Last updated: 2018-07-16

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180714)

    The command set.seed(20180714) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: de79fe6

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
    
    Unstaged changes:
        Modified:   analysis/objective.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd b0dbc3a Jason Willwerscheid 2018-07-16 add Rdata for variables before ‘bad’ update
    html 019bf35 Jason Willwerscheid 2018-07-15 Build site.
    Rmd a19a4a0 Jason Willwerscheid 2018-07-15 wflow_publish(“analysis/objective2.Rmd”)
    Rmd 67360f4 Jason Willwerscheid 2018-07-15 manual objective2 commit
    html 67360f4 Jason Willwerscheid 2018-07-15 manual objective2 commit


Introduction

Here I use ebnm_ash to see if I obtain similar decreases in the objective function as were obtained in the previous investigation.

Fits

I use the same dataset as in the previous investigation.

# devtools::install_github("stephenslab/flashr", ref="trackObj")
devtools::load_all("/Users/willwerscheid/GitHub/flashr")
Loading flashr
# devtools::install_github("stephenslab/ebnm")
devtools::load_all("/Users/willwerscheid/GitHub/ebnm")
Loading ebnm
gtex <- readRDS(gzcon(url("https://github.com/stephenslab/gtexresults/blob/master/data/MatrixEQTLSumStats.Portable.Z.rds?raw=TRUE")))
strong <- gtex$strong.z

I fit four factors greedily using both ebnm_pn and ebnm_ash.

pn_res <- flash_add_greedy(strong, Kmax=4, verbose=FALSE)
fitting factor/loading 1
fitting factor/loading 2
fitting factor/loading 3
fitting factor/loading 4
ash_res <- flash_add_greedy(strong, Kmax=4, ebnm_fn = "ebnm_ash", 
                            verbose=FALSE)
fitting factor/loading 1
fitting factor/loading 2
fitting factor/loading 3
fitting factor/loading 4
plot_obj <- function(res, k, niters) {
  obj_data <- as.vector(rbind(res$obj[[k]]$after_tau,
                              res$obj[[k]]$after_f,
                              res$obj[[k]]$after_l))
  max_obj <- max(obj_data)
  obj_data <- obj_data - max_obj
  iter <- 1:length(obj_data) / 3
  
  if (length(obj_data) > niters*3) {
    idx <- (length(obj_data) - niters*3 + 1):length(obj_data)
    obj_data <- obj_data[idx]
    iter <- iter[idx]
  }
  
  plt_xlab = "Iteration"
  plt_ylab = "Diff. from maximum obj."
  plt_colors <- c("indianred1", "indianred3", "indianred4")
  plt_pch <- c(16, 17, 15)
  
  plot(iter, obj_data, col=plt_colors, pch=plt_pch,
       xlab=plt_xlab, ylab=plt_ylab)
  legend("bottomright", c("after tau", "after f", "after l"),
         col=plt_colors, pch=plt_pch)
}

Results: ebnm_pn

The problem discussed in the previous investigation occurs every time.

plot_obj(pn_res, 1, niters=3)

Expand here to see past versions of plot_pn-1.png:
Version Author Date
019bf35 Jason Willwerscheid 2018-07-15

plot_obj(pn_res, 2, niters=5)

Expand here to see past versions of plot_pn-2.png:
Version Author Date
019bf35 Jason Willwerscheid 2018-07-15

plot_obj(pn_res, 3, niters=20)

Expand here to see past versions of plot_pn-3.png:
Version Author Date
019bf35 Jason Willwerscheid 2018-07-15

plot_obj(pn_res, 4, niters=10)

Expand here to see past versions of plot_pn-4.png:
Version Author Date
019bf35 Jason Willwerscheid 2018-07-15

Results: ebnm_ash

But no obvious problems occur when using ebnm_ash.

plot_obj(ash_res, 1, niters=3)

Expand here to see past versions of plot_ash-1.png:
Version Author Date
019bf35 Jason Willwerscheid 2018-07-15

plot_obj(ash_res, 2, niters=5)

Expand here to see past versions of plot_ash-2.png:
Version Author Date
019bf35 Jason Willwerscheid 2018-07-15

plot_obj(ash_res, 3, niters=10)

Expand here to see past versions of plot_ash-3.png:
Version Author Date
019bf35 Jason Willwerscheid 2018-07-15

plot_obj(ash_res, 4, niters=20)

Expand here to see past versions of plot_ash-4.png:
Version Author Date
019bf35 Jason Willwerscheid 2018-07-15

Conclusions

When using ebnm_ash, the objective does not suffer from the same erratic behavior as when using ebnm_pn. Is there a weird bug somewhere in the computation of the likelihood function for ebnm_pn?

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ebnm_0.1-12   flashr_0.5-12

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17        pillar_1.2.1        plyr_1.8.4         
 [4] compiler_3.4.3      git2r_0.21.0        workflowr_1.0.1    
 [7] R.methodsS3_1.7.1   R.utils_2.6.0       iterators_1.0.9    
[10] tools_3.4.3         testthat_2.0.0      digest_0.6.15      
[13] tibble_1.4.2        evaluate_0.10.1     memoise_1.1.0      
[16] gtable_0.2.0        lattice_0.20-35     rlang_0.2.0        
[19] Matrix_1.2-12       foreach_1.4.4       commonmark_1.4     
[22] yaml_2.1.17         parallel_3.4.3      withr_2.1.1.9000   
[25] stringr_1.3.0       roxygen2_6.0.1.9000 xml2_1.2.0         
[28] knitr_1.20          REBayes_1.2         devtools_1.13.4    
[31] rprojroot_1.3-2     grid_3.4.3          R6_2.2.2           
[34] rmarkdown_1.8       ggplot2_2.2.1       ashr_2.2-10        
[37] magrittr_1.5        whisker_0.3-2       backports_1.1.2    
[40] scales_0.5.0        codetools_0.2-15    htmltools_0.3.6    
[43] MASS_7.3-48         assertthat_0.2.0    softImpute_1.4     
[46] colorspace_1.3-2    stringi_1.1.6       Rmosek_7.1.3       
[49] lazyeval_0.2.1      munsell_0.4.3       doParallel_1.0.11  
[52] pscl_1.5.2          truncnorm_1.0-8     SQUAREM_2017.10-1  
[55] R.oo_1.21.0        

This reproducible R Markdown analysis was created with workflowr 1.0.1