
Terrain Generation on the GPU using Tessellation Shaders

Tiju Thomas V.∗

University of Pennsylvania

(a) Tessellated Mesh (b) Tessellated and Shaded Terrain with fog, based on depth and height

Figure 1: Terrain generated based on Perlin noise and tessellated based on distance from the camera

Abstract

Terrain Generation is extensively used in games and movies. But
one of the challenges faced is that it takes a long time to create a
terrain on the CPU. Highly detailed terrains have a negative impact
on performance. The technique used for generating terrains work
on vertices independently, which enables us to parallelize the al-
gorithm and implement it on the GPU. In this paper, I propose a
method of generating terrain on the GPU making use of the tessel-
lation shaders present in the modern OpenGL pipeline. The tessel-
lation shaders can be used based on distance of the terrain from the
camera, thus giving a highly detailed surface close to the camera,
with the details decreasing as we look into the distance.

Keywords: terrain, tessellation shaders, procedural, heightmap,
OpenGL

Links: CODE WEB

∗e-mail:tijutv@gmail.com

1 Introduction

Terrain generation is used to create landscapes and forests based on
random values or from data obtained through elevation maps. If the
algorithm is executed on the CPU, it has an effect on the perfor-
mance and doesn’t make use of the parallelism which is inherently
present in the generation technique. Detailed terrains have millions
of vertices which can be executed in parallel on the GPU.

In this paper, the first section provides an overview of the different
shaders used for terrain generation. The next section gives details of
the render passes. The other sections cover functionalities added to
the terrain for visual enhancements. The performance of the present
algorithm and future steps to improve the final output have also
been discussed.

2 Related Work

A number of articles discuss the different techniques used for ter-
rain generation. [Ebert et al. 2003] describes how to generate ter-
rain using Perlin noise. It also describes Perlin noise in detail. The
book also covers on how to generate variety of terrains using differ-
ent noise functions. [Geiss 2007] uses a voxel based method along
with noise to generate the terrain. None of the above references
have used the new Tessellation shader available since OpenGL 4.0.

[Rideout and Gelder 2012] and [Rideout 2010] describe how tes-
sellation works in the OpenGL pipeline and how it can be used. The
references do not discuss terrain generation using these techniques.

https:://github.com/tijutv/GPU-Terrain-Generation
http://GPUTerrain.blogspot.com/


3 Details

I did not use any specific algorithm to create the terrain, but used
knowledge gained from reading different literature and tried to cre-
ate my own. The basic algorithm I used is as follows:

• Decide on the dimensions of the terrain and create a flat grid
made up of triangles.

• Use Perlin noise in the vertex shader to give an approximate
shape to the terrrain.

• Tessellate the terrain based on distance from the camera.

• Calculate normals for the primitives (triangles).

• Shade the terrain based on normal data and light direction.

3.1 Grid Creation

The first step involves creation of a basic flat grid. This grid is
then subdivided into large sized triangles. This size will form our
basic non-tessellated structure for the terrain. The vbos and ibo are
created using this data, which can be then passed into the vertex
shader.

Vertex Shader

The Vertex shader is the entry point for the OpenGL pipeline. This
takes in the vbos and ibos created on the CPU to generate a basic
terrain. I used Perlin noise, which uses a Hermite curve to generate
noise values based on an input value. I pass in the world coordinates
of the terrain to this Perlin function which returns a noise value,
which ensures that the height values do not change with camera
motion. I scale this noise value and use it as the height of the terrain
at that point. The vertex shader runs in parallel for each vertex in
the grid, which gives a coarse terrain as the output.

Tessellation Shader

The coarse terrain is then passed into the tessellation shader, which
contains 3 parts as shown in figure 2.

Tessellation Control Shader (TCS) - If enabled, this stage is
called for each primitive and controls the number of subdivisions
that will be applied to each primitive. So based on the distance
from the camera, the terrain is tessellated. The further you go, the
lesser the tessellation becomes. Also I removed tessellation of ter-
rain on the left and right sides of the camera, which weren’t visible
on screen. This was calculated using the projection matrix and the
field of view of the camera. Details about using these matrices can
be found in [Moller et al. 2008]. The TCS has the ability to mod-
ify 2 parameters, the Inner Tessellation Level (1 value per triangle)
and the Outer Tessellation levels (3 values in case of triangles for
each edge). These 2 parameters together determine how much each
primitive will be sub-divided. The bigger the values, the more the
subdivisions. More details on how the subdivision occurs can be
found in the OpenGL specifications and in [Rideout and Gelder
2012].

Tessellator - This is a fixed function part of the pipeline, which
means that this cannot be programmed. The tessellator just uses
the parameters we passed through TCS and does the actual tessella-
tion. As output, it gives out the barycentric coordinates of the new
vertices with respect to the original triangle.

Figure 2: Basic OpenGL pipeline

Tessellation Evaluation Shader (TES) - This is called for each
of the vertices present, which includes all the new vertices that were
created by the tessellator. The barycentric coordinates can be used
to calculate the new vertex positions. The vertex positions are all
created on the same plane as the triangle. So to create an effect of
terrain, these vertices were perturbed by a small amount using the
Perlin noise function.

After passing through the entire tessellation shader, we get a mesh
as shown in 1(a). This mesh was created with Inner Tesselation and
outer Tessellation values of 14 each. The value remains constant
for 1

3

rd of the distance to the far plane and then keeps decreasing
depending on the distance from the camera.

