
W3C	Vehicle	API	Creation	Guidelines	and	Rationale	
	
The	intent	of	the	W3C	Vehicle	API	specification	is	to	provide	a	standard	for	
developing	HTML5/JavaScript	applications	to	run	on	in-vehicle	infotainment	
systems.	The	specification	is	intended	to	promote	an	API	that	allows	for	third	party	
application	development	in	a	manner	that	is	consistent	across	automakers.	A	
secondary	goal	is	to	allow	this	API	to	be	used	by	HTML5/JavaScript	applications	
running	on	mobile	phones	to	access	the	resources	of	a	connected	vehicle.	This	
specification	does	not	dictate	or	describe	the	nature	of	such	a	connection	in	either	
protocol	or	transport—Bluetooth,	WiFi,	or	cloud	connections	are	all	possible.	
	
It	is	recognized	that	mechanisms	needed	to	access	or	control	vehicle	properties	may	
not	be	identical	across	automotive	trim	levels,	models,	or	makers.	Even	if	technically	
achievable,	not	all	automakers	may	be	in	consensus	about	which	properties	should	
be	exposed.	Some	OEMs	may	wish	for	more	access,	while	some	may	wish	tighter	
control	on	what	automotive	features	can	be	used.	These	factors	guide	this	
specification	such	that	it	will	allow	OEM	extensions	or	restrictions.	To	prevent	
unnecessary	fragmentation,	extensions	are	only	allowed	in	areas	that	are	not	
already	described	by	this	API,	and	must	follow	the	existing	API	format	and	the	
guidelines	here.	Restriction	of	functionality	is	handled	by	allowing	an	OEM	to	omit	
optional	features	in	their	implementation.	Omitted	features	must	be	identifiable	as	
“unsupported”	as	defined	in	the	specification.	
	
The	target	platform	supported	by	this	specification	is	exclusively	passenger	
vehicles.	Use	of	this	specification	for	non-passenger	applications	(transportation	
vehicles,	heavy	machinery,	farm	equipment,	airline	infotainment,	marine,	military,	
etc.)	is	not	prohibited,	but	is	not	covered	in	the	design	or	content	of	the	API	and	
hence	may	be	purposefully	insufficient.	
	
This	document	defines	the	consistent	methodology	applied	to	the	set	of	attributes	
and	attribute	naming	defined	for	the	W3C	Vehicle	API	standard.	It	provides	a	set	of	
rules	needed	to	grow/extend	the	APIs	when	necessary.	
	

1) Data	representation	
a. Units	and	types	

i. Guideline:	All	values	of	attributes	are	consistently	
represented	as	SI	(metric)	units,	string,	percentage,	booleans,	
or	enumerations.		
	
Rationale:	Using	percentages	when	possible	instead	of	unit-
based	values	allows	a	calling	application	to	be	easily	
adaptable	when	value	ranges	change	between	vehicle	
models.	For	numeric	non-percentage	values,	SI	is	a	consistent	
unit	system	that	is	globally	understood	and	used	for	all	
scientific	endeavours.	Booleans	or	enumerations	are	used	



when	the	values	are	from	a	small	set	of	possible	options.	
Enumerations	should	be	created	such	that	a	caller	can	
determine	the	range	of	possible	responses	without	requiring	
this	information	a	priori.	This	means	that	enumerations	
should	use	the	standard	JavaScript	object.defineProperties	
method	to	set	allowable	values.	
	
Attribute	types	should	not	change	(for	example	from	integer	
to	enumeration,	or	from	percentage	to	string),	unless	
required	for	representation	of	special	values	(like	
“unknown”,	or	“N/A”).	

b. Attribute	value	ranges	and	increments	
i. Guideline:	Annotate	the	valid	ranges	for	attributes	through	

documentation.	
	
