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Online resources

Slides and R code that produced them are online:

https://github.com/tjmahr/Psych710_BayesLecture

I gave a similar, more code-heavy version of this talk to the R Users

Group: https://github.com/tjmahr/MadR_RStanARM
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Overview

• A little about me and how I got into Bayes

• Mathematical intuition building

• Bayesian updating

• Fitting a model with RStanARM

• Big takeaway ideas
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Background
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About me

• I am dissertator in Communication Sciences and Disorders

• I study word recognition in preschoolers

• For statistics, I mostly do multilevel logistic regression models

• R enthusiast
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I was once in your shoes

I learned stats and R in this course with Markus Brauer and John

Curtin.

I still refer to the slides from this course on contrast codes.

But now I’m a “Bayesian”.
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A timeline
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August 2015: The “Crisis” in Psychology

Open Science Collaboration (2015) tries to replicate 100 studies

published in 3 psychology different journals in 2008.

• Boil a study down to 1 test statistic and 1 effect size.

• Replicate the study.

• Compare replication’s test statistic and effect size against

original.

8

http://science.sciencemag.org/content/349/6251/aac4716


Figure 1: Scatter plot of original vs replicated effect sizes
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• Approximately 36% of the studies are replicated (same test

statistic).

• On average, effect sizes in replications are half that of the

original studies.
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Reactions

Figure 2: I don’t know how to turn off the figure labeling feature
11



Reactions

• We’re doomed.
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Reactions

• We’re doomed.

• Most findings are probably false, and we knew that already.

• No, this is business as usual.

• Any credible discipline has to do this kind of house-cleaning

from time to time.
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Lots of hand wringing and soul searching

Some reactionary:

• Replication creates an industry for incompetent hacks.

• Here come the methodological terrorists!

Some constructive:

• Everything is f’ed – so what else is new?

• Increased rigor and openness are a good thing.
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http://www.sciencedirect.com/science/article/pii/S002210311600007X
http://andrewgelman.com/2016/09/21/what-has-happened-down-here-is-the-winds-have-changed/
https://hardsci.wordpress.com/2016/08/11/everything-is-fucked-the-syllabus/
https://thenib.com/repeat-after-me


Crisis made me think more about questionable practices

All those unintentional acts and rituals to appease the Statistical

Significance gods.
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Crisis made me think more about questionable practices

All those unintentional acts and rituals to appease the Statistical

Significance gods.

HARKing Hypothesizing after results are known.

Telling a story to fit the data.

Garden of forking data Conducting countless sub-tests and

sub-analyses on the data.

p-hacking Doing these tests in order to find a significant effect.

Selective reporting Reporting only the tests that yielded a

significant result.
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My sense

The usual way of doing things is insecure.
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My sense

The usual way of doing things is insecure.

• Perfectly fine if you know what you’re doing.

• Works great if you pre-register analyses. Provides error control.

• But vulnerable to exploitation.

• And many people don’t know what they’re doing.
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My response to the crisis

I want to avoid these questionable practices.

I want to level up my stats and explore new techniques.

• Maybe more robust estimation techniques?

• Maybe machine learning techniques to complement

conventional analyses?
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My response to the crisis

I want to avoid these questionable practices.

I want to level up my stats and explore new techniques.

• Maybe more robust estimation techniques?

• Maybe machine learning techniques to complement

conventional analyses?

I want something less finicky than statistical significance.

• p-values don’t mean what many people think they mean.

• Neither do confidence intervals.

• Statistical significance is not related to practical significance.
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December 2015

Figure 3: Cover of Data Analysis USing Regression and

Multilevel/Hierarchical Models
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I started reading the Gelman and Hill book.

• This is the book for the arm package.

• Still the best treatment of multilevel models in R despite being

10 years old.

It emphasizes estimation, uncertainty and simulation.
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https://cran.rstudio.com/web/packages/arm/


I started reading the Gelman and Hill book.

• This is the book for the arm package.

