
Semantic Network Analysis
Kasper Welbers & Wouter van Atteveldt

May 25, 2016

One way to create semantic networks is to calculate how often words co-occur together. This co-occurence
reflects a semantic relation, because it indicates that the meaning of these words is related.

In this howto we demonstrate two functions to calculate the co-occurence of words. The first is the
coOccurenceNetwork function, which calculates the co-occurence of words within documents based on a
document term matrix. The second is the windowedCoOccurenceNetwork, which calculates how often words
co-occur within a given word distance based on tokenized texts.

We start with a simple example.

library(semnet)
data(simple_dtm)
dtm

6 x 7 sparse Matrix of class "dgTMatrix"
nuclear energy waste weapons bad war good
1 1 1
2 1 . 1
3 1 . . 1 . . .
4 . . . 1 1 1 .
5 . . 1 . 1 . .
6 . 1 1

dtm is a document term matrix: the rows represent documents and the columns represent words. Values
represent how often a word occured within a document. The co-occurence of words can then be calculated
as the number of documents in which two words occur together. This is what the coOccurenceNetwork
function does.

g = coOccurenceNetwork(dtm)

Note: method with signature 'CsparseMatrix#Matrix#missing#replValue' chosen for function '[<-',
target signature 'dgCMatrix#nsCMatrix#missing#numeric'.
"Matrix#nsparseMatrix#missing#replValue" would also be valid

plot(g, vertex.size=V(g)$freq*10)

1

nuclear

energy

waste

weaponsbad

war

good

Of course, this method mainly becomes interesting when lots of documents are analyzed. This could for
instance show how often the word ‘nuclear’ is used in the context of ‘energy’, compared to the context of
‘weapons’ and ‘waste’. Thus, it can provide an answer to the question: if one think or talks about nuclear
technology, what discourses, frames or topics come to mind?

To demonstrate the windowedCoOccurenceNetwork function we’ll use a larger dataset, consisting of the state
of the union speeches of Obama and Bush (1090 paragraphs). We’ll filter the data on part-of-speech tags to
contain only the nouns, names and adjectives.

data(sotu)
sotu.tokens = sotu.tokens[sotu.tokens$pos1 %in% c('N','M','A'),]
head(sotu.tokens)

word sentence pos lemma offset aid id pos1 freq
4 unfinished 1 JJ unfinished 10 111541965 4 A 1
5 task 1 NN task 21 111541965 5 N 1
9 basic 1 JJ basic 41 111541965 9 A 1
10 bargain 1 NN bargain 47 111541965 10 N 1
14 country 1 NN country 71 111541965 14 N 1
17 idea 1 NN idea 84 111541965 17 N 1

We are interested in three columns in the sotu.tokens dataframe: * The lemma column, which is the lemma
of a term (the non-plural basic form of a word). We use this instead of the word because we are interested
in the meaning of words, for which it is generally less relevant in what specific form it is used. Thus, we
consider the words “responsibility” and “responsibilities” to represent the same meaning. * The aid column,
which is a unique id for the document, in this case for a paragraph in the SotU speeches. We refer to this
as the context in which a word occurs. * The id column, which is the specific location of a term within a
context. For example, the first row in sotu.tokens shows that in context 111541965, the term unfinished
was the fourth term.

These columns are the main arguments for the windowedCoOccurenceNetwork function. In addition, the
window.size argument determines the word distance within which words need to occur to be counted as a
co-occurence.

g = windowedCoOccurenceNetwork(location=sotu.tokens$id,
term=sotu.tokens$lemma,
context=sotu.tokens$aid,
window.size=20)

2

class(g)

[1] "igraph"

vcount(g)

[1] 3976

ecount(g)

[1] 201792

Visualizing Semantic Networks

The output g is an igraph object—a popular format for representing and working with graph/network data.
vcount(g) shows that the number of vertices (i.e. terms) is 3976. ecount(g) shows that the number of edges
is 201792.

