Author: Alan O’Callaghan (alan.b.ocallaghan@gmail.com)

1 Introduction

This vignette illustrates the clustering of non-centered breast cancer RNAseq data, similar to the centered data. shown in the main biological data vignette in this package.

pam50_genes <- intersect(pam50_genes, rownames(raw_expression))
raw_pam50_expression <- raw_expression[pam50_genes, ]
voomed_pam50_expression <- voomed_expression[pam50_genes, ]

log_raw_mat <- log2(raw_pam50_expression + 0.5)

heatmaply(t(log_raw_mat), 
    row_side_colors = tcga_brca_clinical,
    showticklabels = c(TRUE, FALSE),
    fontsize_col = 7.5,
    col = gplots::bluered(50),
    main = 'Pre-normalisation log2 counts, PAM50 genes',
    plot_method = 'plotly')
heatmaply_cor(cor(log_raw_mat), 
    row_side_colors = tcga_brca_clinical,
    showticklabels = c(FALSE, FALSE),
    main = 'Sample-sample correlation based on log2-transformed PAM50 gene expression',
    plot_method = 'plotly')
heatmaply(t(voomed_pam50_expression), 
    row_side_colors = tcga_brca_clinical,
    showticklabels = c(TRUE, FALSE),
    fontsize_col = 7.5,
    col = gplots::bluered(50),
    main = 'Normalised log2 CPM, PAM50 genes',
    plot_method = 'plotly')
heatmaply_cor(cor(voomed_pam50_expression), 
    row_side_colors = tcga_brca_clinical,
    showticklabels = c(FALSE, FALSE),
    main = 'Sample-sample correlation based on normalised PAM50 gene expression',
    plot_method = 'plotly')

2 sessionInfo

sessionInfo()
#> R version 3.4.1 (2017-06-30)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 7 x64 (build 7601) Service Pack 1
#> 
#> Matrix products: default
#> 
#> locale:
#> [1] LC_COLLATE=Hebrew_Israel.1255  LC_CTYPE=Hebrew_Israel.1255   
#> [3] LC_MONETARY=Hebrew_Israel.1255 LC_NUMERIC=C                  
#> [5] LC_TIME=Hebrew_Israel.1255    
#> 
#> attached base packages:
#> [1] parallel  stats     graphics  grDevices datasets  utils     methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] gplots_3.0.1            limma_3.22.7           
#>  [3] ALL_1.7.1               Biobase_2.26.0         
#>  [5] BiocGenerics_0.12.1     dendextend_1.6.0       
#>  [7] glmnet_2.0-10           foreach_1.4.3          
#>  [9] Matrix_1.2-10           bindrcpp_0.2           
#> [11] knitr_1.16              heatmaplyExamples_0.1.0
#> [13] heatmaply_0.11.0        viridis_0.4.0          
#> [15] viridisLite_0.2.0       plotly_4.7.1           
#> [17] ggplot2_2.2.1.9000      installr_0.19.0        
#> [19] stringr_1.2.0          
#> 
#> loaded via a namespace (and not attached):
#>  [1] httr_1.2.1         tidyr_0.6.3        jsonlite_1.5      
#>  [4] gtools_3.5.0       shiny_1.0.3        assertthat_0.2.0  
#>  [7] stats4_3.4.1       yaml_2.1.14        robustbase_0.92-7 
#> [10] backports_1.1.0    lattice_0.20-35    glue_1.1.1        
#> [13] digest_0.6.12      RColorBrewer_1.1-2 colorspace_1.3-2  
#> [16] httpuv_1.3.5       htmltools_0.3.6    plyr_1.8.4        
#> [19] devtools_1.13.2    pkgconfig_2.0.1    xtable_1.8-2      
#> [22] purrr_0.2.2.2      mvtnorm_1.0-6      scales_0.5.0      
#> [25] gdata_2.18.0       whisker_0.3-2      tibble_1.3.4      
#> [28] mgcv_1.8-17        withr_2.0.0        nnet_7.3-12       
#> [31] lazyeval_0.2.0     mime_0.5           magrittr_1.5      
#> [34] mclust_5.3         memoise_1.1.0      evaluate_0.10.1   
#> [37] nlme_3.1-131       MASS_7.3-47        class_7.3-14      
#> [40] tools_3.4.1        registry_0.3       data.table_1.10.4 
#> [43] trimcluster_0.1-2  kernlab_0.9-25     munsell_0.4.3     
#> [46] cluster_2.0.6      fpc_2.1-10         compiler_3.4.1    
#> [49] caTools_1.17.1     rlang_0.1.2        grid_3.4.1        
#> [52] iterators_1.0.8    htmlwidgets_0.9    crosstalk_1.0.0   
#> [55] labeling_0.3       bitops_1.0-6       rmarkdown_1.6     
#> [58] gtable_0.2.0       codetools_0.2-15   flexmix_2.3-14    
#> [61] reshape2_1.4.2     TSP_1.1-5          R6_2.2.2          
#> [64] seriation_1.2-2    gridExtra_2.2.1    prabclus_2.2-6    
#> [67] dplyr_0.7.3.9000   bindr_0.1          rprojroot_1.2     
#> [70] KernSmooth_2.23-15 modeltools_0.2-21  stringi_1.1.5     
#> [73] Rcpp_0.12.12       gclus_1.3.1        DEoptimR_1.0-8    
#> [76] diptest_0.75-7