Last updated: 2018-06-06

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 0f4a56a

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .sos/
        Ignored:    data/.sos/
        Ignored:    output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3.lite.single.expanded.V1.loglik.rds
        Ignored:    workflows/.ipynb_checkpoints/
        Ignored:    workflows/.sos/
    
    Untracked files:
        Untracked:  fastqtl_to_mash_output/
        Untracked:  gtex6_workflow_output/
    
    Unstaged changes:
        Modified:   analysis/ExpressionAnalysis.Rmd
        Modified:   analysis/HeterogeneityTables.Rmd
        Modified:   analysis/Tspecific.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 0f4a56a Peter Carbonetto 2018-06-06 wflow_publish(“SharingHist.Rmd”)
    Rmd 9ee901f Peter Carbonetto 2018-06-06 Revised data/results loading steps in HeterogeneityTables.Rmd.
    Rmd d199d66 Peter Carbonetto 2018-06-06 wflow_publish(“Tspecific.Rmd”)


Add text here.

Set up environment

First, we load some functions defined for the mash analyses.

source("../code/normfuncs.R")

Add text here.

thresh <- 0.05

Load data and mash results

Load some GTEx summary statistics, as well as some of the results generated from the mash analysis of the GTEx data.

out     <- readRDS("../data/MatrixEQTLSumStats.Portable.Z.rds")
maxbeta <- out$test.b
maxz    <- out$test.z
out <- readRDS(paste("../output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3",
                     "lite.single.expanded.V1.posterior.rds",sep = "."))
lfsr           <- out$lfsr
pm.mash        <- out$posterior.means
standard.error <- maxbeta/maxz
pm.mash.beta   <- pm.mash * standard.error

Add section title here

Let’s plot heterogneity by magnitude from the global analysis.

sigmat <- (lfsr<=thresh)
nsig   <- rowSums(sigmat)
par(mar = c(4,4,2,1))
par(oma = c(8,4,0,0) + 0.1)
par(mfrow = c(1,3))
hist((het.func(het.norm(effectsize=pm.mash.beta[nsig>0,]),threshold=0.5)),
     main="",xlab="",breaks=0.5:44.5,col="grey",freq=FALSE,ylim=c(0,0.9),
     xaxt="n")
axis(1,at = seq(1, 44, by=1),labels = c(1:44))
mtext("All Tissues")

sigmat <- (lfsr[,-c(7:16)] <= thresh)
nsig   <- rowSums(sigmat)
hist((het.func(het.norm(effectsize=pm.mash.beta[nsig>0,-c(7:16)]),
     threshold=0.5)),main="",xlab="",breaks=0.5:34.5,col="grey",
     freq=FALSE,ylim=c(0,0.9),xaxt="n")
axis(1,at = seq(1, 34, by=1),labels = c(1:34))
mtext("Non-Brain Tissues")

sigmat     <- (lfsr[,c(7:16)]<=thresh)
nsig       <-  rowSums(sigmat)
brain.norm <- het.norm(effectsize=pm.mash.beta[nsig>0,c(7:16)])
hist(het.func(brain.norm,threshold=0.5),main="",xlab="",breaks=0.5:10.5,
     col="grey",freq=FALSE,xaxt="n",ylim=c(0,0.9))
axis(1, at=seq(1, 10, by=1), labels=c(1:10))
mtext("Brain Tissues")

Add section title here

Now, let’s make the same plot with all tissue effects measuring the number of tissues which have a sign equivalent to max effect:

sign.func <- function (normeffectsize)
  apply(normeffectsize,1,function(x)(sum(x>0)))
sigmat <- (lfsr<=thresh)
nsig   <- rowSums(sigmat)
par(mar = c(4,4.5,2,1))
par(oma = c(8,4,0,0) + 0.1)
par(mfrow = c(1,3))
hist(sign.func(het.norm(effectsize=pm.mash.beta[nsig>0,])),main="",xlab="",
     breaks=0.5:44.5,col="grey",freq=FALSE,xaxt="n",ylim=c(0,0.9))
axis(1, at=seq(1, 44, by=1), labels=c(1:44))
mtext("All Tissues")

sigmat <- (lfsr[,-c(7:16)] <= thresh)
nsig   <- rowSums(sigmat)
hist(sign.func(het.norm(effectsize = pm.mash.beta[nsig>0,-c(7:16)])),
     main="",xlab="",breaks=0.5:34.5,col="grey",freq=FALSE,ylim=c(0,0.9),
     xaxt="n")
axis(1, at=seq(1, 34, by=1), labels=c(1:34))
mtext("Non-Brain Tissues")

sigmat     <- (lfsr[,c(7:16)]<=thresh)
nsig       <-  rowSums(sigmat)
brain.norm <- het.norm(effectsize=pm.mash.beta[nsig>0,c(7:16)])
hist(sign.func(brain.norm),main="",xlab="",breaks=0.5:10.5,col="grey",
     freq=FALSE,xaxt="n",ylim=c(0,0.9))
axis(1, at=seq(1, 10, by=1), labels=c(1:10))
mtext("Brain Tissues")

Session information

sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.4
# 
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# loaded via a namespace (and not attached):
#  [1] workflowr_1.0.1.9000 Rcpp_0.12.16         digest_0.6.15       
#  [4] rprojroot_1.3-2      R.methodsS3_1.7.1    backports_1.1.2     
#  [7] git2r_0.21.0         magrittr_1.5         evaluate_0.10.1     
# [10] stringi_1.1.7        whisker_0.3-2        R.oo_1.21.0         
# [13] R.utils_2.6.0        rmarkdown_1.9        tools_3.4.3         
# [16] stringr_1.3.0        yaml_2.1.18          compiler_3.4.3      
# [19] htmltools_0.3.6      knitr_1.20

This reproducible R Markdown analysis was created with workflowr 1.0.1.9000