Last updated: 2018-08-31

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180719)

    The command set.seed(20180719) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 86e52f5

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rproj.user/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 86e52f5 Xiang Zhu 2018-08-31 wflow_publish(“analysis/load2013_liver.Rmd”)
    html 1734dec Xiang Zhu 2018-08-30 Build site.
    Rmd 6b3b280 Xiang Zhu 2018-08-30 wflow_publish(“analysis/load2013_liver.Rmd”)
    Rmd dbd04eb Xiang Zhu 2018-08-30 minor update chunk option
    html 8843641 Xiang Zhu 2018-08-30 Build site.
    Rmd e5fe6e0 Xiang Zhu 2018-08-30 wflow_publish(“analysis/load2013_liver.Rmd”)

Input data

  • Processed GWAS file: /project/mstephens/test_rss/data/load2013/load2013_sumstat.mat
  • PECA2 liver-specific network: /scratch/PI/whwong/zduren/share/PECA_human/PECA2/Liver_network.txt
  • \(L_0\): 40 kb; \(L_1\): 100 kb
  • SNP-to-gene windown: 10 Mb
  • Hyperparameter grid: TBA

Results summary

First look at the approximated log marginal likelihoods (elbo column below).

piva sigb elbo time
0.0001000 0.0515913 189566935.0 1047.9433
0.0001778 0.0386880 88426696.9 957.1887
0.0003162 0.0290119 64568073.4 1302.2966
0.0005623 0.0217559 35953379.4 1276.2622
0.0010000 0.0163146 16999449.9 1443.6655
0.0017783 0.0122342 6239008.6 1536.1694
0.0031623 0.0091744 1241460.2 1233.5987
0.1000000 0.0016315 -640022.0 4096.3463
0.3162278 0.0009174 -731651.6 3479.1000
0.1778279 0.0012234 -766687.1 3141.6219
0.5623413 0.0006880 -898377.8 2900.3702
0.0056234 0.0068798 -946876.3 3797.0045
0.0562341 0.0021756 -997159.9 3615.5936
0.0316228 0.0029012 -1100972.1 4003.9145
0.0100000 0.0051591 -1141247.3 4012.4360
0.0177828 0.0038688 -1435636.8 3133.8837

Next look at the gene-level posterior statistics when the marginal likelihood is maximized.

hgnc_symbol chromosome_name start_position end_position gene_nid vb_weight vb_mean vb_var
LGALS9B 17 20352708 20370852 14712 1 444.66672 0.0010826
OR11H1 22 16448824 16449805 17914 1 207.94006 0.0026617
CBWD6 9 69204538 69269662 8588 1 197.17232 0.0026617
RGL2 6 33259431 33267101 6194 1 167.12435 0.0005348
CDRT15L2 17 20483037 20484224 14713 1 162.23593 0.0006613
C16orf86 16 67700719 67702661 14191 1 132.58307 0.0000199
GALNT4 12 89913185 89920039 11797 1 128.69132 0.0000426
ARL17A 17 44594068 44657088 15110 1 93.25737 0.0004824
CLEC18B 16 74442529 74455368 14272 1 93.07069 0.0000250
ALOXE3 17 7999218 8022365 14590 1 74.02143 0.0000047

Look at top genes: LGALS9B, OR11H1, RGL2.

Session information

R version 3.5.0 (2018-04-23)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] bindrcpp_0.2.2 DT_0.4         knitr_1.20     dplyr_0.7.5   
[5] R.matlab_3.6.1

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17      bindr_0.1.1       whisker_0.3-2    
 [4] magrittr_1.5      workflowr_1.1.1   tidyselect_0.2.4 
 [7] R6_2.2.2          rlang_0.2.1       highr_0.7        
[10] stringr_1.3.1     tools_3.5.0       R.oo_1.22.0      
[13] git2r_0.21.0      htmltools_0.3.6   yaml_2.1.19      
[16] rprojroot_1.3-2   digest_0.6.15     assertthat_0.2.0 
[19] tibble_1.4.2      purrr_0.2.5       htmlwidgets_1.2  
[22] R.utils_2.6.0     glue_1.2.0        evaluate_0.10.1  
[25] rmarkdown_1.10    stringi_1.2.3     pillar_1.2.3     
[28] compiler_3.5.0    backports_1.1.2   R.methodsS3_1.7.1
[31] pkgconfig_2.0.1  

This reproducible R Markdown analysis was created with workflowr 1.1.1