Rationale:	Applications	need	to	know	the	extent	of	the	
allowable	values.	However,	the	range	of	valid	values	should	
be	constant	for	each	implementation,	and	hence	the	range	
does	not	need	to	be	dynamically	accessible	through	the	API.	
It	is	common	practice	in	JavaScript	to	denote	allowable	
values	through	documentation.	This	in	turn	simplifies	the	
burden	of	implementing	or	adapting	the	API	to	each	platform	
and	vehicle.	

ii. Guideline:	No	standard	mechanism	is	provided	to	query	the	
valid	subset	of	ranges	or	allowable	increments	for	a	
particular	attribute.	Implementations	can	provide	this	
feature	optionally	if	they	wish	for	selected	attributes.	
	
Rationale:	The	implementation	may	not	itself	know	the	
possible	values	that	an	underlying	representation	may	take.	
Furthermore,	a	linear	increment	may	not	be	possible.	For	
example,	a	sensor	on	the	fuel	tank	may	return	values	from	0	
to	15,	which	represents	the	position	of	a	physical	float	in	the	
tank	or	a	liquid	sensor	against	the	side	of	the	tank.	The	actual	
volume	in	the	tank	would	be	dependent	on	a	lookup	table,	
and	computed	by	the	service	layer	that	receives	the	raw	CAN	
data	and	provides	the	values	into	the	JavaScript	interface.	
Hence,	the	possible	fuel	level	values	received	by	JavaScript	
might	be	0%,	1%,	3%,	5%,	15%,	25%,	40%,	50%,	etc..	The	
resulting	values	are	non-linear	and	may	not	be	easily	
determined	by	the	JavaScript	API.		
	
It	is	complicated	to	generalize	the	mechanism	to	supply	a	
valid	set	of	values	for	any	arbitrary	attribute.	Simplifying	the	
implementation	by	allowing	attributes	to	take	any	value	
within	the	range	seems	a	reasonable	solution,	especially	



since	the	value	in	providing	that	increment	seems	
questionable	and	would	be	hard	in	practice	to	properly	deal	
with	within	the	application.	

c. Update	frequency		
i. Guideline:	The	API	will	be	allowed	to	silently	coalesce	(or	

merge)	multiple	“set”	or	“get”	calls	to	the	same	attribute	if	
they	occur	faster	than	a	reasonable	rate.	No	API	is	provided	
to	the	application	that	allows	querying	the	maximum	update	
frequency.	
	
Terminology:	“Reasonable	rate”	is	defined	uniquely	against	
an	execution	profile,	specific	OS+web	platform,	bus	
characteristics,	and	vehicle	model.	Execution	profile	is	used	
to	mean	that	the	maximum	update	rate	may	fluctuate	
depending	on	what	simultaneous	services	the	infotainment	
system	is	providing,	what	condition	the	vehicle	is	in	(e.g.	park	
vs	drive),	or	potential	state	of	the	driver	(e.g.	estimate	of	
cognitive	workload).		
	
Rationale:	The	system	needs	to	prevent	excessive	
CAN/MOST/EAVB	bus	updates	to	ensure	proper	operation	of	
the	system	under	all	conditions.	This	could	be	achieved	
through	several	mechanisms	(adaptive	CPU	time	partitioning,	
CAN	message	traffic	monitoring,	automatic	message	
folding/caching,	strict	rate	limit,	etc).	It	may	be	extremely	
difficult	in	practice	to	compute	a	maximum	rate	that	is	usable	
by	the	application.	This	is	especially	true	since	that	maximum	
rate	may	fluctuate	and	may	be	invalid	by	the	time	the	
application	attempts	to	utilize	it.	

d. Value	accuracy	
i. Guideline:	All	attribute	values	will	use	WebIDL	types.		

	
Rationale.	It	is	useful	for	the	application	to	consistently	apply	
data	types	that	cover	the	attribute	values	to	avoid	
introducing	programming	logic	errors.	Although	an	API	for	
JavaScript	only	needs	to	support	Strings,	Numbers,	and	
Booleans,	WebIDL	was	chosen	for	two	primary	reasons.	
Firstly,	it	is	compliant	with	W3C	standards,	and	as	such,	all	
new	W3C	standards	are	enforcing	its	use.	This	by	itself	may	
be	sufficient,	but	in	addition,	the	open	source	cross-mobile	
HTML5	platform	Cordova	is	on	an	eventual	migration	path	to	
WebIDL	(for	W3C	compatibility).	One	additional	side	benefit	
may	be	WebIDL	promotes	adaptation	of	this	API	for	non-
JavaScript	languages.	