• Still the best treatment of multilevel models in R despite being

10 years old.

It emphasizes estimation, uncertainty and simulation.

Midway through, the book pivots to Bayesian estimation.

(Multilevel models are kinda Bayesian because they borrow

information across different clusters.)
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January 2016

I’m down a rabbit hole, writing Stan (Bayesian) models to fit the

models from the ARM book, and there is an influx of Bayesian tools

for R.

• Statistical Rethinking, a book that reteaches regression from a

Bayesian perspective with R and Stan, is released.

• New version of brms is released. This package converts R

model code into Stan programs.

• RStanARM is released.

• A blog post circulates: “R Users Will Now Inevitably Become

Bayesians”.

I eat all this up. I become a convert.
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http://xcelab.net/rm/statistical-rethinking/
https://cran.r-project.org/web/packages/brms/index.html
https://cran.r-project.org/web/packages/rstanarm/index.html
https://thinkinator.com/2016/01/12/r-users-will-now-inevitably-become-bayesians/
https://thinkinator.com/2016/01/12/r-users-will-now-inevitably-become-bayesians/


Long story short

The replication crisis sparked my curiosity, and a wave of new tools

and resources made it really easy to get started with Bayesian stats.

My goal with this approach has been to make better, more honest

scientific summaries of observed data.
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Classical regression versus Bayesian

regression in a few plots
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The data

# Some toy data

davis <- car::Davis %>% filter(100 < height) %>% as_data_frame()

davis

#> # A tibble: 199 × 5

#> sex weight height repwt repht

#> <fctr> <int> <int> <int> <int>

#> 1 M 77 182 77 180

#> 2 F 58 161 51 159

#> 3 F 53 161 54 158

#> 4 M 68 177 70 175

#> 5 F 59 157 59 155

#> 6 M 76 170 76 165

#> 7 M 76 167 77 165

#> 8 M 69 186 73 180

#> 9 M 71 178 71 175

#> 10 M 65 171 64 170

#> # ... with 189 more rows
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The data
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Classical model provides the line of best fit
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Bayesian model’s median line of fit
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Median line and 20 other lines from posterior
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Median line and 100 other lines from posterior
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Summary

• Classical: There is a single “true” line of best fit, and I’ll give

my best estimate of it.

• Bayesian: There is a distribution of lines of fit—some more

plausible than others—and I’ll give you samples from that

distribution.
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Building mathematical intuitions

29



Caveat

• These slides and these examples are meant to illustrate the

pieces of Bayes theorem.

• This is not a rigorous mathematical description of Bayesian

probability or regression.
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Conditional probability review

p(A | B) : probability of A given B
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Conditional probability review

p(A | B) : probability of A given B

Suppose that 95% of emails with the phrase “investment

opportunity” are spam.

p(spam email | "investment opportunity") = .95
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Conditional probability review

What would this probability express?

p("investment opportunity" | spam email)
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Conditional probability review

What would this probability express?

p("investment opportunity" | spam email)

That ordering matters. p(A | B) is not the same as p(B | A).
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Bayes’ theorem

A theorem about conditional probability.

p(B | A) =
p(A | B) ∗ p(B)

p(A)
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I can never remember this equation with letters. Here’s how I prefer

to write it.

p(hypothesis | data) =
p(data | hypothesis) ∗ p(hypothesis)

p(data)
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p(hypothesis | data) =
p(data | hypothesis) ∗ p(hypothesis)

p(data)

The “hypothesis” is typically something unobserved or unknown. It’s

what you want to learn about using the data.
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p(hypothesis | data) =
p(data | hypothesis) ∗ p(hypothesis)

p(data)

The “hypothesis” is typically something unobserved or unknown. It’s

what you want to learn about using the data.

For regression models, the “hypothesis” is a parameter (intercept,

slopes or error terms).