Naturally, this would not be an easy network to interpret. Therefore, we first filter on the most important
vertices and edges. There are several methods to do so (see e.g., [Leydesdorff & Welbers, 2011]{http:
//arxiv.org/abs/1011.5209}). Here we use backbone extraction, which is a relatively new method (see [Kim
& Kim, 2015]{http://jcom.sissa.it/archive/14/01/JCOM_1401_2015_A01}. Essentially, this method filters
out edges that are not significant based on an alpha value, which can be interpreted similar to a p-value. To
filter out vertices, we lower the alpha to a point where only the specified number of vertices remains.

g_backbone = getBackboneNetwork(g, alpha=0.0001, max.vertices=100)

Used cutoff alpha 3.98523848383456e-05 to keep number of vertices under 100

(For the edges the threshold assigned in the alpha parameter is still used)

vcount(g_backbone)

[1] 100

ecount(g_backbone)

[1] 255

Now there are only 100 vertices and 255 edge left. This is a network we can interpret. Let’s plot!

plot(g_backbone)

3

http://arxiv.org/abs/1011.5209
http://arxiv.org/abs/1011.5209
http://jcom.sissa.it/archive/14/01/JCOM_1401_2015_A01

countrypeople
America

business

school
childUnited

States

more

student

math

high

job
family

work

Congress

Federal

new

parent

economytoday
year
good

woman

companyAmericans

home

middleclass

source

world

month

law

american

market

million

young

Government

government
credit

firsttime

healthcare
cost

nation

last
cut

next

industry

reform
plan

future
small

AlQaida hard

God

DemocratsRepublicans

energy

weapon
Medicare

senior

Tax
Code

tax

clean

man

insurance

other

citizen

nuclearworker

coverage

member

percentincomepast

fellow

relief

Social
Security

Nations

September11thdestructionmass

freedom

science

skill

enforcement

regime

medical

SaddamHussein

Middle
East

Wall
Street

Nice, but still a bit messy. We can take some additional steps to focus the analysis and add additional
information. First, we can look only at the largest connected component, thus ignoring small islands of terms
such as math and science.

select only largest connected component
g_backbone = decompose.graph(g_backbone, max.comps=1)[[1]]
plot(g_backbone)

countrypeople
America

business

school

child
UnitedStates

more

studenthigh

job
family

Congress

new

parent

economy

today
year

goodcompany

Americans

home

source
world

month

americanmarket

million

young
government

credit

first
time

healthcare
cost

nation

last

cut

next

industry

reformplan

future

small

God

energy
weapon

tax

clean

insurance

other

nuclear

worker

coverage
member

percent
income

past
relief

Nations
destructionmass freedom

skill

regime

medical

Next, it would be interesting to take into account how often each term occured. This can be visualized by
using the frequency of terms to set the sizes of the vertices. Also, we can use colors to indicate different
clusters.

The output of the (windowed)coOccurenceNetwork function by default contains the vertex attribute freq,
which can be used to set the vertex sizes. To find clusters, several community detection algorithms are
available. To use this information for visualization some basic understanding of plotting igraph objects is
required, which is out of the scope of this tutorial. We do provide a function named setNetworkAttributes
which deals with these and some other visualization attributes.

V(g_backbone)$cluster = edge.betweenness.community(g_backbone)$membership

g_backbone = setNetworkAttributes(g_backbone, size_attribute=V(g_backbone)$freq,
cluster_attribute=V(g_backbone)$cluster)

4

plot(g_backbone)

countrypeopleAmericabusiness
schoolchild

United
States

more
student
high

jobfamily

Congress

new parent

economy

today

yeargoodcompanyAmericans
home

source

world

month

american

market

million

young
government

credit

first

time

health
care

cost

nation

last

cut

next
industry

reform

plan

futuresmall
God

energy

weapon

tax

clean

insurance

other

nuclear

worker

coverage
member

percent

income

past

relief

Nations

destructionmass

freedom
skill

regime

medical

Now we have a more focused and informational visualization. We can for instance see several clusters that
represent important talking points, such as the health care debate and the issue of nuclear weapons. Also, we
see that America is at the center of discussions, in particular in context of economy and the job market.

