RBMRB

BMRB collects, annotates, archives, and disseminates (worldwide in the public domain) the important spectral and quantitative data derived from NMR spectroscopic investigations of biological macromolecules and metabolites. The goal is to empower scientists in their analysis of the structure, dynamics, and chemistry of biological systems and to support further development of the field of biomolecular NMR spectroscopy

RBMRB is a library to fetch NMR chemical shift data directly from BMRB into R environment as a data frame in R. This facilitates access to BMRB data for statistical analysis and data visualization. It is using the BMRB-API to fetch the data from BMRB database.

Installation

Method 1 (Easy method)

RBMRB version 2.0 is available in CRAN archive and it can be installed using the following command.

install.packages("RBMRB")

This will automatically install all the dependencies. Please make sure all the dependicies installed corretly otherwise, it will complain during runtime.

Method 2

RBMRB library has been developed and tested in R version 3.3.x. It requires the following R packages preinstalled

  • httr to import data from BMRB web server(version 1.2.1 or later)
  • data.table to format the imported data into a data frame in R (version 1.9.6 or later)
  • rjson to deal with BMRB-API (version 0.2.15 or later)
  • ggplot2 to simulate spectra (version 2.1.0 or later)
  • plotly for interactive graphics in simulated spectra (version 4.5.2 or later)

Users should make sure that the above packages have been installed correctly with the required versions, before proceeding to RBMRB installation.

Here is the instruction to install those packages. Open your R and use the following command

install.packages(c("httr","data.table","rjson","ggplot2","plotly"))

Once the necessary packages have been installed, proceed with RMRBM installation. The source file can be downloaded from GitHub

After downloading the source file, use the following command to install RBMRB library

install.packages("~/Downloads/RBMRB_2.0.tar.gz",repos=NULL,type="source")

Note: provide the correct path to the downloaded file.

Method 3

If you have devtools library in your R, then you can install directly from GitHub.

library(devtools)
install_github("uwbmrb/RBMRB/RBMRB")

Usage

RBMRB can be used in a similar way like any other library in R.

library(RBMRB)

Data access

BMRB data can be imported in two ways

  • Entry method Chemical shift data from single or multiple entries
  • Atom method Chemical shift data from all entries for a given atom

Entry method

fetch_entry_chemical_shifts:

This function will fetch the ‘Atom_chem_shift’ loop from a NMR-STAR file for a given entry or a list of entries in CSV format. This function works on both macromolecules and metabolites data base. For metabolites entry ids should have right prefix (example ‘bmse000034’)

Examples:
df1<-fetch_entry_chemical_shifts(15060)
df2<-fetch_entry_chemical_shifts(c(17074,17076,17077))
df2<-fetch_entry_chemical_shifts(c('17074','17076','17077'))
df3<-fetch_entry_chemical_shifts(c('bmse000034','bmse000035','bmse000036'))

These data frames have the following columns

colnames(df1)
##  [1] "ID"                          "Assembly_atom_ID"           
##  [3] "Entity_assembly_ID"          "Entity_ID"                  
##  [5] "Comp_index_ID"               "Seq_ID"                     
##  [7] "Comp_ID"                     "Atom_ID"                    
##  [9] "Atom_type"                   "Atom_isotope_number"        
## [11] "Val"                         "Val_err"                    
## [13] "Assign_fig_of_merit"         "Ambiguity_code"             
## [15] "Occupancy"                   "Resonance_ID"               
## [17] "Auth_entity_assembly_ID"     "Auth_asym_ID"               
## [19] "Auth_seq_ID"                 "Auth_comp_ID"               
## [21] "Auth_atom_ID"                "Details"                    
## [23] "Entry_ID"                    "Assigned_chem_shift_list_ID"

