Last updated: 2018-10-09
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: cd7ebf9
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/include/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorEM2.Rmd
Untracked: analysis/EstimateCorEM3.Rmd
Untracked: analysis/EstimateCorMaxEMGD.Rmd
Untracked: analysis/EstimateCorMaxGD.Rmd
Untracked: analysis/EstimateCorMaxMV.Rmd
Untracked: analysis/EstimateCorOptimEM.Rmd
Untracked: analysis/EstimateCorPrior.Rmd
Untracked: analysis/EstimateCorSol.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignalGTEx4.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/GTExNullModel.R
Untracked: code/MASH.result.1.rds
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashNULLCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/GTExNULLres/
Untracked: output/GTEx_2.5_nullData.rds
Untracked: output/GTEx_2.5_nullModel.rds
Untracked: output/GTEx_2.5_nullPermData.rds
Untracked: output/GTEx_2.5_nullPermModel.rds
Untracked: output/GTEx_3.5_nullData.rds
Untracked: output/GTEx_3.5_nullModel.rds
Untracked: output/GTEx_3.5_nullPermData.rds
Untracked: output/GTEx_3.5_nullPermModel.rds
Untracked: output/GTEx_3_nullData.rds
Untracked: output/GTEx_3_nullModel.rds
Untracked: output/GTEx_3_nullPermData.rds
Untracked: output/GTEx_3_nullPermModel.rds
Untracked: output/GTEx_4.5_nullData.rds
Untracked: output/GTEx_4.5_nullModel.rds
Untracked: output/GTEx_4.5_nullPermData.rds
Untracked: output/GTEx_4.5_nullPermModel.rds
Untracked: output/GTEx_4_nullData.rds
Untracked: output/GTEx_4_nullModel.rds
Untracked: output/GTEx_4_nullPermData.rds
Untracked: output/GTEx_4_nullPermModel.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MASHNULL.V.result.1.rds
Untracked: output/MASHNULL.V.result.10.rds
Untracked: output/MASHNULL.V.result.11.rds
Untracked: output/MASHNULL.V.result.12.rds
Untracked: output/MASHNULL.V.result.13.rds
Untracked: output/MASHNULL.V.result.14.rds
Untracked: output/MASHNULL.V.result.15.rds
Untracked: output/MASHNULL.V.result.16.rds
Untracked: output/MASHNULL.V.result.17.rds
Untracked: output/MASHNULL.V.result.18.rds
Untracked: output/MASHNULL.V.result.19.rds
Untracked: output/MASHNULL.V.result.2.rds
Untracked: output/MASHNULL.V.result.20.rds
Untracked: output/MASHNULL.V.result.3.rds
Untracked: output/MASHNULL.V.result.4.rds
Untracked: output/MASHNULL.V.result.5.rds
Untracked: output/MASHNULL.V.result.6.rds
Untracked: output/MASHNULL.V.result.7.rds
Untracked: output/MASHNULL.V.result.8.rds
Untracked: output/MASHNULL.V.result.9.rds
Untracked: output/MashCorSim--midway/
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/UKBio_mash_model.rds
Unstaged changes:
Modified: analysis/EstimateCorIndex.Rmd
Deleted: analysis/EstimateCorMax.Rmd
Modified: analysis/EstimateCorMaxEM2.Rmd
Modified: analysis/EstimateCorMaxMash.Rmd
Deleted: analysis/MashLowSignalGTEx3.5P.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Last updated: 2018-10-09
library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')
\[ P(X,\mathbf{z}|\rho, \pi) = \prod_{i=1}^{n} \prod_{p=0}^{P}\left[\pi_{p}N(x_{i}; 0, \Omega_{p})\right]^{\mathbb{I}(z_{i}=p)} \prod_{p=0}^{P}\pi_{p}^{\lambda_{p}-1} \]
\[ \mathbb{E}_{\mathbf{z}|X} \log P(X,\mathbf{z}|\rho, \pi) = \sum_{i=1}^{n} \sum_{p=0}^{P} P(z_{i}=p|X)\left[ \log \pi_{p} + \log N(x_{i}; 0, \Omega_{p})\right] + \sum_{p=0}^{P} (\lambda_{p}-1)\log \pi_{p} \]
