Fixing Data-flow Problems in Syntax Trees

Sebastian Graf, sgraf13370gmail.com
September 9, 2017

Karlsruhe Institute of Technology

Introduction

e My master's thesis': Call Arity vs. Demand Analysis

e Result: Usage Analysis generalising Call Arity
e Precision of Call Arity without co-call graphs

e Requirements led to complex analysis order

e Specification of data-flow problem decoupled from its solution

1
https://pp.ipd.kit.edu/uploads/publikationen/grafi7masterarbeit.pdf

https://pp.ipd.kit.edu/uploads/publikationen/graf17masterarbeit.pdf

Strictness Analysis

e Provides lower bounds on evaluation cardinality
e |s this variable evaluated at least once?

e Strictness: Str:=S | L
e Strict (Yes!)
e Lazy (Not sure)

e Enables call-by-value, unboxing

main = do
let x= ... -- §
let y = -- S5
let z = -- L

print (x + if odd y then y else z)

Strictness Analysis

e Provides lower bounds on evaluation cardinality
e |s this variable evaluated at least once?

e Strictness: Str:=S | L
e Strict (Yes!)
e Lazy (Not sure)

e Enables call-by-value, unboxing

main = do
let 'x = ... -- §
let !y = -- S5
let z = -- L

print (x + if odd y then y else z)

GHC’s Demand Analyser

Performs strictness analysis (among other things)

Fuels Worker/Wrapper transformation

Backward analysis

e Which strictness does an expression place on its free variables?
e Which strictness does a function place on its arguments?

Strictness type: StrType = (FVs — Str, Str*)

Strictness Signatures

e Looks at the right-hand side of const before the 1et body!

e Unleashes strictness type of const’'s RHS at call sites

let const a b = a -- const :: ([],[S, L])
in const

y -- S

(error "®@") - L

Call Context Matters

e Whole expression is strict in z

e Only digests f for manifest arity 1, can’t look under lambda

e f is called with 2 arguments

let £ x = -- £ ([z— L],[S])
if odd x
then \y -> y*z
else \y -> y+z
in £ 1 2

Call Context Matters

e Whole expression is strict in z
e Only digests f for manifest arity 1, can’t look under lambda

e f is called with 2 arguments

let £ x = -- £ ([z— L],[S])
if odd x
then \y -> y*z
else \y -> y+z
in seq (f 1) 42

Call Context Matters

e Whole expression is strict in z

e Only digests f for manifest arity 1, can’t look under lambda

e f is called with 2 arguments

let £ x = -- £ ([z— L],[S])
if odd x
then \y -> y*z
else \y -> y+z
in £ 1 2

Call Context Matters

e Solution: Analyse RHS when incoming arity is known
e Formally: Finite approximation of strictness transformer
e StrTrans = N — StrType
e Exploit laziness to memoise results?
let £ x = -- 1 ([z— L],[S])
if odd x
then \y -> y*z

else \y -> y+z
in £ 12

Call Context Matters

e Solution: Analyse RHS when incoming arity is known
e Formally: Finite approximation of strictness transformer
e StrTrans = N — StrType
e Exploit laziness to memoise results?
let £ x = -- £ ([z— S],[S,S])
if odd x
then \y -> y*z

else \y -> y+z
in £ 12

Recursion

e Exploit laziness to memoise approximations?

X Recursion leads to termination problems

e Rediscovered fixed-point iteration, detached from the syntax
tree

e Leads to data-flow problem, solved by worklist algorithm

let fac n =
if n ==
then 1
else n * fac (n-1)

in fac 12

Data-flow Graph for Strictness Analysis

e Allocate nodes to break recursion

e One top-level node
e One node per pair of (1let binding, incoming arity)

e Initialise worklist to top-level node

e |nitialise nodes with _L

let £ 0 = const O
f1=1id —
fn=1f (n ‘mod¢ 2)
in f xy

Data-flow Graph for Strictness Analysis

e Allocate nodes to break recursion

e One top-level node
e One node per pair of (1let binding, incoming arity)

e Initialise worklist to top-level node

e |nitialise nodes with _L

let £ 0 = const O
f1=1id —
fn=1f (n ‘mod¢ 2)
in f xy

Data-flow Graph for Strictness Analysis

e Allocate nodes to break recursion

e One top-level node
e One node per pair of (1let binding, incoming arity)