Sample data output

head(df1)
##   ID Assembly_atom_ID Entity_assembly_ID Entity_ID Comp_index_ID Seq_ID
## 1  1                .                  1         1            20     20
## 2  2                .                  1         1            20     20
## 3  3                .                  1         1            20     20
## 4  4                .                  1         1            20     20
## 5  5                .                  1         1            21     21
## 6  6                .                  1         1            21     21
##   Comp_ID Atom_ID Atom_type Atom_isotope_number     Val Val_err
## 1     LEU       H         H                   1   8.149      NA
## 2     LEU      CA         C                  13  56.016      NA
## 3     LEU      CB         C                  13  42.180      NA
## 4     LEU       N         N                  15 122.739      NA
## 5     VAL       H         H                   1   8.048      NA
## 6     VAL      CA         C                  13  63.412      NA
##   Assign_fig_of_merit Ambiguity_code Occupancy Resonance_ID
## 1                   .              1         .            .
## 2                   .              1         .            .
## 3                   .              1         .            .
## 4                   .              1         .            .
## 5                   .              1         .            .
## 6                   .              1         .            .
##   Auth_entity_assembly_ID Auth_asym_ID Auth_seq_ID Auth_comp_ID
## 1                       .            .          20          LEU
## 2                       .            .          20          LEU
## 3                       .            .          20          LEU
## 4                       .            .          20          LEU
## 5                       .            .          21          VAL
## 6                       .            .          21          VAL
##   Auth_atom_ID Details Entry_ID Assigned_chem_shift_list_ID
## 1           HN       .    15060                           1
## 2           CA       .    15060                           1
## 3           CB       .    15060                           1
## 4            N       .    15060                           1
## 5           HN       .    15060                           1
## 6           CA       .    15060                           1

Atom method

fetch_atom_chemical_shifts:

This function will fetch the chemical shift data from all the entries for a given atom. The atom name should be in NMR-STAR atom nomenclature.

Examples:
df4<-fetch_atom_chemical_shifts('CG2')
df5<-fetch_atom_chemical_shifts('C9')

These data frames have the following columns

colnames(df4)
##  [1] "Entry_ID"                    "Entity_ID"                  
##  [3] "Comp_index_ID"               "Comp_ID"                    
##  [5] "Atom_ID"                     "Atom_type"                  
##  [7] "Val"                         "Val_err"                    
##  [9] "Ambiguity_code"              "Assigned_chem_shift_list_ID"

Sample data output

head(df4)
##   Entry_ID Entity_ID Comp_index_ID Comp_ID Atom_ID Atom_type    Val
## 1    10001         1             1     ILE     CG2         C 15.700
## 2    10001         1             6     ILE     CG2         C 17.900
## 3    10002         1             3     ILE     CG2         C 17.516
## 4    10002         1            18     VAL     CG2         C 22.278
## 5    10002         1            19     THR     CG2         C 21.957
## 6    10002         1            26     THR     CG2         C 21.779
##   Val_err Ambiguity_code Assigned_chem_shift_list_ID
## 1     0.4              1                           1
## 2     0.3              1                           1
## 3     0.4              1                           1
## 4     0.4              1                           1
## 5     0.4              1                           1
## 6     0.4              1                           1

Data manipulation

There are few data manipulation functions are available to facilitate plotting.

convert_cs_to_n15hsqc:

This function will reformat the chemical shift data frame into a data frame which is easy to plot the N15-HSQC spectrum from the data.

Examples

n15hsqc1<-convert_cs_to_n15hsqc(df1)
n15hsqc2<-convert_cs_to_n15hsqc(df2)

The output data frame will look like

head(n15hsqc1)
##   Entry_ID Comp_index_ID Entity_ID Assigned_chem_shift_list_ID Comp_ID_H
## 1    15060       25 HE21         1                           1       GLN
## 2    15060       26 HE21         1                           1       GLN
## 3    15060       44 HE21         1                           1       GLN
## 4    15060       47 HE21         1                           1       GLN
## 5    15060       53 HE21         1                           1       GLN
## 6    15060       96 HE21         1                           1       GLN
##   Comp_ID_N     H       N
## 1       GLN 7.703 112.158
## 2       GLN 7.393 111.116
## 3       GLN 7.600 111.932
## 4       GLN 7.884 115.368
## 5       GLN 7.337 113.885
## 6       GLN 7.519 112.512

This data frame is easy to plot using any plotting library

library(ggplot2)
plt1<-ggplot(n15hsqc1)+geom_point(aes(x=H,y=N))
plt1

plt2<-ggplot(n15hsqc2)+geom_point(aes(x=H,y=N,color=Entry_ID))
plt2

plt3<-ggplot(n15hsqc2)+geom_point(aes(x=H,y=N,color=Entry_ID))+geom_line(aes(x=H,y=N,group=Comp_index_ID))
plt3

convert_cs_to_c13hsqc:

This function will reformat the chemical shift data frame into a data frame which is easy to plot the C13-HSQC spectrum from the data.