Bayes theorem tells you the probability of the hypothesis given the

data.
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General structure

How plausible is some hypothesis given the data?

p(hypothesis | data) =
p(data | hypothesis) ∗ p(hypothesis)

p(data)
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General structure

How plausible is some hypothesis given the data?

p(hypothesis | data) =
p(data | hypothesis) ∗ p(hypothesis)

p(data)

Pieces of the equation:

posterior =
likelihood ∗ prior

average likelihood
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Classifying emails

I got an email with the word “cialis” in it. Is it spam?
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• What I want to know is spam-ness (versus ham-ness).

• What I have is an email with the word “cialis”.
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Classifying emails

I got an email with the word “cialis” in it. Is it spam?

• What I want to know is spam-ness (versus ham-ness).

• What I have is an email with the word “cialis”.

P(spam | "cialis") =
P("cialis" | spam) ∗ P(spam)

P("cialis")

37



Email example

The two unconditional probabilities are base rates that need to be

accounted for.
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Email example

The two unconditional probabilities are base rates that need to be

accounted for.

The prior is the frequency of spam in general. The average

likelihood is the frequency of the word “cialis” in emails.

P(spam | "cialis") =
"cialis" freq. in spam ∗ spam rate

"cialis" freq.
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“Bayesianism”

Some people would argue that using Bayes theorem is not

“Bayesian”. After all, in this example, we’re just counting the

frequency of events.

It’s kind of weird, but it is also true.

Simple event-counting is not what people usually mean by the word

“Bayesian”.
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The “Bayesianism” form of Bayes’ theorem

updated information =
likelihood of data ∗ prior information

average likelihood of data

Bayes’ theorem provides a systematic way to update our knowledge

as we encounter new data.
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The “Bayesianism” form of Bayes’ theorem

updated information =
likelihood of data ∗ prior information

average likelihood of data

Bayes’ theorem provides a systematic way to update our knowledge

as we encounter new data.

updated beliefs ∝ likelihood of data ∗ prior beliefs

• Update your beliefs in proportion to how well the data fits

those beliefs.

• Your beliefs have probabilities. You can quantify your

uncertainty about what you know.
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Okay, but what is likelihood?
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Sidenote: This is nifty. A lot of my stats training made more sense

once I had a broader understanding of likelihood.
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First, what are models?!

What is a statistical model?
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First, what are models?!

What is a statistical model?

It’s a description of how the data could have been generated.
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IQ example

IQ scores are normally distributed.
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IQ example

IQ scores are normally distributed.

IQi ∼ Normal( µ
︸︷︷︸

mean

, σ
︸︷︷︸

SD

)

(The ∼ means “sampled from” or “drawn from”.)

µ and σ are parameters for this model that change the center and

spread of the normal bell curve.

The normative IQ model has µ = 100 and σ = 15.
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Likelihood measures fit

How likely are the data in a given model?
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Likelihood measures fit

How likely are the data in a given model?

I never see it explained this way, but I think of likelihood as “fit”.

How the well data fits in a given model.
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An IQ example

We found some IQ scores in an old, questionable dataset.

library(dplyr)

iqs <- car::Burt$IQbio

iqs

#> [1] 82 80 88 108 116 117 132 71 75 93 95 88 111 63

#> [15] 77 86 83 93 97 87 94 96 112 113 106 107 98
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An IQ example

We found some IQ scores in an old, questionable dataset.

library(dplyr)

iqs <- car::Burt$IQbio

iqs

#> [1] 82 80 88 108 116 117 132 71 75 93 95 88 111 63

#> [15] 77 86 83 93 97 87 94 96 112 113 106 107 98

IQs are designed to have a normal distribution with a population

mean of 100 and an SD of 15.

How well do these data fit in that kind of bell curve?
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Density as height on a bell curve
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Figure 4: A hypothetical bell curve with a mean of 100 and SD of 15.
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Density measures likelihood
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Figure 5: Likelihood of an IQ of 90
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• Height of each point on curve is density around that point.

• Higher density regions are more likely.

