Last updated: 2018-06-15

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180609)

    The command set.seed(20180609) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 0c0d6b2

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 0c0d6b2 Jason Willwerscheid 2018-06-15 wflow_publish(“analysis/MASHvFLASHsims.Rmd”)


All simulated datasets \(Y\) were of dimension 25 x 1000.

Null model

Here the entries of \(Y\) are just independent \(N(0, 1)\) draws.

MASH FLASH_OHL FLASH_OHF
MSE 0.002209 0.0025228 0.0025228
95% CI cov 0.663880 0.9999920 0.9999880

Code

for simulating datasets…

## SIMULATION FUNCTIONS -------------------------------------------------

# n is number of conditions, p is number of genes

# Noise is i.i.d. N(0, 1)
get_E <- function(n, p, sd = 1) {
  matrix(rnorm(n * p, 0, sd), n, p)
}

# Simulate from null model ----------------------------------------------

null_sim <- function(n, p, seed = NULL) {
  set.seed(seed)
  Y <- get_E(n, p)
  true_Y <- matrix(0, n, p)

  list(Y = Y, true_Y = true_Y)
}

# Simulate from MASH model ----------------------------------------------

# Sigma is list of covariance matrices
# pi[j] is probability that effect j has covariance Sigma[[j]]
# s is sparsity (percentage of null effects)
mash_sim <- function(n, p, Sigma, pi = NULL, s = 0.8, seed = NULL) {
  set.seed(NULL)
  if (is.null(pi)) {
    pi = rep(1, length(Sigma)) # default to uniform distribution
  }
  assertthat::are_equal(length(pi), length(Sigma))
  for (j in length(Sigma)) {
    assertthat::are_equal(dim(Sigma[j]), c(n, n))
  }

  pi <- pi / sum(pi) # normalize pi to sum to one
  which_sigma <- sample(1:length(pi), p, replace=TRUE, prob=pi)
  nonnull_fx <- sample(1:p, floor((1 - s)*p), replace=FALSE)

  X <- matrix(0, n, p)
  for (j in nonnull_fx) {
    X[, j] <- MASS::mvrnorm(1, rep(0, n), Sigma[[which_sigma[j]]])
  }
  Y <- X + get_E(n, p)
  list(Y = Y, true_Y = X)
}


# Simulate from FLASH model ---------------------------------------------

# fs is sparsity of factors (percentage of null effects)
# fvar is variance of effects (generated from normal distribution)
# ls is sparsity of loadings
# lvar is variance of loadings
# UVvar is variance of dense rank-one matrix included to mimic something
#   like unwanted variation (set it to 0 to ignore it)
flash_sim <- function(n, p, k, fs, fvar, ls, lvar, UVvar = 0, seed = NULL) {
  set.seed(seed)

  nonnull_ll <- matrix(sample(c(0, 1), n*k, TRUE, c(ls, 1 - ls)), n, k)
  LL <- nonnull_ll * matrix(rnorm(n*k, 0, sqrt(lvar)), n, k)

  nonnull_ff <- matrix(sample(c(0, 1), k*p, TRUE, c(fs, 1 - fs)), k, p)
  FF <- nonnull_ff * matrix(rnorm(k*p, 0, sqrt(fvar)), k, p)

  X <- LL %*% FF
  Y <- X + get_E(n, p)
  # add unwanted variation
  Y <- Y + outer(rnorm(n, 0, sqrt(UVvar)), rnorm(p, 0, sqrt(UVvar)))
  list(Y = Y, true_Y = X)
}


## SIMULATIONS ----------------------------------------------------------

# Functions to generate seven types of datasets. One is null; three are
# from the MASH model; three are from the FLASH model.

sim_fns <- function(n, p, s, mashvar, fvar, lvar, UVvar) {

  # 1. Everything is null
  sim_null <- function(){ null_sim(n, p) }

  Sigma <- list()
  Sigma[[1]] <- diag(rep(mashvar, n))
  # 2. Effects are independent across conditions
  sim_ind <- function(){ mash_sim(n, p, Sigma) }

  Sigma[[2]] <- matrix(mashvar, n, n)
  # 3. Effects are either independent or shared
  sim_indsh <- function(){ mash_sim(n, p, Sigma) }

  for (j in 1:n) {
    Sigma[[2 + j]] <- matrix(0, n, n)
    Sigma[[2 + j]][j, j] <- mashvar
  }
  pi <- c(n, n, rep(1, n))
  # 4. Effects are independent, shared, or unique to a single condition
  sim_mash <- function(){ mash_sim(n, p, Sigma) }