2) List	of	attributes	
a. Naming	rules	



i. Guideline:	Names	should	use	standard	terminology	accepted	
within	the	automotive	industry.	
	
Rationale:	Adoption	by	all	parties	should	use	names	well	
accepted	by	the	industry.	

ii. Guideline:	Names	should	be	all	lower	camel	case	(e.g.	
lowercaseFirstLetterFollowingWordsStartWithUpper).	
	
Rationale:	Following	relatively	common	and	widespread	
JavaScript	practice.	

iii. Guideline.	Names	containing	an	acronym	will	contain	the	
uppercase	version	of	the	acronym	(eg.	HVAC	vs	Hvac,	VIN	vs	
Vin),	as	an	exception	to	lower	camel	case.	
	
Rationale:	This	is	how	people	expect	to	encounter	the	names,	
also	prevents	issues	with	misunderstanding	acronym	as	a	
“word”.	

iv. Guideline:	Names	should	be	consistently	applied	regardless	of	
geographical	region	(e.g.	use	driver/passenger	instead	of	
left/right	when	applying	to	things	that	could	switch	sides	
depending	on	right-hand	vs	left-hand	driving	standards,	use	
terminology	that	is	not	regional-only	like	British	“boot”	(for	
trunk),	etc).	Use	American	English	spelling	and	terminology	
when	words	have	multiple	regional	options	(eg.	use	“Center”	
instead	of	“centre”)	
	
Rationale:	Almost	all	OEMs	provide	world-wide	distributions,	
and	creating	an	API	that	did	not	allow	transparent	operation	
of	applications	across	multiple	geographies	is	counter-
productive.	

v. Guideline:	Do	not	use	car	maker	specific	terminology	or	
brand	names	
	
Rationale:	Names	should	be	consistent	across	automotive	
OEMs,	and	so	we	should	avoid	creating	areas	of	conflict	

vi. Guideline:	Create	attributes	that	are	independent	of	vehicle	
capability	assumptions	
	
Rationale:	We	do	not	want	APIs	to	break	when	placed	in	a	
vehicle	that	does	not	have	the	capability,	or	that	has	
additional	capabilities.	For	example,	a	single	wiper	value	
setting	does	not	accommodate	a	vehicle	that	has	a	front	and	
rear	wiper.	Values	that	assume	one	fan	setting	for	climate	
control	do	not	handle	driver+passenger	climate,	or	
front/mid/rear	independent	climate	control	zones.	



vii. Guideline:	Do	not	use	attribute	or	enumeration	names	that	
hard-code	assumptions	on	number.	For	example	
“ManualGear1”..”ManualGear10”,	or	
“DoorsInRow1”..”DoorsInRow3”	
	
Rationale:	Similar	to	the	guideline	for	creating	attributes	
independent	of	vehicle	capability	assumption,	this	pre-
disposes	knowledge	of	the	maximum	value	that	an	attribute	
may	attain.	Artificially	low	limits	constrain	the	API—what	if	
your	vehicle	has	more	than	3	rows	of	seats	(full-sized	van)?	
Artificially	high	limits	make	the	API	look	nonsensical.	Both	
create	an	API	that	is	not	generic	and	non-orthogonal,	and	is	
not	flexible	for	future	extension.	Data	should	be	restructured	
such	that	the	numerical	information	is	independent	of	the	
attribute	name	(perhaps	by	using	multiple	independent	
attributes).	

viii. Guideline:	Create	attributes	that	are	independent	of	
mechanism	
	
Rationale:	Vehicle	buses	or	technologies	change—we	don’t	
want	the	APIs	to	be	describing	obsolete	technologies.	For	
example,	don’t	build	APIs	using	CAN	bus	when	the	same	
service	could	be	provided	by	MOST,	FlexRay,	or	EAVB.	Or	
don’t	assume	gears	are	mandatory	for	vehicles	with	CVT.	

ix. Guideline:	Names	should	use	abbreviations	or	acronyms	
when	there	exists	a	generally	adopted	shortened	form.	For	
example:	HVAC,	id.	When	words	can	provide	alternative	
meanings	if	shortened,	the	abbreviated	form	should	be	
avoided	(eg.	Temp	for	Temperature	vs	Temp	for	Temporary).	
	
