
Text Classification with R
Wouter van Atteveldt

June 1, 2016

Machine Learning or automatic text classification is a set of techniques to train a statistical model on a set of
annotated (coded) training texts, that can then be used to predict the category or class of new texts.

R has a number of different packages for various machine learning algorithm such as maximum entropy
modeling, neural networks, and support vector machines. RTextTools provides an easy way to access a large
number of these algorithms.

In principle, like ‘classical’ statistical models, machine learning uses a number of (independent) variables
called features to predict a target (dependent) category or class. In text mining, the independent variables are
generally the term frequencies, and as such the input for the machine learning is the document-term matrix.

RTextTools can be installed directly from CRAN:

install.packages("RTextTools")

Obtaining data

For this example, we will use Amazon reviews from http://jmcauley.ucsd.edu/data/amazon/ and classify
whether they are positive or negative. See the hand-out ‘Getting Sentiment Resources’ hand-out for how to
download and prepare these yourlelf, or you can download the directly from http://rawgit.com/vanatteveldt/
learningr/master/data/reviews.rds.

reviews = readRDS("data/reviews.rds")

Creating the Document Term Matrix

So, the first step is to create a document-term matrix. To make it run faster for testing, we take a limited
data set here. Since reviews are mostly positive (taking positive to be 4 or 5 stars), we sample 500 positive
and 500 negative reviews to use:

reviews$id = 1:nrow(reviews)
reviews$positive = as.numeric(reviews$overall >= 4)
pos = sample(reviews$id[reviews$positive == 1], 500)
neg = sample(reviews$id[reviews$positive == 0], 500)
reviews = reviews[reviews$id %in% c(pos, neg),]

Now, we can create a dtm:

library(RTextTools)
dtm = create_matrix(reviews[c("summary", "reviewText")], language="english", stemWords=T)

Of course, now that we have a DTM we can plot a word cloud to get some feeling of the most frequent words:

library(corpustools)
dtm.wordcloud(dtm)

1

http://jmcauley.ucsd.edu/data/amazon/
http://rawgit.com/vanatteveldt/learningr/master/data/reviews.rds
http://rawgit.com/vanatteveldt/learningr/master/data/reviews.rds
http://rawgit.com/vanatteveldt/learningr/master/data/reviews.rds
http://rawgit.com/vanatteveldt/learningr/master/data/reviews.rds

use
work

carone
product

justwill
get

good
likecan
great
well

batteri

look

time

light

need

dont

clean

tri

make

better

m
uc

h
fit

also easi
realli

in
st

al
nice

even

bl
ad

e

seem

thing

filter

keep

remov

buy

replac

littl

back

two

bought

way

year

price

made
wiper

review
think water

qualiti

see

first

vehicl

tir
e

recommend

new

come

job

wax

put

still

spray

didnt

la
st

oil

say

sure

want
w

as
h

plastic

small

en
d

nowpaint

ive

lo
ngoldtake

towel

high

power

best

set

di
ffe

r

month

never

side

enough
know

part
bu

lb
cl

ea
r

go
t

(we could also e.g. compare the words in positive and negative reviews, or run a topic model on only the
positive or negative terms; see the handouts comparing.pdf and lda.pdf, respectively)

Preparing the training and testing data

The next step is to create the RTextTools container. This contains both the dt matrix and the manually
coded classes, and you specify which parts to use for training and which for testing.

To make sure that we get a random sample of documents for training and testing, we sample 80% of the
set for training and the remainder for testing. (Note that it is important to sort the indices as otherwise
GLMNET will fail)

n = nrow(dtm)
train = sort(sample(1:n, n*.8))
test = sort(setdiff(1:n, train))

Now, we are ready to create the container:

c = create_container(dtm, reviews$positive, trainSize=train, testSize=test, virgin=F)

Using this container, we can train different models:

SVM <- train_model(c,"SVM")
MAXENT <- train_model(c,"MAXENT")
GLMNET <- train_model(c,"GLMNET")

2

Testing model performance

Using the same container, we can classify the ‘test’ dataset

SVM_CLASSIFY <- classify_model(c, SVM)
MAXENT_CLASSIFY <- classify_model(c, MAXENT)
GLMNET_CLASSIFY <- classify_model(c, GLMNET)

Let’s have a look at what these classifications yield:

head(SVM_CLASSIFY)

SVM_LABEL SVM_PROB
0 0.6274446
1 0.5109576
1 0.6390636
1 0.7141816
1 0.7563346
1 0.7438113

For each document in the test set, the predicted label and probability are given. We can compare these
predictions to the correct classes manually:

t = table(SVM_CLASSIFY$SVM_LABEL, as.character(reviews$positive[test]))
t

##
0 1
0 69 31
1 27 73

(Note that the as.character cast is necessary to align the rows and columns) And compute the accuracy:

sum(diag(t)) / sum(t)