e Initialise worklist to top-level node

e |nitialise nodes with _L

let £ 0 = const O
f1=1id — ‘
fn=1f (n ‘mod¢ 2)

in f xy

Worklist: {<root>o}

Data-flow Graph for Strictness Analysis

e Allocate nodes to break recursion

e One top-level node
e One node per pair of (1let binding, incoming arity)

e Initialise worklist to top-level node

e |nitialise nodes with _L

1 L
let £ 0 = const O
f1=id — ‘
fn=1f (n ‘mod‘ 2)
in f xy

Worklist: {<root>o}

Data-flow Graph for Strictness Analysis

let £ 0 const O
f1=id —
fn=17Ff (n ‘mod¢ 2)

in f xy

Worklist: {<root>p}

Data-flow Graph for Strictness Analysis

let £ 0 const O
f1=id —
fn=17Ff (n ‘mod¢ 2)

in f xy

Worklist: {}

Data-flow Graph for Strictness Analysis

1 1
const O
id — A
f (n ‘mod‘¢ 2)

Worklist: {}

let £ 0O
f1
fn

in f xy

Data-flow Graph for Strictness Analysis

let £ 0 const O

£f1=1id —

fn=17Ff (n ‘mod¢ 2)
in f xy w

Worklist: {}

Data-flow Graph for Strictness Analysis

L L=(I,[5 5D

let £ 0 const O

£f1=1id —

fn=17Ff (n ‘mod¢ 2)
in f xy w

Worklist: {}

Data-flow Graph for Strictness Analysis

L L=(I,[5 5D

let £ 0 const O

£f1=1id —

fn=17Ff (n ‘mod¢ 2)
in f xy w

Worklist: {f2}

Data-flow Graph for Strictness Analysis

(I, IS, 1)
let £ 0 = const O
f1=1id — ‘é
fn=1f (n ‘mod 2)
in f xy

Worklist: {f2}

Data-flow Graph for Strictness Analysis

(x=Sy= 1,1 (I5L)

let £ 0 const O

£f1=1id —

fn=17Ff (n ‘mod¢ 2)
in f xy '

Worklist: {f2}

Data-flow Graph for Strictness Analysis

([x= S,y L], (0,15, L]

let £ 0 const O

£f1=1id —

fn=17Ff (n ‘mod¢ 2)
in f xy '

Worklist: {f2}

Data-flow Graph for Strictness Analysis

([x= S,y L], (0,15, L]

let £ 0 const O

£f1=1id —

fn=17Ff (n ‘mod¢ 2)
in f xy '

Worklist: {}

Data-flow Graph for Strictness Analysis

([x= S,y L], (0,15, L]

let £ 0 const O
f1=id —
fn=17Ff (n ‘mod¢ 2)

in f xy

Worklist: {}

Data-flow Graph for Strictness Analysis

([x= S,y L], (0,15, L]

let £ 0 const O

£f1=1id —

fn=17Ff (n ‘mod¢ 2)
in f xy '

Worklist: {}

Data-flow Graph for Strictness Analysis

(k= Sy= 1, (5L

let £ 0 const O
f1=id —
fn=17Ff (n ‘mod¢ 2)

in f xy

Worklist: {}

Implementation

e Hide iteration strategy behind TransferFunction monad
e Data-flow nodes k, denoting lattice v

e Single ‘impure’ primitive dependOn

data TransferFunction k v a

instance Monad (TransferFunction k v)

dependOn
:: Ord k
=> k

-> TransferFunction k v (Maybe v)