  # 5. Rank one model
  sim_rank1 <- function(){ flash_sim(n, p, 1, s, fvar, 0.5, lvar) }

  # 6. Rank 5 model
  sim_rank5 <- function(){ flash_sim(n, p, 5, s, fvar, 0.2, lvar) }

  # 7. Rank 3 model with unwanted variation
  sim_UV <- function(){ flash_sim(n, p, 3, s, fvar, 0.3, lvar, UVvar) }

  c(sim_null, sim_ind, sim_indsh, sim_mash, sim_rank1, sim_rank5, sim_UV)
}

sim_names <- c("Null simulation", "All independent effects",
               "Independent and shared", "Independent, shared, and unique",
               "Rank 1 FLASH model", "Rank 5 FLASH model",
               "Rank 3 FLASH with UV")

…for fitting MASH and FLASH objects…

# Fit using FLASH -------------------------------------------------------
fit_flash <- function(Y, Kmax, add_onehots_first=T) {
  n <- nrow(Y)
  data <- flash_set_data(Y, S = 1)
  timing <- list()

  t0 <- Sys.time()
  if (add_onehots_first) {
    fl <- flash_add_fixed_l(data, diag(rep(1, n)))
    fl <- flash_backfit(data, fl, nullcheck = F, var_type = "zero")
    t1 <- Sys.time()
    timing$backfit <- t1 - t0
    fl <- flash_add_greedy(data, Kmax, fl, var_type = "zero")
    timing$greedy <- Sys.time() - t1
  } else {
    fl <- flash_add_greedy(data, Kmax, var_type = "zero")
    t1 <- Sys.time()
    timing$greedy <- t1 - t0
    fl <- flash_add_fixed_l(data, diag(rep(1, n)), fl)
    fl <- flash_backfit(data, fl, nullcheck = F, var_type = "zero")
    timing$backfit <- Sys.time() - t1
  }

  timing$total <- Reduce(`+`, timing)

  list(fl = fl, timing = timing)
}


# Fit using MASH -------------------------------------------------------
fit_mash <- function(Y, ed=T) {
  data <- mash_set_data(t(Y))
  timing <- list()

  # time to create canonical matrices is negligible
  U = cov_canonical(data)

  if (ed) {
    t0 <- Sys.time()
    m.1by1 <- mash_1by1(data)
    strong <- get_significant_results(m.1by1, 0.05)
    U.pca <- cov_pca(data, 5, strong)
    U.ed <- cov_ed(data, U.pca, strong)
    U <- c(U, U.ed)
    timing$ed <- Sys.time() - t0
  }

  t0 <- Sys.time()
  m <- mash(data, U)
  timing$mash <- Sys.time() - t0

  timing$total <- Reduce(`+`, timing)

  list(m = m, timing = timing)
}

…for evaluating performance…

# Evaluate methods based on MSE, CI coverage, and TPR vs. FPR -----------

flash_diagnostics <- function(fl, Y, true_Y, nsamp) {
  MSE <- flash_mse(fl, true_Y)

  # Sample from FLASH fit to estimate CI coverage and TPR vs. FPR
  fl_sampler <- flash_lf_sampler(Y, fl, ebnm_fn=ebnm_pn, fixed="loadings")
  fl_samp <- fl_sampler(nsamp)

  CI <- flash_ci(fl_samp, true_Y)
  ROC <- flash_roc(fl, fl_samp, true_Y)

  list(MSE = MSE, CI = CI, TP = ROC$TP, FP = ROC$FP,
       n_nulls = ROC$n_nulls, n_nonnulls = ROC$n_nonnulls)
}

mash_diagnostics <- function(m, true_Y) {
  MSE <- mash_mse(m, true_Y)
  CI <- mash_ci(m, true_Y)
  ROC <- mash_roc(m, true_Y)

  list(MSE = MSE, CI = CI, TP = ROC$TP, FP = ROC$FP,
       n_nulls = ROC$n_nulls, n_nonnulls = ROC$n_nonnulls)
}


# MSE of posterior means (FLASH) ----------------------------------------
flash_mse <- function(fl, true_Y) {
  mean((flash_get_lf(fl) - true_Y)^2)
}

# MSE for MASH ----------------------------------------------------------
mash_mse <- function(m, true_Y) {
  mean((get_pm(m) - t(true_Y))^2)
}