• Data farther from peak density is less likely.
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Figure 6: Density of IQ scores drawn a bell curve with mean 100.
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Figure 7: Density of IQ scores drawn a bell curve with mean 130. The fit

is terrible.
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Density function dnorm(xs, mean = 100, sd = 15) tells us the

height of each value in xs when drawn on a normal bell curve.

# likelihood (density) of each point

dnorm(iqs, 100, 15) %>% round(3)

#> [1] 0.013 0.011 0.019 0.023 0.015 0.014 0.003 0.004 0.007

#> [10] 0.024 0.025 0.019 0.020 0.001 0.008 0.017 0.014 0.024

#> [19] 0.026 0.018 0.025 0.026 0.019 0.018 0.025 0.024 0.026

52
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Density function dnorm(xs, mean = 100, sd = 15) tells us the

height of each value in xs when drawn on a normal bell curve.

# likelihood (density) of each point

dnorm(iqs, 100, 15) %>% round(3)

#> [1] 0.013 0.011 0.019 0.023 0.015 0.014 0.003 0.004 0.007

#> [10] 0.024 0.025 0.019 0.020 0.001 0.008 0.017 0.014 0.024

#> [19] 0.026 0.018 0.025 0.026 0.019 0.018 0.025 0.024 0.026

Likelihood of all points is the product. These quantities get

vanishingly small so we sum their logs instead. (Hence,

log-likelihoods.)

# 2 * 10^-50 is vaaaaaaanishingly small!

prod(dnorm(iqs, 100, 15))

#> [1] 2.276823e-50

# log scale

sum(dnorm(iqs, 100, 15, log = TRUE))

#> [1] -114.3065
52
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Log-likelihoods provide a measure of how well the data fit a given

normal distribution.

Which mean best fits the data? Below average IQ (85), average IQ

(100), or above average IQ (115)? (Higher is better.)
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Log-likelihoods provide a measure of how well the data fit a given

normal distribution.

Which mean best fits the data? Below average IQ (85), average IQ

(100), or above average IQ (115)? (Higher is better.)

sum(dnorm(iqs, 85, 15, log = TRUE))

#> [1] -119.0065

sum(dnorm(iqs, 100, 15, log = TRUE))

#> [1] -114.3065

sum(dnorm(iqs, 115, 15, log = TRUE))

#> [1] -136.6065
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sum(dnorm(iqs, 85, 15, log = TRUE))

#> [1] -119.0065

sum(dnorm(iqs, 100, 15, log = TRUE))

#> [1] -114.3065

sum(dnorm(iqs, 115, 15, log = TRUE))

#> [1] -136.6065

Of these three, the data fit best with the “population average”

mean (100).

We just used a maximum likelihood criterion to choose among

these alternatives!
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Likelihood summary

We have some model of how the data could be generated. This

model has tuneable parameters.

The IQs are drawn from a normal distribution with an SD

of 15 and some unknown mean.

Likelihood is how well the observed data fit in a particular

data-generating model.

Classical regression’s “line of best fit” finds model parameters that

maximize the likelihood of the data.
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Bayesian models
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Bayesian updating

Let’s consider all integer values from 70 to 130 as equally probable

means for the IQs. This is a flat or uniform prior.

Here’s our model.

IQi ∼ Normal(µ, σ = 15) [likelihood]

µ ∼ {integers from 70 to 130} [prior for µ]
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We are going to use grid approximation for this example. That

means systematically exploring about a bunch of parameter values.

(It’s mostly useful for illustrating how Bayes’ theorem works.)

df_iq_model <- data_frame(

# Candidate mean value

mean = 70:130,

# Probability of each candidate mean right now

prob = 1 / length(mean),

# Probability of each candidate mean during the last update

previous = NA_real_)
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# Probabilities sum to 1

sum(df_iq_model$prob)