Rationale:	As	JavaScript	is	an	interpreted	language,	longer	
names	may	have	a	performance	effect.	Shortening	the	names	
when	they	are	unique	and	non-confusable	can	improve	
application	execution	speed.	

x. Guideline:	Attributes	should	be	quantities	that	are	available	
by	querying	a	vehicle	system,	subsystem,	or	service,	or	are	
derived	from	such	queried	values.	Fabricating	attribute	
values	by	hardcoding	within	the	API’s	implementation	layer	
should	not	be	required.	A	questionable	attribute	can	be	
retained	if	evidence	can	be	provided	that	any	one	
manufacturer’s	vehicle	supports	that	attribute.	
	
Rationale:	If	the	API	implementation	cannot	access	valid	
values	for	an	attribute,	it	is	forced	with	making	the	attribute	
optional	(and	hence	dropping	support	for	it),	or	
programming	the	information	somehow	into	the	module.	



Any	changes	that	would	require	modifications	of	the	
manufacturing	line	are	considered	too	intrusive.	For	example,	
an	API	that	returns	the	color	of	the	car	would	be	disallowed	
because	that	information	would	not	be	contained	anywhere	
within	the	vehicle.	The	only	way	that	information	could	be	
made	available	to	a	JavaScript	API	would	be	if	it	were	
specially	programmed	into	each	vehicle	coming	off	the	
assembly	line	with	a	color	code.	The	provision	to	allow	for	
questionable	attributes	to	be	left	in	the	specification	is	
because	there	are	differences	between	all	manufacturers	on	
what	data	is	supported.	If	the	defender	of	an	attribute	under	
question	can	come	up	with	a	specific	example	where	the	
attribute	is	implemented	by	some	manufacturer,	then	it	
should	be	left	in	the	specification.	Coming	up	with	a	single	
counter-example	is	viewed	as	enough	evidence	of	the	value	
of	retaining	a	property.	

b. Create	consistent	organizational	rules	for	attribute	grouping		
i. Guideline:	Base	attribute	organization	on	major	underlying	

car	systems	(e.g.	Power	train,	Body,	Safety,	Infotainment,	
Telematics,	etc)	
	
Rationale.	Data	grouping	should	take	advantage	of	an	already	
existing	logical	organization.		

3) Methods	
a. Attribute	set/get	

i. Guideline:	Additional	attributes	cannot	be	added	in	an	
implementation	when	the	attribute	in	question	is	already	
present	in	the	API	specification,	unless	the	new	attribute	is	
an	alternative	view	and	the	W3C	conformant	attribute	is	
already	provided.	
	
Rationale:	Applications	should	be	able	to	rely	on	features	
being	provided	in	a	consistent	way.	Although	optional	
attributes	give	the	automaker	flexibility	to	not	supply	
attributes	that	are	absent,	unknown,	or	unallowed	for	a	
particular	vehicle,	an	optional	attribute	mechanism	should	
not	be	abused	to	avoid	compliance	with	the	specification.	For	
example—if	the	specification	calls	for	fuelLevel	as	a	
percentage,	the	implementer	cannot	remove	fuelLevel	while	
providing	fuelInLitres,	although	the	implementer	could	
choose	to	supply	both	fuelLevel	(in	the	spec)	and	fuelInLitres	
(additional	extension).	An	application	must	be	able	to	rely	on	
attribute	consistency	for	adherence	to	specification	to	have	
value.	

b. Decoding	values	



i. Guideline:	Do	not	force	applications	to	contain	automotive	
specific	logic	(e.g.	decoding	VIN).	
	