# 95% CI coverage for FLASH ---------------------------------------------
flash_ci <- function(fl_samp, true_Y) {
  n <- nrow(true_Y)
  p <- ncol(true_Y)
  nsamp <- length(fl_samp)

  flat_samp <- matrix(0, nrow=n*p, ncol=nsamp)
  for (i in 1:nsamp) {
    flat_samp[, i] <- as.vector(fl_samp[[i]])
  }
  CI <- t(apply(flat_samp, 1, function(x) {quantile(x, c(0.025, 0.975))}))
  mean((as.vector(true_Y) >= CI[, 1]) & (as.vector(true_Y) <= CI[, 2]))
}

# 95% CI coverage for MASH ----------------------------------------------
mash_ci <- function(m, true_Y) {
  Y <- t(true_Y)
  mean((Y > get_pm(m) - 1.96 * get_psd(m))
      & (Y < get_pm(m) + 1.96 * get_psd(m)))
}


# LFSR for FLASH --------------------------------------------------------
flash_lfsr <- function(fl_samp) {
  nsamp <- length(fl_samp)
  n <- nrow(fl_samp[[1]])
  p <- ncol(fl_samp[[1]])

  pp <- matrix(0, nrow=n, ncol=p)
  pn <- matrix(0, nrow=n, ncol=p)
  for (i in 1:nsamp) {
    pp <- pp + (fl_samp[[i]] > 0)
    pn <- pn + (fl_samp[[i]] < 0)
  }
  1 - pmax(pp, pn) / nsamp
}


# Quantities for plotting ROC curves -----------------------------------
flash_roc <- function(fl, fl_samp, true_Y, step=0.01) {
  roc_data(flash_get_lf(fl), true_Y, flash_lfsr(fl_samp), step)
}

mash_roc <- function(m, true_Y, step=0.01) {
  roc_data(get_pm(m), t(true_Y), get_lfsr(m), step)
}

roc_data <- function(pm, true_Y, lfsr, step) {
  correct_sign <- pm * true_Y > 0
  is_null <- true_Y == 0
  n_nulls <- sum(is_null)
  n_nonnulls <- length(true_Y) - n_nulls

  ts <- seq(0, 1, by=step)
  tp <- rep(0, length(ts))
  fp <- rep(0, length(ts))

  for (t in 1:length(ts)) {
    signif <- lfsr <= ts[t]
    tp[t] <- sum(signif & correct_sign)
    fp[t] <- sum(signif & is_null)
  }

  list(ts = ts, TP = tp, FP = fp, n_nulls = n_nulls, n_nonnulls = n_nonnulls)
}


# empirical false sign rate vs. local false sign rate
# efsr_by_lfsr <- function(pm, true_Y, lfsr, step) {
#   pred_signs <- sign(pm)
#   pred_zeros <- pred_signs == 0
#   pred_signs[pred_zeros] <- sample(c(0, 1), length(pred_zeros), replace=T)
#
#   gotitright <- (pred_signs == sign(true_Y))
#
#   nsteps <- floor(.5 / step)
#   efsr_by_lfsr <- rep(0, nsteps)
#   for (k in 1:nsteps) {
#     idx <- (lfsr >= (step * (k - 1)) & lfsr < (step * k))
#     efsr_by_lfsr[k] <- ifelse(sum(idx) == 0, NA,
#                               1 - sum(gotitright[idx]) / sum(idx))
#   }
#   efsr_by_lfsr
# }

…and some ugly functions that run everything and plot results.

run_sims <- function(sim_fn, nsims, plot_title, fpath) {
  #suppressMessages(
    #suppressWarnings(
      #capture.output(
        if (nsims == 1) {
          res = run_one_sim(sim_fn)
        } else {
          res = run_many_sims(sim_fn, nsims)
        }
      #)
    #)
  #)
  saveRDS(output_res_mat(res, plot_title), paste0(fpath, "res.rds"))
  if (!(plot_title == "Null simulation")) {
    png(paste0(fpath, "ROC.png"))
    plot_ROC(res, plot_title)
    dev.off()
  }
  png(paste0(fpath, "time.png"))
  plot_timing(res)
  dev.off()
}

run_many_sims <- function(sim_fn, nsims) {
  res <- list()
  combined_res <- list()