Implementation

e DataFlowProblem assigns TransferFunction and

ChangeDetector to nodes

type ChangeDetector k v
= v -> v -> Bool

data DataFlowProblem k v
= DFP
{ transfer :: k -> TransferFunction k v v

, detectChanges :: k -> ChangeDetector k v

10

Implementation

e fixProblem solves data-flow problems

e Specification as DataFlowProblem
e Implements fixed-point iteration strategy

e Can use worklist algorithm, starting from a specified root set

fixProblem
Ord k
=> DataFlowProblem k v
-> Set k
-> Map k v

11

Applied to Strictness Analysis

Denote expressions by their strictness transformer

Model points of strictness transformer separately

Instantiate as
DataFlowProblem (ExprNode, Arity) StrType

ExprNode: Totally ordered, allocated as needed

e Dictates priority in worklist
e Performance depends on suitable priorities

12

Comparison to hoopl

hoopl (Ramsey et al. 2010) works on CFGs

e Data-flow Graph
e Basic blocks vs. transfer functions
e Edges implicit in DSL

Imperative languages vs. declarative languages

‘Operational’ rather than ‘denotational’

e Small-step vs. compositional

Makes (join-semi)lattice explicit
e TODO

Also includes a solution for transformations

13

Discussion

N X%

Decouple analysis logic from iteration logic by a graph-based
approach

Coupling not as painful as it would be in imperative programs
Still obscures intent, even obstructs ideas

‘Hacks' such as caching of analysis results as in Peyton Jones
et al. (2006, §9.2) between iterations for free

Unclear how performance is affected

Can only shine if shared concerns are actually extracted from a
number of analyses

14

Conclusion

Pitched an interesting idea that came out of my thesis

Separate specification of data-flow problems from computing
its solution

Unobtrusive monadic DSL
Future Work:
1. (Monotone) maps with partially-ordered keys?

2. Polish API, make a package®
3. Testdrive and measure it in GHC

2
https://github.com/sgraf812/pomaps/
https://github.com/sgraf812/datafix

15

https://github.com/sgraf812/pomaps/
https://github.com/sgraf812/datafix

Slides Real-world example

16

https://rawgit.com/sgraf812/hiw17/master/slides.pdf
https://github.com/sgraf812/ghc/blob/6f9f06c2d1bf3a9168ec4079ebf6da26398e54b9/compiler/simplCore/UsageAnal/Analysis.hs##L252

Bibliography

[Peyton Jones, Simon, Peter Sestoft, and John Hughes (2006).
Demand Analysis. URL: https://www.microsoft.com/en-
us/research/publication/demand-analysis/.

[4 Ramsey, Norman, Jo3o Dias, and Simon Peyton Jones (2010).
“Hoopl: A Modular, Reusable Library for Dataflow Analysis and
Transformation”. In: Proceedings of the Third ACM Haskell
Symposium on Haskell. Haskell '10. Baltimore, Maryland, USA:
ACM, pp. 121-134. ISBN: 978-1-4503-0252-4. DOI:
10.1145/1863523.1863539. URL:
http://doi.acm.org/10.1145/1863523.1863539.

17

https://www.microsoft.com/en-us/research/publication/demand-analysis/
https://www.microsoft.com/en-us/research/publication/demand-analysis/
http://dx.doi.org/10.1145/1863523.1863539
http://doi.acm.org/10.1145/1863523.1863539

Backup

let £ 0 = const O

f1 id
fn-= ::$>
const (f (n ‘mod‘ 2) 4)

in f xy

18

let £ 0 = const O

f1 id
fn-= ::$>
const (f (n ‘mod‘ 2) 4)

in seq (f x) (f x y)

18

Example

let £ 0 = const O g
f1=1id
fn-= j
const (f (n ‘mod‘ 2) 4)
in seq (f x) (f x y) a

Implementation: Behind the Curtain

e TransferFunction is a State monad around WorklistState

data TransferFunction node lattice a
= TFM (State (WorklistState node lattice) a)

deriving (Functor, Applicative, Monad)

19

Threading annotated expressions

e Annotated CoreExprs are the reason why we do this!

Thread it through all nodes:
DataFlowProblem (ExprNode, Arity) (StrType, CoreExpr)

Complicates change detection
e Expressions follow AST structure
e Possibly change when strictness type did not
e ChangeDetector has to check set of changed dependencies
e Str := S| L not enough for annotating functions
e Stru=S"| L with arity n € N
e 'f was called at least once, with at least n arguments’
e ... Or do it as the Demand Analyser does: Assume manifest
arity for annotation

e Be careful not to inline unsaturated wrappers!

20

Caching of Analysis Results due to Henglein

let £ x =
let gy =
if odd y
then g (y - 1)
else x

in if even x
then g x
else f (3*x + 1)
in £ 7

21

	Backup