Geometry Shader

All the new vertices and assembled into primitives and passed on
to the geometry shader, which then calculated the normal for each
face using cross products of the edges. This outputs a single normal
per face of the mesh.

Fragment Shader

After determining which pixels are present within a primitive in the
Rasterization stage, the pixels are passed into the Fragment shader,
where they are colored. I colored the pixels based on the height of
the pixel above the ground. I also used the mix function to have a
smooth gradient between the colors.

3.2 Second Render Pass

For screen space effects like screen space ambient occlusion and
depth effects, I created 2 render passes. The first one as mentioned
above and the second one with just the Vertex and Fragment shader.
This pass just renders 2 triangles to fill up the entire screen. The
depth, positions and other information required were pass to this



stage from the first one via textures.

Screen Space Ambient Occlusion (SSAO) - This was imple-
mented using a Poisson sphere. The normals were used to calculate
how much each pixel is covered by others, to determine the ambient
light reaching that point. This was then added to the final rendering.
Figure 3 shows just the ambient occlusion for a generated terrain.

Fog - To give a better scene of depth to the terrain, I added linear
fog to the rendering based on distance. The fog becomes thicker
as you go further away from the camera. I also added fog in the
valleys, which was based on the distance above the ground. This
gives an effect of cold mornings in the mountains. Figure 5 shows
the fog based on depth from camera and figure 1(b) shows fog based
on depth and height.

3.3 Additional Effects

In addition to implementing the basic algorithm and the effects us-
ing a second render pass, I implemented few other features too.

Terrain using heightmaps

Just a few tweaks to the vertex shader, enabled creating terrain
based on heightmaps - Figure 4. Heightmaps are grayscale images
of elevation data. This data can be used to get the height of vertices
on the grid, which then is used to create the terrain. After tessella-
tion, I perturbed the vertices using a noise function to get additional
details in the terrain.

Terrain Deformation

I have added an algorithm to deform (blast) parts of terrain approx-
imately based on where you click on the screen. The algorithm
shoots a ray into the scene based on the click on the screen and then
chooses a random distance after which it creates a blast. It reduces
the height of an area around that point based on a random radius
value. The blast coordinates are stored as an array and passed into
the TES, which flattens the area and then adds some noise, to get
an effect of terrain being destroyed. The noise makes sure that the
deformed land is not smooth and has some perturbations. Figure
6 shows a deformed terrain. The number of deformations is cur-
rently limited by the array size passed into the TES as OpenGL 4.0
doesn’t support dynamic arrays.

4 Results

All the results and images were created by running the algorithm
on a NVidia GT650M GPU. It is possible to easily move around
the terrain using the keyboard and there are multiple options pro-
vided to change the noise parameters while running the application.
The frame rate is interactive enough to be able to move around and
add/remove fog and other effects without any noticeable lag.

5 Performance

Below are few performance numbers based on a grid of 1600 x
2500. These numbers were taken on a NVidia GT650M GPU
As you can see, the non-tessellated version runs much faster but the
terrain lacks all the details. If I tessellate the entire grid, it works at
1.6-1.8 fps. But if I tessellate the terrain based on what the camera
can see, the fps increases to 7-8.5 fps. The lesser the tessellation
and details you want in the terrain, the better its fps will be.

Non-
Tessellated

Full
Tessellation

Camera based
Tessellation

Triangle 160K 160K*400 20K*400
Mesh 21 fps 1.6 fps 7 fps

Shaded 11 fps 1.8 fps 8.5 fps

Table 1: Performance for a 1024*1024 output image.
Inner Tessellation value = 14, Outer Tessellation value = 14

6 Future Work

There are few things which could be done to make the results better

• Smoother normals for the terrain - This should give a better
look to the generated terrain.

• Textures for the terrain - It will be good to have textures for
different elements in the terrain.

• Controllable deforming terrain - Deformation position should
be totally controllable and maybe should provide the user with
a target spot which will be deformed.

• Separate the terrain into chunks and load chunks only when
needed which might improve performance.

7 Conclusion

For my final project in the GPU Programming class, I created a ter-
rain generator which can create terrain procedurally using noise as
well as using heightmaps. The terrain can be tessellated based on
user needs and the tessellation can be controlled based on distance
from the camera. It has the ability to add ambient occlusion, per-
form diffuse shading and add fog to the terrain based on distance
from camera as well as height above the ground. The application
runs at interactive rates where you can easily move around the ter-
rain without any lag.

Acknowledgements

I would like to thank Patrick for all the support, feedback and for
providing me references as well as Karl, the TA for the course. I
would also like to thank my friends and classmates for their feed-
back.

References

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2003. Texturing and Modeling - A Procedural
Approcah, third ed. Morgan Kaufmann.

GEISS, R. 2007. GPU Gems 3. Addison-Wesley Professional.

MOLLER, T. A., HAINES, E., AND HOFFMAN, N. 2008. Real-
Time Rendering, third ed. A. K. Peters, Ltd.

RIDEOUT, P., AND GELDER, D. V. 2012. OpenGL Insights. CRC
Press.

RIDEOUT, P. 2010. Triangle Tessellation with OpenGL 4.0. pride-
out.net/blog/?p=48.



Figure 3: Ambient Occlusion

Figure 4: Terrain based on heightmap

Figure 5: Fog based on distance from camera

Figure 6: Destroyed terrain shown by red ellipse