  for (i in 1:nsims) {
    res[[i]] <- run_one_sim(sim_fn)
  }
  list_elem <- names(res[[1]])
  for (elem in list_elem) {
    combined_res[[elem]] <- list()
    sub_elems <- names(res[[1]][[elem]])
    for (sub_elem in sub_elems) {
      tmp <- lapply(res, function(x) {x[[elem]][[sub_elem]]})
      combined_res[[elem]][[sub_elem]] <- Reduce(`+`, tmp)
      combined_res[[elem]][[sub_elem]] <- combined_res[[elem]][[sub_elem]] / nsims
    }
  }
  combined_res
}

run_one_sim <- function(sim_fn, Kmax = 10, nsamp=200) {
  data <- do.call(sim_fn, list())

  # If there are no strong signals, trying to run ED throws an error, so
  #   we need to do some error handling to fit the MASH object
  try(mfit <- fit_mash(data$Y))
  if (!exists("mfit")) {
    mfit <- fit_mash(data$Y, ed=F)
    mfit$timing$ed = as.difftime(0, units="secs")
  }

  flfit1 <- fit_flash(data$Y, Kmax, add_onehots_first = T)
  flfit2 <- fit_flash(data$Y, Kmax, add_onehots_first = F)

  message("Running MASH diagnostics")
  mres <- mash_diagnostics(mfit$m, data$true_Y)
  message("Running FLASH diagnostics")
  flres1 <- flash_diagnostics(flfit1$fl, data$Y, data$true_Y, nsamp)
  flres2 <- flash_diagnostics(flfit2$fl, data$Y, data$true_Y, nsamp)

  list(mash_timing = mfit$timing, mash_res = mres,
       flash_OHF_timing = flfit1$timing, flash_OHF_res = flres1,
       flash_OHL_timing = flfit2$timing, flash_OHL_res = flres2)
}

output_res_mat <- function(res, caption) {
  data.frame(MASH = c(res$mash_res$MSE, res$mash_res$CI),
             FLASH_OHL = c(res$flash_OHL_res$MSE, res$flash_OHL_res$CI),
             FLASH_OHF = c(res$flash_OHF_res$MSE, res$flash_OHF_res$CI),
             row.names = c("MSE", "95% CI cov"))
}

plot_timing <- function(res) {
  data <- c(res$mash_timing$ed, res$mash_timing$mash,
            res$flash_OHL_timing$greedy, res$flash_OHL_timing$backfit,
            res$flash_OHF_timing$greedy, res$flash_OHF_timing$backfit)
  time_units <- units(data)
  data <- matrix(as.numeric(data), 2, 3)
  barplot(data, axes=T,
          main=paste("Average time to fit in", time_units),
          names.arg = c("MASH", "FLASH-OHL", "FLASH-OHF"),
          legend.text = c("ED/Greedy", "MASH/Backfit"),
          ylim = c(0, max(colSums(data))*2))
  # (increasing ylim is easiest way to deal with legend getting in way)
}

plot_ROC <- function(res, main="ROC curve") {
  m_y <- res$mash_res$TP / res$mash_res$n_nonnulls
  m_x <- res$mash_res$FP / res$mash_res$n_nulls
  ohl_y <- res$flash_OHL_res$TP / res$flash_OHL_res$n_nonnulls
  ohl_x <- res$flash_OHL_res$FP / res$flash_OHL_res$n_nulls
  ohf_y <- res$flash_OHF_res$TP / res$flash_OHF_res$n_nonnulls
  ohf_x <- res$flash_OHF_res$FP / res$flash_OHF_res$n_nulls
  plot(m_x, m_y, xlim=c(0, 1), ylim=c(0, 1), type='l',
       xlab='FPR', ylab='TPR', main=main)
  lines(ohl_x, ohl_y, lty=2)
  lines(ohf_x, ohf_y, lty=3)
  legend("bottomright", c("MASH", "FLASH-OHL", "FLASH-OHF"), lty=1:3)
}

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.0.1   Rcpp_0.12.17      digest_0.6.15    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.21.0      magrittr_1.5      evaluate_0.10.1  
[10] highr_0.6         stringi_1.1.6     whisker_0.3-2    
[13] R.oo_1.21.0       R.utils_2.6.0     rmarkdown_1.8    
[16] tools_3.4.3       stringr_1.3.0     yaml_2.1.17      
[19] compiler_3.4.3    htmltools_0.3.6   knitr_1.20       

This reproducible R Markdown analysis was created with workflowr 1.0.1