#> [1] 1

df_iq_model

#> # A tibble: 61 × 3

#> mean prob previous

#> <int> <dbl> <dbl>

#> 1 70 0.01639344 NA

#> 2 71 0.01639344 NA

#> 3 72 0.01639344 NA

#> 4 73 0.01639344 NA

#> 5 74 0.01639344 NA

#> 6 75 0.01639344 NA

#> 7 76 0.01639344 NA

#> 8 77 0.01639344 NA

#> 9 78 0.01639344 NA

#> 10 79 0.01639344 NA

#> # ... with 51 more rows
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We observe one data-point, y = 82, and update our prior

information using the likelihood of the data at each possible mean.

df_iq_model$previous <- df_iq_model$prob

likelihoods <- dnorm(iqs[1], df_iq_model$mean, 15)

# numerator of bayes theorem

df_iq_model$prob <- likelihoods * df_iq_model$prob

sum(df_iq_model$prob)

#> [1] 0.01306729
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We observe one data-point, y = 82, and update our prior

information using the likelihood of the data at each possible mean.

df_iq_model$previous <- df_iq_model$prob

likelihoods <- dnorm(iqs[1], df_iq_model$mean, 15)

# numerator of bayes theorem

df_iq_model$prob <- likelihoods * df_iq_model$prob

sum(df_iq_model$prob)

#> [1] 0.01306729

That’s not right! We need the average likelihood to ensure that the

probabilities add up to 1. This is why it’s sometimes called a

normalizing constant.

# include denominator of bayes theorem

df_iq_model$prob <- df_iq_model$prob / sum(df_iq_model$prob)

sum(df_iq_model$prob)

#> [1] 1
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We observe another data-point and update the probability with the

likelihood again.

df_iq_model$previous <- df_iq_model$prob

likelihoods <- dnorm(iqs[2], df_iq_model$mean, 15)

df_iq_model$prob <- likelihoods * df_iq_model$prob

# normalize

df_iq_model$prob <- df_iq_model$prob / sum(df_iq_model$prob)

df_iq_model

#> # A tibble: 61 × 3

#> mean prob previous

#> <int> <dbl> <dbl>

#> 1 70 0.02551519 0.02422865

#> 2 71 0.02801128 0.02549920

#> 3 72 0.03047942 0.02671736

#> 4 73 0.03287154 0.02786958

#> 5 74 0.03513768 0.02894257

#> 6 75 0.03722765 0.02992359

#> 7 76 0.03909289 0.03080065

#> 8 77 0.04068830 0.03156283

#> 9 78 0.04197406 0.03220045

#> 10 79 0.04291726 0.03270526
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And one more. . .

df_iq_model$previous <- df_iq_model$prob

likelihoods <- dnorm(iqs[3], df_iq_model$mean, 15)

df_iq_model$prob <- likelihoods * df_iq_model$prob

# normalize

df_iq_model$prob <- df_iq_model$prob / sum(df_iq_model$prob)

df_iq_model

#> # A tibble: 61 × 3

#> mean prob previous

#> <int> <dbl> <dbl>

#> 1 70 0.01490139 0.02551519

#> 2 71 0.01768232 0.02801128

#> 3 72 0.02070434 0.03047942

#> 4 73 0.02392174 0.03287154

#> 5 74 0.02727304 0.03513768

#> 6 75 0.03068201 0.03722765

#> 7 76 0.03405991 0.03909289

#> 8 77 0.03730890 0.04068830

#> 9 78 0.04032654 0.04197406

#> 10 79 0.04301093 0.04291726

#> # ... with 51 more rows
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An animation of these steps

https://github.com/tjmahr/MadR_RStanARM/blob/master/

assets/simple-updating.gif
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Connecting Bayes’ theorem to linear

regression
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Linear models

I learned stats in this course, so I bet you probably write regression

models as a one-liner like:

yi
︸︷︷︸

observation

= α + β1x1i
︸ ︷︷ ︸

predicted mean given x

+ ǫi
︸︷︷︸

random error
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Linear models

I learned stats in this course, so I bet you probably write regression

models as a one-liner like:

yi
︸︷︷︸

observation

= α + β1x1i
︸ ︷︷ ︸

predicted mean given x

+ ǫi
︸︷︷︸

random error

Data generating model: Observation yi is a draw from a normal

distribution centered around a mean.

