Last updated: 2018-06-06
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(1) 
The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: 32c92c7 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .sos/
    Ignored:    data/.sos/
    Ignored:    output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3.lite.single.expanded.V1.loglik.rds
    Ignored:    workflows/.ipynb_checkpoints/
    Ignored:    workflows/.sos/
Untracked files:
    Untracked:  analysis/files.txt
    Untracked:  fastqtl_to_mash_output/
    Untracked:  gtex6_workflow_output/
Unstaged changes:
    Modified:   analysis/fastqtl2mash.Rmd
    Modified:   analysis/gtex.Rmd
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 32c92c7 | Peter Carbonetto | 2018-06-06 | wflow_publish(“SampleSize.Rmd”) | 
| Rmd | 4eb658f | Peter Carbonetto | 2018-06-06 | Code in SampleSize.Rmd now runs successfully; need to polish it up. | 
| html | afc401f | Peter Carbonetto | 2017-09-20 | Moved doc to docs. | 
| Rmd | e1e48df | Peter Carbonetto | 2017-09-20 | Reorganized many of the files. | 
Different levels of effect sharing among tissues means that effect estimates in some tissues gain more precision than others from the joint analysis. Here we quantify an “effective sample size” (ESS) per tissue and compare against the sample sizes in the data.
Load some of the results generated from the mas analysis of the GTEx data, as well as summary statistics (e.g., sample sizes, standard errors) calculated from the raw GTEx data.
missing.tissues <- c(7,8,19,20,24,25,31,34,37)
out     <- readRDS("../data/MatrixEQTLSumStats.Portable.Z.rds")
maxz    <- out$test.z
maxbeta <- out$test.b
qtl.names <- sapply(1:length(rownames(maxz)),
  function(x) unlist(strsplit(rownames(maxz)[x],"[_]"))[[1]])
standard.error.from.z <- as.matrix(maxbeta/maxz)
dat <- read.csv("../data/ExprSampleSize.csv.gz",header = TRUE)
rownames(dat) <- dat[,1]
expr.data <- dat[,-1]
expr.sort <- expr.data[rownames(expr.data)%in%qtl.names,]
a         <- match(qtl.names,rownames(expr.sort))
expr.sort <- expr.sort[a,]
exp.sort  <- expr.sort[,-missing.tissues]
colnames(exp.sort) <- colnames(maxz)
standard.error           <- out$test.s
colnames(standard.error) <- colnames(maxz)
tissue.names             <- colnames(maxz)To draw the the bar charts, we use the colours that are used by convention used to represent the GTEx tissues in plots.
gtex.colors <- read.table('../data/GTExColors.txt',sep = '\t',
                          comment.char = '')[-missing.tissues,2]Load the marginal posterior variances.
out <- readRDS(paste("../output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3",
                     "lite.single.expanded.V1.posterior.rds",sep = "."))
marginal.var <- out$marginal.varNow let’s plot effective sample size. Recall,
\[n_{jeff}=\frac{s_{j}^2}{\tilde{s_{j}^2}}\]
Let’s plot again with order by original sample size:
original.var <- as.matrix(standard.error.from.z)^2
size         <- as.matrix(exp.sort)
post.var     <- as.matrix(marginal.var) * standard.error.from.z^2
njeffective  <- size * original.var/post.var
increase     <- njeffective/sizepar(mfrow=c(1,2))
samplesize=apply(size,2,unique)
sampleorder=order(samplesize,decreasing = T)
median.nj.effective=apply(njeffective,2,median)
median.nj.increase=apply(increase,2,median)
par(mar=c(5.1,8,4.1,0.1))
barplot(median.nj.effective[sampleorder],cex.names=0.4,las=2,
  col=as.character(gtex.colors[sampleorder]),horiz = TRUE)
title("Median(Nj_effective)",cex.main = 0.8)
par(mar=c(5.1,2,4.1,6))
barplot(median.nj.increase[sampleorder],cex.names=0.4,las=2,
  col=as.character(gtex.colors[sampleorder]),horiz = T,names="",xlim=c(16,0))
title("Median(Nj_effective/Nj_original)",cex.main=0.8)
par(mfrow=c(1,2))
samplesize=apply(size,2,function(x){unique(x)})
sampleorder=order(samplesize,decreasing = T)
median.nj.effective=apply(njeffective,2,median)
median.nj.increase=apply(increase,2,median)
par(mar=c(5.1,8,1.1,0.1))
barplot(samplesize[sampleorder],cex.names=0.4,las=2,
        col=as.character(gtex.colors[sampleorder]),horiz = T,xlim=c(0,2000))
title("Sample Size",cex.main=0.8)
par(mar=c(5.1,2,1.1,6))
barplot(median.nj.effective[sampleorder],cex.names=0.4,las=2,
        col=as.character(gtex.colors[sampleorder]),horiz = T,names="",
        xlim=c(0,2000))
title("Effective Sample Size",cex.main=0.8)
sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.4
# 
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# loaded via a namespace (and not attached):
#  [1] workflowr_1.0.1.9000 Rcpp_0.12.16         digest_0.6.15       
#  [4] rprojroot_1.3-2      R.methodsS3_1.7.1    backports_1.1.2     
#  [7] git2r_0.21.0         magrittr_1.5         evaluate_0.10.1     
# [10] stringi_1.1.7        whisker_0.3-2        R.oo_1.21.0         
# [13] R.utils_2.6.0        rmarkdown_1.9        tools_3.4.3         
# [16] stringr_1.3.0        yaml_2.1.18          compiler_3.4.3      
# [19] htmltools_0.3.6      knitr_1.20This reproducible R Markdown analysis was created with workflowr 1.0.1.9000