Extracting Quantitative Information from networks

Computing network metrics

The igraph package contains numerous functions for computing network statistics. For example, this code
computes the degree centrality (links per node) for the original semantic network:

c = centralization.degree(g)
degree = data.frame(node=V(g)$name, degree=c$res)
head(arrange(degree, -degree))

node degree
America 2598
year 2510
people 2358
new 2180
country 2050
more 1998

Or you can get the most central nodes in the backgone network (using betweenness centrality)

c = centralization.betweenness(g_backbone)
centrality = data.frame(node=V(g_backbone)$name, centrality=c$res)
head(arrange(centrality, -centrality))

5

node centrality
America 1588.5747
year 1433.3884
job 781.8806
tax 618.6967
world 592.8101
Americans 574.0363

Extracting relations

If we want to do more quantitative anlaysis of the network it can be useful to extract all relations as a data
frame:

edges = as_data_frame(g, what="edges")
head(edges)

from to weight
task unfinished 3
basic unfinished 1
bargain unfinished 1
country unfinished 2
idea unfinished 1
people unfinished 1

The most frequent edges are also good candidates for collocation:

edges = arrange(edges, -weight)
head(edges)

from to weight
health care 82
year last 81
care health 80
United States 77
States United 76
american people 72

Extraecting co-occurrences per document

If you want to see in which documents an edge is contained, for example to add a time dimension to the
network or to compare sources, you can set output.per.context=T in the original call. Since this will take
a lot longer to run and generate a lot of output, we limit here to a sample of 10 paragraphs from Obama’s
speeches:

smp = sample(sotu.meta$id[sotu.meta$headline == "Barack Obama"], 10)
edges = with(sotu.tokens[sotu.tokens$aid %in% smp,],

windowedCoOccurenceNetwork(location=id, term=lemma, context=aid,

6

window.size=20, output.per.context = T))
head(edges)

x y context weight
rubble crisis 111551833 1
rubble confidence 111551833 1
rubble state 111551833 1
rubble Union 111551833 1
rubble stronger 111551833 1
crisis rubble 111551833 1

Semnet for sentiment anlaysis

We can also use the word-windo approach for sentiment analysis. Suppose we would want to get the sentiment
in phrases around ‘Iraq’ and ‘terror’. First, we need to load a sentiment dictionary and for this exercise we
will use a list to store the dictionary:

lexicon = readRDS("data/lexicon.rds")
dictionary = list(

pos = lexicon$word1[lexicon$priorpolarity == "positive"],
neg = lexicon$word1[lexicon$priorpolarity == "negative"],
iraq = c("Iraq", "Iraqi"),
terror = c("terror", "terrorism", "terrorist"))

Now, we can use this to make a new ‘concept’ column that contains that concept and the sentiment values
positive or negative

data(sotu)
sotu.tokens$concept = NA
for (concept in names(dictionary)) {

sotu.tokens$concept[sotu.tokens$lemma %in% dictionary[[concept]]] = concept
}
table(sotu.tokens$concept)

##
iraq neg pos terror
109 3526 6972 182

We can use now get all windowed co-occurrences for these concepts using:

hits = windowedCoOccurenceNetwork(location=sotu.tokens$id, term=sotu.tokens$concept, context=sotu.tokens$aid,
window.size=20, output.per.context = T)

head(hits)

x y context weight
neg pos 111541965 1
neg pos 111541965 1

7

x y context weight
neg pos 111541995 1
neg pos 111541995 1
neg pos 111541995 1
neg pos 111541995 1

Now, we can compute a sentiment score and get the mean sentiment per context, excluding pos and neg itself:

hits$sentiment[hits$y == "pos"] = 1
hits$sentiment[hits$y == "neg"] = -1
hits = hits[!(hits$x %in% c("pos", "neg")),]
library(reshape2)
sent = dcast(hits, context ~ x, value.var="sentiment", fun.aggregate = mean)
head(sent)

context iraq terror
111542025 NaN 1
111542114 NaN 0
111542119 NaN 0
111542189 0 NaN
111542284 1 NaN
111542285 NaN 0

Finally, let’s merge that back with the metadata to get sentiment about Iraq and teror per president:

sent = merge(sotu.meta, sent, by.x="id", by.y="context")
aggregate(sent[c("iraq", "terror")], sent["headline"], mean, na.rm=T)

headline iraq terror
1 Barack Obama 0.05333333 0.13333333
2 George W. Bush 0.13530778 -0.06615646

So, both presidents are positive about (their policy in) Iraq, but while Bush is negative about terror, Obama
is actually positive (presumably mostly talking about his efforts to contain it).

8

	Visualizing Semantic Networks
	Extracting Quantitative Information from networks
	Computing network metrics
	Extracting relations
	Extraecting co-occurrences per document

	Semnet for sentiment anlaysis