Examples

c13hsqc1<-convert_cs_to_c13hsqc(df1)
c13hsqc2<-convert_cs_to_c13hsqc(df2)

The output data frame will look like

head(c13hsqc1)
##   Entry_ID Comp_index_ID Entity_ID Assigned_chem_shift_list_ID Comp_ID_C
## 1    15060        101 HA         1                           1       ASP
## 2    15060        102 HA         1                           1       ASP
## 3    15060        103 HA         1                           1       SER
## 4    15060        104 HA         1                           1       ASP
## 5    15060        105 HA         1                           1       GLU
## 6    15060        106 HA         1                           1       GLU
##   Comp_ID_H Atom_ID_C Atom_ID_H      C     H
## 1       ASP        CA        HA 54.487 4.630
## 2       ASP        CA        HA 54.572 4.609
## 3       SER        CA        HA 58.470 4.420
## 4       ASP        CA        HA 54.567 4.640
## 5       GLU        CA        HA 56.521 4.271
## 6       GLU        CA        HA 56.400 4.300

and the user may generate a spectrum using the following script

library(ggplot2)
plt1<-ggplot(c13hsqc1)+geom_point(aes(x=H,y=C))
plt1

plt2<-ggplot(c13hsqc2)+geom_point(aes(x=H,y=C,color=Entry_ID))
plt2

convert_cs_to_tocsy:

This function will reformat the chemical shift data frame into a data frame which is easy to plot the TOCSY spectrum from the data. Note : Since both dimensions have proton chemical shifts, the columns are named as Val.x and Val.y

Examples

tocsy1<-convert_cs_to_tocsy(df1)
tocsy2<-convert_cs_to_tocsy(df2)

after conversion the data will look like

head(tocsy1)
##   Entry_ID Entity_ID Comp_index_ID Assigned_chem_shift_list_ID ID.x
## 1    15060         1           100                           1  915
## 2    15060         1           100                           1  915
## 3    15060         1           100                           1  916
## 4    15060         1           100                           1  916
## 5    15060         1           101                           1  919
## 6    15060         1           101                           1  919
##   Assembly_atom_ID.x Entity_assembly_ID.x Seq_ID.x Comp_ID.x Atom_ID.x
## 1                  .                    1      100       GLY       HA2
## 2                  .                    1      100       GLY       HA2
## 3                  .                    1      100       GLY       HA3
## 4                  .                    1      100       GLY       HA3
## 5                  .                    1      101       ASP         H
## 6                  .                    1      101       ASP         H
##   Atom_type.x Atom_isotope_number.x Val.x Val_err.x Assign_fig_of_merit.x
## 1           H                     1 3.960        NA                     .
## 2           H                     1 3.960        NA                     .
## 3           H                     1 4.000        NA                     .
## 4           H                     1 4.000        NA                     .
## 5           H                     1 8.269        NA                     .
## 6           H                     1 8.269        NA                     .
##   Ambiguity_code.x Occupancy.x Resonance_ID.x Auth_entity_assembly_ID.x
## 1                2           .              .                         .
## 2                2           .              .                         .
## 3                2           .              .                         .
## 4                2           .              .                         .
## 5                1           .              .                         .
## 6                1           .              .                         .
##   Auth_asym_ID.x Auth_seq_ID.x Auth_comp_ID.x Auth_atom_ID.x Details.x
## 1              .           100            GLY            HA1         .
## 2              .           100            GLY            HA1         .
## 3              .           100            GLY            HA2         .
## 4              .           100            GLY            HA2         .
## 5              .           101            ASP             HN         .
## 6              .           101            ASP             HN         .
##   ID.y Assembly_atom_ID.y Entity_assembly_ID.y Seq_ID.y Comp_ID.y
## 1  915                  .                    1      100       GLY
## 2  916                  .                    1      100       GLY
## 3  915                  .                    1      100       GLY
## 4  916                  .                    1      100       GLY
## 5  919                  .                    1      101       ASP
## 6  920                  .                    1      101       ASP
##   Atom_ID.y Atom_type.y Atom_isotope_number.y Val.y Val_err.y
## 1       HA2           H                     1 3.960        NA
## 2       HA3           H                     1 4.000        NA
## 3       HA2           H                     1 3.960        NA
## 4       HA3           H                     1 4.000        NA
## 5         H           H                     1 8.269        NA
## 6        HA           H                     1 4.630        NA
##   Assign_fig_of_merit.y Ambiguity_code.y Occupancy.y Resonance_ID.y
## 1                     .                2           .              .
## 2                     .                2           .              .
## 3                     .                2           .              .
## 4                     .                2           .              .
## 5                     .                1           .              .
## 6                     .                1           .              .
##   Auth_entity_assembly_ID.y Auth_asym_ID.y Auth_seq_ID.y Auth_comp_ID.y
## 1                         .              .           100            GLY
## 2                         .              .           100            GLY
## 3                         .              .           100            GLY
## 4                         .              .           100            GLY
## 5                         .              .           101            ASP
## 6                         .              .           101            ASP
##   Auth_atom_ID.y Details.y
## 1            HA1         .
## 2            HA2         .
## 3            HA1         .
## 4            HA2         .
## 5             HN         .
## 6             HA         .