We estimate the mean with a constant “intercept” term α plus a

linear combination of predictor variables (just x1 for now).

69



Let’s re-write the model to make the normal-distribution part

clearer. No more one-liner.

yi ∼ Normal(mean = µi , SD = σ) [likelihood]

µi = α + β1 ∗ x1i [linear model]
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Let’s re-write the model to make the normal-distribution part

clearer. No more one-liner.

yi ∼ Normal(mean = µi , SD = σ) [likelihood]

µi = α + β1 ∗ x1i [linear model]

Observation yi is a draw from a normal distribution centered around

a mean µi with a standard deviation of σ.

The mean is a constant term α plus a linear combination of

predictor variables (just x1 for now).
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(These equations describe the same models. It’s just a different kind

of notation.)
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Weight by height model

Consider a model of weight predicted by height. . .
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Figure 8: It’s like a tunnel of bell curves. The center of it moves with x.
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Bayesian stats

To make the model Bayesian, we need to give prior distributions to

parameters.

The parameters we need to estimate for regression: α, β1, σ.
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Bayesian stats

To make the model Bayesian, we need to give prior distributions to

parameters.

The parameters we need to estimate for regression: α, β1, σ.

yi ∼ Normal(µi , σ) [likelihood]

µi = α + β1 ∗ x1i [linear model]

α ∼ Normal(0, 10) [prior for α]

β1 ∼ Normal(0, 5) [prior for β1]

σ ∼ HalfCauchy(0, 5) [prior for σ]
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What’s the point?

• A classical model provides one model of many plausible models

of the data. It’ll find the parameters that maximize likelihood.

• A Bayesian model is a model of models. We get a distribution

of models that are consistent with the data.
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But this is where things get difficult!

Parameters we need to estimate: α, β1, σ

posterior =
likelihood ∗ prior

average likelihood
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But this is where things get difficult!

Parameters we need to estimate: α, β1, σ

posterior =
likelihood ∗ prior

average likelihood

P(α, β, σ | x) =
P(x | α, β, σ) P(α, β, σ)

∫∫∫
P(x | α, β, σ) P(α, β, σ) dα dβ dσ

Things get gnarly. This is the black-box step.
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Good news

We don’t perform this integral calculus.

Insead, we rely on Markov-chain Monte Carlo simulation to get

samples from the posterior.

Those samples will provide a detailed picture of the posterior.
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Finally, let’s fit a model
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An example: Height and Weight by Sex

davis

#> # A tibble: 199 × 5

#> sex weight height repwt repht

#> <fctr> <int> <int> <int> <int>

#> 1 M 77 182 77 180

#> 2 F 58 161 51 159

#> 3 F 53 161 54 158

#> 4 M 68 177 70 175

#> 5 F 59 157 59 155

#> 6 M 76 170 76 165

#> 7 M 76 167 77 165

#> 8 M 69 186 73 180

#> 9 M 71 178 71 175

#> 10 M 65 171 64 170

#> # ... with 189 more rows
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Classical linear model

# Mean-center height

mean(davis$height)

#> [1] 170.5879

davis$heightC <- davis$height - mean(davis$height)

m <- glm(weight ~ heightC * sex, davis, family = gaussian())

m %>% summary() %>% coef() %>% round(3)

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 60.558 1.099 55.081 0.000

#> heightC 0.623 0.135 4.626 0.000

#> sexM 7.949 1.710 4.648 0.000

#> heightC:sexM 0.373 0.190 1.964 0.051

80



What is RStanARM?

Stan: a probabalistic programming language / MCMC sampler

RStanARM: RStan Applied Regression Modeling

• Batteries-included versions of common regression models.

• glm -> stan_glm, glmer -> stan_glmer.

• CRAN page is very good! They have lots of detailed vignettes!