[1] 0.71

Analytics

To make it easier to compute the relevant metrics, RTextTools has a built-in analytics function:

analytics <- create_analytics(c, cbind(SVM_CLASSIFY, GLMNET_CLASSIFY, MAXENT_CLASSIFY))
names(attributes(analytics))

[1] "label_summary" "document_summary" "algorithm_summary"
[4] "ensemble_summary" "class"

3

The algorithm_summary gives the performance of the various algorithms, with precision, recall, and f-score
given per algorithm:

head(analytics@algorithm_summary)

SVM_PRECISION SVM_RECALL SVM_FSCORE GLMNET_PRECISION GLMNET_RECALL GLMNET_FSCORE MAXENTROPY_PRECISION MAXENTROPY_RECALL MAXENTROPY_FSCORE
0 0.69 0.72 0.70 0.69 0.80 0.74 0.64 0.70 0.67
1 0.73 0.70 0.71 0.78 0.66 0.72 0.69 0.63 0.66

The label_summary gives the performance per label (class):

head(analytics@label_summary)

NUM_MANUALLY_CODED NUM_CONSENSUS_CODED NUM_PROBABILITY_CODED PCT_CONSENSUS_CODED PCT_PROBABILITY_CODED PCT_CORRECTLY_CODED_CONSENSUS PCT_CORRECTLY_CODED_PROBABILITY
0 96 107 106 111.45833 110.41667 77.08333 71.87500
1 104 93 94 89.42308 90.38462 68.26923 64.42308

Finally, the ensemble_summary gives an indication of how performance changes based on the amount of
classifiers that agree on the classification:

head(analytics@ensemble_summary)

n-ENSEMBLE COVERAGE n-ENSEMBLE RECALL
n >= 1 1.00 0.72
n >= 2 1.00 0.72
n >= 3 0.71 0.77

The last attribute, document_summary, contains the classifications of the various algorithms per document,
and also lists how many agree and whether the consensus and the highest probability classifier where correct:

head(analytics@document_summary)

SVM_LABEL SVM_PROB GLMNET_LABEL GLMNET_PROB MAXENTROPY_LABEL MAXENTROPY_PROB MANUAL_CODE CONSENSUS_CODE CONSENSUS_AGREE CONSENSUS_INCORRECT PROBABILITY_CODE PROBABILITY_INCORRECT
0 0.6274446 0 0.7147742 1 0.8646159 1 0 2 1 1 0
1 0.5109576 1 0.5134027 1 0.8925540 0 1 3 1 1 1
1 0.6390636 0 0.6639251 1 0.9999963 0 1 2 1 1 1
1 0.7141816 1 0.9048356 1 1.0000000 1 1 3 0 1 0
1 0.7563346 1 0.9905123 1 1.0000000 1 1 3 0 1 0
1 0.7438113 1 0.9405767 1 1.0000000 1 1 3 0 1 0

Classifying new material

New material (called ‘virgin data’ in RTextTools) can be coded by placing the old and new material in a
single container. Let’s assume that we don’t know the sentiment of 20% of our material:

4

reviews$positive[1:200] = NA

We now set all documents with a sentiment score as training material, and specify virgin=T to indicate that
we don’t have coded classes on the test material:

coded = which(!is.na(reviews$positive))
c = create_container(dtm, reviews$positive, trainSize=coded, virgin=T)

We can now build and test the model as before:

SVM <- train_model(c,"SVM")
MAXENT <- train_model(c,"MAXENT")
GLMNET <- train_model(c,"GLMNET")
SVM_CLASSIFY <- classify_model(c, SVM)
MAXENT_CLASSIFY <- classify_model(c, MAXENT)
GLMNET_CLASSIFY <- classify_model(c, GLMNET)
analytics <- create_analytics(c, cbind(SVM_CLASSIFY, GLMNET_CLASSIFY, MAXENT_CLASSIFY))
names(attributes(analytics))

[1] "label_summary" "document_summary" "class"

As you can see, the analytics now only has the label_summary and document_summary:

analytics@label_summary

NUM_CONSENSUS_CODED NUM_PROBABILITY_CODED
0 421 418
1 379 382

head(analytics@document_summary)

SVM_LABEL SVM_PROB GLMNET_LABEL GLMNET_PROB MAXENTROPY_LABEL MAXENTROPY_PROB CONSENSUS_CODE CONSENSUS_AGREE PROBABILITY_CODE
0 0.7845596 0 0.7190914 0 0.9990135 0 3 0
1 0.7788332 1 0.9172107 1 0.9999999 1 3 1
1 0.7657043 1 0.8136316 1 0.9994930 1 3 1
0 0.8481629 0 0.8979255 0 1.0000000 0 3 0
1 0.6769943 1 0.7211425 1 0.9999983 1 3 1
1 0.6108151 1 0.7173253 1 0.9999996 1 3 1

The label summary now only contains an overview of how many where coded using consensus and probability.
The document_summary lists the output of all algorithms, and the consensus and probability code.

5

	Obtaining data
	Creating the Document Term Matrix
	Preparing the training and testing data
	Testing model performance
	Analytics
	Classifying new material