\[ \gamma_{z_{i}}(p) = P(z_{i}=p|X_{i}) = \frac{\pi_{p}N(x_{i}; 0, \Omega_{p})}{\sum_{p'=0}^{P}\pi_{p'}N(x_{i}; 0, \Omega_{p'})} \]
\(\pi\): \[ \sum_{i=1}^{n} \gamma_{z_{i}}(p) \frac{1}{\pi_{p}} + \frac{\lambda_{p}-1}{\pi_{p}} - \lambda = 0 \quad \rightarrow \pi_{p} = \frac{1}{\lambda} \left(\sum_{i=1}^{n} \gamma_{z_{i}}(p) + \lambda_{p}-1\right) \quad \lambda = n + \sum_{p=1}^{P}\lambda_{p} - P \]
\[ \hat{\pi}_{p} = \frac{\sum_{i=1}^{n} \gamma_{z_{i}}(p) + \lambda_{p} - 1 }{n + \sum_{p=1}^{P}\lambda_{p} - P } \]
\(\rho\): \[ \begin{align*} f(\rho) &= \sum_{i=1}^{n} \sum_{p=1}^{P} \gamma_{z_{i}}(p)\left[ -\frac{1}{2}\log (1-\phi_{p}^2)-\frac{1}{2(1-\phi_{p}^2)}\left[ \frac{x_{i}^2}{\omega_{p11}^2} + \frac{y_{i}^2}{\omega_{p22}^2} - \frac{2\phi_{p}x_{i}y_{i}}{\omega_{p11}\omega_{p22}}\right] \right]\\ f(\rho)' &= \sum_{i=1}^{n} \sum_{p=1}^{P} \gamma_{z_{i}}(p)\left[ \frac{\phi_{p}}{1-\phi_{p}^2}-\frac{\phi_{p}}{(1-\phi_{p}^2)^2}\left[ \frac{x_{i}^2}{\omega_{p11}^2} + \frac{y_{i}^2}{\omega_{p22}^2}\right] - \frac{\phi_{p}+1}{(1-\phi_{p}^2)^2}\frac{x_{i}y_{i}}{\omega_{p11}\omega_{p22}}\right]\frac{1}{\omega_{p11}\omega_{p22}} = 0 \end{align*} \] \(\phi_p = \frac{\rho + \sigma_{p12}}{\omega_{p11}\omega_{p22}}\), \(\phi_{p}\) is a function of \(\rho\).
Algorithm:
Input: X, Ulist, init_rho, init_pi
Compute loglikelihood
delta = 1
while delta > tol
E step: update z
M step: update pi, update rho
Compute loglikelihood
Update delta
#' @param rho the off diagonal element of V, 2 by 2 correlation matrix
#' @param Ulist a list of covariance matrices, U_{k}
get_sigma <- function(rho, Ulist){
V <- matrix(c(1,rho,rho,1), 2,2)
lapply(Ulist, function(U) U + V)
}
penalty <- function(prior, pi_s){
subset <- (prior != 1.0)
sum((prior-1)[subset]*log(pi_s[subset]))
}
#' @title compute log likelihood
#' @param L log likelihoods,
#' where the (i,k)th entry is the log probability of observation i
#' given it came from component k of g
#' @param p the vector of mixture proportions
#' @param prior the weight for the penalty
compute.log.lik <- function(lL, p, prior){
p = normalize(pmax(0,p))
temp = log(exp(lL$loglik_matrix) %*% p)+lL$lfactors
return(sum(temp) + penalty(prior, p))
# return(sum(temp))
}
normalize <- function(x){
x/sum(x)
}
mixture.EM.times <- function(X, Ulist, init_rho=0, init_pi=NULL, prior = c('nullbiased', 'uniform'), control = list()){
times = length(init_rho)
result = list()
loglik = c()
rho = c()
time.t = c()
converge.status = c()
for(i in 1:times){
out.time = system.time(result[[i]] <- mixture.EM(X, Ulist,
init_pi=init_pi,
init_rho=init_rho[i],
prior=prior,
control = control))
time.t = c(time.t, out.time['elapsed'])
loglik = c(loglik, result[[i]]$loglik)
rho = c(rho, result[[i]]$rhohat)
converge.status = c(converge.status, result[[i]]$converged)
}
if(abs(max(loglik) - min(loglik)) < 1e-4){
status = 'global'
}else{
status = 'local'
}
ind = which.max(loglik)
return(list(result = result[[ind]], status = status, loglik = loglik, rho=rho, time = time.t, converge.status = converge.status))
}
mixture.EM <- function(X, Ulist, init_rho=0, init_pi = NULL, prior = c('nullbiased', 'uniform'), control = list()) {
prior = match.arg(prior)
prior <- mashr:::set_prior(length(Ulist), prior)
k = length(Ulist)
if (is.null(init_pi)){
init_pi <- rep(1/k,k)
}
control = ashr:::set_control_squarem(control,nrow(X))
res = SQUAREM::squarem(par=c(init_pi, init_rho),fixptfn=fixpoint_EM, objfn=negpenloglik,X=X, Ulist=Ulist, prior=prior, control=control)