• Proper successor to the arm package.
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library(rstanarm)

#> Loading required package: Rcpp

#> Warning: package 'Rcpp' was built under R version 3.3.3

#> rstanarm (Version 2.14.1, packaged: 2017-01-16 18:47:11 UTC)

#> - Do not expect the default priors to remain the same in future rstanarm

#> Thus, R scripts should specify priors explicitly, even if they are just

#> - For execution on a local, multicore CPU with excess RAM we recommend

#> options(mc.cores = parallel::detectCores())

• So. . . hard-code the priors.
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Fit the model

We have to use stan_glm().

• stan_lm() uses a different specification of the prior.

By default, it does sampling with 4 MCMC chains. Each “chain”

explores the posterior distribution from random starting locations.

• Each chain is 2000 samples, but the first half are warm-up

samples.

• Warm-up samples are ignored
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stan_model <- stan_glm(

weight ~ heightC * sex,

data = davis,

family = gaussian,

# RStanARM rescales predictor variables and priors use that scaling

prior = normal(0, 5),

prior_intercept = normal(0, 10)

)

#>

#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).

#>

#> Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)

#> Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)

#> Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)

#> Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)

#> Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)

#> Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)

#> Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)

#> Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)

#> Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)

#> Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)

#> Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
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Printing the model

stan_model

#> stan_glm(formula = weight ~ heightC * sex, family = gaussian,

#> data = davis, prior = normal(0, 5), prior_intercept = normal(0,

#> 10))

#>

#> Estimates:

#> Median MAD_SD

#> (Intercept) 60.6 1.1

#> heightC 0.6 0.1

#> sexM 7.9 1.7

#> heightC:sexM 0.4 0.2

#> sigma 8.0 0.4

#>

#> Sample avg. posterior predictive

#> distribution of y (X = xbar):

#> Median MAD_SD

#> mean_PPD 65.3 0.8
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One note

Predictors are centered and rescaled internally by rstanarm, so our

priors are on the standardized scale.

• normal(0, 5) is a distribution of effect sizes with mean 0 and

SD 5

See ?rstanarm::priors, esp. the autoscale argument.

prior_summary(stan_model)

#> Priors for model 'stan_model'

#> ------

#> Intercept (after predictors centered)

#> ~ normal(location = 0, scale = 10)

#> **adjusted scale = 266.87

#>

#> Coefficients

#> ~ normal(location = [0,0,0], scale = [5,5,5])

#> **adjusted scale = [ 7.5,133.4, 11.8]

#>
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Getting a summary from the model

#> stan_glm(formula = weight ~ heightC * sex, family = gaussian,

#> data = davis, prior = normal(0, 5), prior_intercept = normal(0,

#> 10))

#>

#> Family: gaussian (identity)

#> Algorithm: sampling

#> Posterior sample size: 4000

#> Observations: 199

#>

#> Estimates:

#> mean sd 2.5% 25% 50% 75%

#> (Intercept) 60.6 1.1 58.4 59.8 60.6 61.3

#> heightC 0.6 0.1 0.4 0.5 0.6 0.7

#> sexM 7.9 1.7 4.4 6.8 7.9 9.1

#> heightC:sexM 0.4 0.2 0.0 0.2 0.4 0.5

#> sigma 8.1 0.4 7.3 7.8 8.0 8.3

#> mean_PPD 65.3 0.8 63.7 64.8 65.3 65.9

#> log-posterior -708.6 1.6 -712.6 -709.4 -708.3 -707.4

#> 97.5%
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Notes on summary()

• Split into estimation and diagnostic information

• mean_PPD is the predicted value for a completely average

observation
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The cut to the chase plot

Here is what classical linear regression does.
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Here is what Bayesian linear regression does
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Inspecting posterior samples
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Looking at the posterior parameter samples

Coerce to a data-frame. Columns are parameters. One row per

posterior sample.

samples <- stan_model %>% as.data.frame() %>% tbl_df()

samples

#> # A tibble: 4,000 × 5

#> `(Intercept)` heightC sexM `heightC:sexM` sigma

#> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 59.95677 0.5506608 9.517326 0.5270369 8.440430