Plotting TOCSY spectrum

library(ggplot2)
plt1<-ggplot(tocsy1)+geom_point(aes(x=Val.x,y=Val.y))
plt1

plt2<-ggplot(tocsy2)+geom_point(aes(x=Val.x,y=Val.y,color=Entry_ID))
plt2

filter_residue:

This function will filter the data frame and remove all non standard amino acids. The data frame should contain the amino acid information in the Comp_ID column. ####Examples

df6<-fetch_atom_chemical_shifts('CG2')
df7<-filter_residue(df6)

Data visualization

RBMRB library contains few functions to generate interactive visualization of BMRB data with out any data manipulation. The interactive visualizations use plotly library. If user has problem with plotly, then this feature may be disabled by providing an argument ‘interactive=FALSE’ for these functions. These interactive plots can be zoomed in and out using a mouse and will show tooltip information when you mouse over. These visualizations can be exported as a stand alone html file

HSQC_15N

This function will simulate N15-HSQC spectrum for a given entry or list of entries.

Examples

These interactive visualization can be exported as single stand alone html file

spec1<-HSQC_15N(15060)
spec1

Two or more HSQC spectra can be compared easily

spec2<-HSQC_15N(c(17282,16603))
spec2
spec2a<-HSQC_15N(c(17282,16603),'line')
spec2a

Non interactive version of the spectra

spec3<-HSQC_15N(c(17282,16603),type='line',interactive = F)
spec3

HSQC_13C

This function will simulate C13-HSQC spectrum for a given entry or list of entries.

Examples

These interactive visualization can be exported as single stand alone html file

spec1<-HSQC_13C(15060)
spec1
spec2<-HSQC_13C(c(17282,16603))
spec2
spec2a<-HSQC_13C(c(17282,16603),type = 'line')
spec2a

Non interactive plot

spec3<-HSQC_13C(c(17282,16603),type='line',interactive = F)
spec3

TOCSY

This function will simulate TOCSY spectrum for a given entry or list of entries.

Examples

These interactive visualization can be exported as single stand alone html file

spec1<-TOCSY(15060)
spec1
spec2<-TOCSY(c(17074,17076,17077))
spec2

Non interactive plot

spec3<-TOCSY(c(17074,17076,17077),interactive = F)
spec3

chemical_shift_corr

This function will plot the distribution of chemical shift correlation between any two atoms from the 20 standard amino acids. The distribution of a particular residue may turn on and off by clicking the residue name in the legend.

corr_plot1<-chemical_shift_corr('CB','N')
corr_plot1
corr_plot2<-chemical_shift_corr('CA','HA*')
corr_plot2

Non interactive plot

corr_plot1<-chemical_shift_corr('CB','N',interactive = F)
corr_plot1
corr_plot2<-chemical_shift_corr('CA','HA*',interactive = F)
corr_plot2

Bug Report

Please report the bugs to the RBMRB GitHub repository. Any new features can also be requested through the GitHub repository.