Rationale:	Developers	may	be	mobile	developers	without	an	
understanding	of	the	proper	way	to	decode	automotive	
specific	values.	Decoding	of	values	will	need	to	be	done	by	
multiple	applications,	and	it	is	better	for	the	overall	system	if	
the	computation	can	be	done	in	a	single	function	instead	of	
having	to	be	inserted	into	every	application	that	requires	a	
computed	value.	

c. Use	of	callbacks	
i. Guideline:	All	get/set	methods	will	return	their	data	through	

callbacks.	
	
Rationale:	This	is	standard	JavaScript	practice,	and	allows	the	
the	greatest	execution	“concurrency”	in	a	single	threaded	
model.	Blocking	calls	prevent	other	JavaScript	code	from	
running,	and	even	though	the	block	may	be	measured	in	
milliseconds,	this	adds	up	over	many	calls.	This	is	why	most	
extensible	JavaScript	frameworks	(like	Cordova)	use	event-
driven	callbacks	to	return	their	data.	

ii. Guideline:	Get/set	functions	will	use	error	callbacks	to	return	
errors.	
	
Rationale:	Very	similar	to	above,	this	allows	the	caller	to	
continue	execution.	It	also	places	all	error	handling	in	
centralized	handlers	as	opposed	to	requiring	error	checking	
after	each	API	function.	This	is	the	JavaScript	equivalent	of	
using	an	exception	handler.	

d. Overlap	with	W3C	APIs	
i. Guideline:	No	functions	will	be	provided	that	overlap	with	

existing	W3C	APIs.	
	
Rationale:	Reuse	existing	standards	work,	as	well	as	ensure	
compatibility	with	the	greatest	number	of	existing	programs.	

e. Value	histories	
i. Guildline:	Although	not	prohibited,	historical	values	will	not	

be	provided	for	any	arbitrary	attribute.	If	historical	values	
are	provided	for	an	attribute,	they	should	follow	an	API	
consistent	with	the	existing	get/set	method	signature;	for	
example,	getHistory(<attribute>,	successCallback,	
errorCallback).	
	
Rationale:	Some	of	the	consulted	contributions	provide	a	
mechanism	to	get	the	history	of	changes	in	an	attribute.	
While	this	could	be	useful	in	certain	use	cases,	this	adds	a	



good	deal	of	overhead	to	the	implementation,	and	to	the	
vehicle	bus	traffic.	This	also	assumes	that	the	attributes	are	
continually	queried	and	stored	on	a	periodic	basis,	which	
may	not	be	the	case.	Pushing	support	for	this	use	case	from	
the	API	to	the	application	allows	the	application	to	control	
which	attributes	and	how	frequently	they	are	queried,	
lessening	the	overall	load	on	the	system.	
	
There	may	be	a	select	subset	of	attributes	where	the	value	in	
maintaining	historical	values	outweighs	the	overhead,	or	can	
potentially	lessen	the	overhead	for	commonly	requested	
attributes.	

4) API	meta-concerns	
a. RESTful	APIs	

i. Guideline:	All	APIs	should	provide	a	REST	equivalent	
whenever	practical.	
	
Rationale:	RESTful	APIs	allows	calling	functions	from	
frameworks	that	do	not	otherwise	allow	JavaScript	calls.	This	
includes	some	commercial/open	source	JavaScript	
frameworks,	but	also	makes	it	possible	to	call	the	functions	
from	any	language	that	can	issue	HTTP	requests.	

b. Security	
i. Guideline:	The	API	must	include	access	control	so	that	

applications	without	sufficient	privileges	can	be	denied	
access	to	vehicle	services.	The	granularity	of	this	access	
should	be	fine	grained	(per	attribute).	
	
Rationale:	The	need	for	security	is	paramount.	Although	
security	clearly	affects	“set”	operations	that	could	change	the	
vehicle	state,	information	about	the	driver	and/or	vehicle	
gained	through	unauthorized	“get”	requests	should	also	be	
prevented.	
	
It	is	possible	that	this	is	already	addressed	through	the	W3C	
SysApps	group	<THIS	NEEDS	TO	BE	CONFIRMED>	

	
	