#> 2 60.02179 0.5898664 8.466223 0.5210752 8.342935

#> 3 59.55219 0.5749104 8.013311 0.5420474 7.766122

#> 4 60.26689 0.6200884 8.822269 0.3888026 8.420006

#> 5 61.14721 0.6210841 7.166503 0.4254251 8.429904

#> 6 60.98669 0.7016688 7.178697 0.4527272 8.795731

#> 7 59.72132 0.5395581 9.325594 0.5446949 7.245603

#> 8 60.49143 0.6660482 9.162610 0.3693488 7.797503

#> 9 62.34006 0.7063126 4.022597 0.5697835 8.107349

#> 10 62.06608 0.6769759 4.352102 0.5321317 8.109990

#> # ... with 3,990 more rows
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We have a distribution

Any stats that can describe a distribution can describe the model’s

parameters now. Mean, median, skew, quantiles, etc.
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Looking at the posterior parameter samples
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Figure 9: Histogram of height effect.
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Quantiles are post-data probabilities

If we believe there is a “true” value for a parameter, there is 90%

probability that this “true” value is in the 90% interval, given our

model, prior information, and the data.

The 90% interval contains the middle 90% of the parameter values.

There is a 5% chance, says the model, the height parameter that

generated the data is below the 5% quantile.

posterior_interval(stan_model)

#> 5% 95%

#> (Intercept) 58.72978002 62.4138859

#> heightC 0.40117962 0.8455608

#> sexM 5.01139335 10.7527402

#> heightC:sexM 0.05973589 0.6872728

#> sigma 7.42828134 8.7304518
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Live demo

# This is where I toured launch_shinystan(stan_model)

# and did some other stuff.
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My experience with this framework
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Benefits

The models provide intuitive results.

• When we misinterpret p-values or confidence intervals, we

usually are interpreting them in a Bayesian way.

• Bayesian uncertainty intervals are what we want from

confidence intervals.
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Bayesian models quantify uncertainty.

• Basically, if a classical model can estimate or predict something

about the data, the Bayesian model can estimate a distribution

for that thing too.

• Bayesian models are generative, and the posterior predictive

distribution (which simulates fake data using the model) is a

useful tool.
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Bayesian models incorporate prior information.

• That information can be weak, moderate or strong.

• I don’t say “prior beliefs” because that sounds too subjective.

• All models make assumptions and prior information, and priors

make that information explicit.
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Bayesian models are flexible.

• This course captures a bag of tricks (t-tests, ANOVA,

ANCOVA, mixed effects) under a general framework (it’s all

regression).

• Bayesian regression incorporates even more tricks (missing data

imputation, measurement error models, robust error models)

into the framework.
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Bayesian models have computational benefits.

• Multilevel models with lots of random effects probably won’t

converge.

• But some weak prior information will nudge the models in the

right direction and make the models work.
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Downsides

It’s different.

• People are really used to signficance testing and p-values, so

you have to do more hand-holding when explaining results.

• You don’t get to say significant anymore. (I use plausible and

credible.)

• People have misconceptions about subjectivism and bias.
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More work before and after modeling.

• You need to specify priors for your parameters.

• Your model is a distribution, so you have to do a bit more work

wrangling the data.
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It takes longer.

• Classical models solve an optimization problem and provide a

single set of parameter estimates.

• MCMC sampling explores the space of parameter values and

provides thousands of parameter estimates.

• It can take a few hours to fit a complicated multilevel model.
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It’s not a cure-all. There are still insecurities.

• It’s statistics and people can still misunderstand the methods

and models.

• A motivated p-hacker can still exploit Bayes factors, which is

why I won’t discuss them.
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Learn more

These are some older slides on good resources for learning about

Bayesian statistics.

https://cdn.rawgit.com/tjmahr/MadR_RStanARM/master/

04-learning-more-rpubs.html
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