconds.
 - Fitting model with 106 mixture components.
 - Model fitting took 0.16 seconds.
 - Computing posterior matrices.
 - Computation allocated took 0.00 seconds.
barplot(get_estimated_pi(m.V1by1), las=2, cex.names = 0.7)

The loglikelihood is

get_loglik(m.V1by1)
[1] -6296.748

Sol2: MLE

K=1

Suppose a simple extreme case \[ \left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right)| \left(\begin{matrix} x \\ y \end{matrix} \right) \sim N_{2}(\left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right); \left(\begin{matrix} x \\ y \end{matrix} \right), \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix}\right)) \] \[ \left(\begin{matrix} x \\ y \end{matrix} \right) \sim \delta_{0} \] \(\Rightarrow\) \[ \left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right) \sim N_{2}(\left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right); \left(\begin{matrix} 0 \\ 0 \end{matrix} \right), \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix}\right)) \]

\[ f(\hat{x},\hat{y}) = \prod_{i=1}^{n} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp \{-\frac{1}{2(1-\rho^2)}\left[ \hat{x}_{i}^2 + \hat{y}_{i}^2 - 2\rho \hat{x}_{i}\hat{y}_{i}\right] \} \] The MLE of \(\rho\): \[ \begin{align*} l(\rho) &= -\frac{n}{2}\log(1-\rho^2) - \frac{1}{2(1-\rho^2)}\left( \sum_{i=1}^{n} x_{i}^2 + y_{i}^2 - 2\rho x_{i}y_{i} \right) \\ l(\rho)' &= \frac{n\rho}{1-\rho^2} - \frac{\rho}{(1-\rho^2)^2} \sum_{i=1}^{n} (x_{i}^2 + y_{i}^2) + \frac{\rho^2 + 1}{(1-\rho^2)^2} \sum_{i=1}^{n} x_{i}y_{i} = 0 \\ &= \rho^{3} - \rho^{2}\frac{1}{n}\sum_{i=1}^{n} x_{i}y_{i} - \left( 1- \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} + y_{i}^{2} \right) \rho - \frac{1}{n}\sum_{i=1}^{n} x_{i}y_{i} = 0 \\ l(\rho)'' &= \frac{n(\rho^2+1)}{(1-\rho^2)^2} - \frac{1}{2}\left( \frac{8\rho^2}{(1-\rho^2)^{3}} + \frac{2}{(1-\rho^2)^2} \right)\sum_{i=1}^{n}(x_{i}^2 + y_{i}^2) + \{ \left( \frac{8\rho^2}{(1-\rho^2)^{3}} + \frac{2}{(1-\rho^2)^2} \right)\rho + \frac{4\rho}{(1-\rho^2)^2} \}\sum_{i=1}^{n}x_{i}y_{i} \end{align*} \]

The log likelihood is not a concave function in general. The score function has either 1 or 3 real solutions.

Kendall and Stuart (1979) noted that at least one of the roots is real and lies in the interval [−1, 1]. However, it is possible that all three roots are real and in the admissible interval, in which case the likelihood can be evaluated at each root to determine the true maximum likelihood estimate.

I simulate the data with \(\rho=0.75\) and plot the loglikelihood function:

\(l(\rho)'\) has one real solution

polyroot(c(- sum(z.null[,1]*z.null[,2]),  - (n - sum(z.null[,1]^2 + z.null[,2]^2)), - sum(z.null[,1]*z.null[,2]), n))
[1] 0.7331235-0.000000i 0.0340672+1.044881i 0.0340672-1.044881i

In general

The general derivation is in estimate correlation mle

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] mashr_0.2-9 ashr_2.2-10

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      knitr_1.20        magrittr_1.5     
 [4] REBayes_1.3       MASS_7.3-50       doParallel_1.0.11
 [7] pscl_1.5.2        SQUAREM_2017.10-1 lattice_0.20-35  
[10] foreach_1.4.4     plyr_1.8.4        stringr_1.3.1    
[13] tools_3.5.1       parallel_3.5.1    grid_3.5.1       
[16] rmeta_3.0         htmltools_0.3.6   iterators_1.0.10 
[19] assertthat_0.2.0  yaml_2.2.0        rprojroot_1.3-2  
[22] digest_0.6.15     Matrix_1.2-14     codetools_0.2-15 
[25] evaluate_0.11     rmarkdown_1.10    stringi_1.2.4    
[28] compiler_3.5.1    Rmosek_8.0.69     backports_1.1.2  
[31] mvtnorm_1.0-8     truncnorm_1.0-8  

This R Markdown site was created with workflowr