return(list(pihat = normalize(pmax(0,head(res$par, -1))), rhohat = tail(res$par, 1), loglik=-res$value.objfn, niter = res$iter, converged=res$convergence, control=control))
}
fixpoint_EM = function(par, X, Ulist, prior){
rho = tail(par,1)
pi_s = head(par, -1)
pi_s = normalize(pmax(0,pi_s)) #avoid occasional problems with negative pis due to rounding
# compute L
Sigma <- get_sigma(rho, Ulist)
L <- t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U)}))
# E
m = t(pi_s * t(L)) # matrix_lik is n by k; so this is also n by k
m.rowsum = rowSums(m)
classprob = m/m.rowsum #an n by k matrix
# M
pinew = normalize(colSums(classprob) + prior - 1)
rhonew = optimize(EMloglikelihood, interval = c(-1,1), maximum = TRUE, X = X, Ulist = Ulist, z = classprob)$maximum
return(c(pinew,rhonew))
}
EMloglikelihood = function(rho, X, Ulist, z){
Sigma = get_sigma(rho, Ulist)
L = t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U, log=TRUE)}))
sum(L * z)
}
negpenloglik = function(par, X, Ulist, prior){
Sigma <- get_sigma(tail(par,1), Ulist)
lL <- t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U, log=TRUE)}))
lfactors <- apply(lL,1,max)
matrix_llik <- lL - lfactors
lL = list(loglik_matrix = matrix_llik,
lfactors = lfactors)
ll <- compute.log.lik(lL, head(par, -1), prior)
return(-ll)
}
\[ \hat{\beta}|\beta \sim N_{2}(\hat{\beta}; \beta, \left(\begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix}\right)) \]
\[ \beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right)) \]
n = 4000
set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
grid = mashr:::autoselect_grid(m.data, sqrt(2))
Ulist = mashr:::normalize_Ulist(U.c)
xUlist = mashr:::expand_cov(Ulist,grid,usepointmass = TRUE)
result.em <- mixture.EM.times(m.data$Bhat, xUlist)
The estimated \(\rho\) is 0.5066755. The running time is result.em$time
seconds.
m.data.em = mash_set_data(data$Bhat, data$Shat, V = matrix(c(1,result.em$rho,result.em$rho,1),2,2))
U.c = cov_canonical(m.data.em)
m.em = mash(m.data.em, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)
The log likelihood is -12302.54. There are 26 significant samples, 0 false positives. The RRMSE is 0.582108.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2-15 ashr_2.2-14
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] plyr_1.8.4 stringr_1.3.1 tools_3.5.1
[16] parallel_3.5.1 grid_3.5.1 R.oo_1.22.0
[19] rmeta_3.0 git2r_0.23.0 htmltools_0.3.6
[22] iterators_1.0.10 assertthat_0.2.0 abind_1.4-5
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.15
[28] Matrix_1.2-14 codetools_0.2-15 R.utils_2.6.0
[31] evaluate_0.11 rmarkdown_1.10 stringi_1.2.4
[34] compiler_3.5.1 Rmosek_8.0.69 backports_1.1.2
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8 truncnorm_1.0-8
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2-15 ashr_2.2-14
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] plyr_1.8.4 stringr_1.3.1 tools_3.5.1
[16] parallel_3.5.1 grid_3.5.1 R.oo_1.22.0
[19] rmeta_3.0 git2r_0.23.0 htmltools_0.3.6
[22] iterators_1.0.10 assertthat_0.2.0 abind_1.4-5
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.15
[28] Matrix_1.2-14 codetools_0.2-15 R.utils_2.6.0
[31] evaluate_0.11 rmarkdown_1.10 stringi_1.2.4
[34] compiler_3.5.1 Rmosek_8.0.69 backports_1.1.2
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8 truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1