
Fixing Data-flow Problems in Syntax Trees

Sebastian Graf, sgraf1337@gmail.com

September 9, 2017

Karlsruhe Institute of Technology



Introduction

• My master’s thesis1: Call Arity vs. Demand Analysis
• Result: Usage Analysis generalising Call Arity
• Precision of Call Arity without co-call graphs

• Requirements led to complex analysis order

• Specification of data-flow problem decoupled from its solution

1
https://pp.ipd.kit.edu/uploads/publikationen/graf17masterarbeit.pdf

1

https://pp.ipd.kit.edu/uploads/publikationen/graf17masterarbeit.pdf


Strictness Analysis

• Provides lower bounds on evaluation cardinality

• Is this variable evaluated at least once?
• Strictness: Str ::= S | L
• Strict (Yes!)
• Lazy (Not sure)

• Enables call-by-value, unboxing

main = do
let x = ... -- S

let y = ... -- S

let z = ... -- L

print (x + if odd y then y else z)

2



Strictness Analysis

• Provides lower bounds on evaluation cardinality

• Is this variable evaluated at least once?
• Strictness: Str ::= S | L
• Strict (Yes!)
• Lazy (Not sure)

• Enables call-by-value, unboxing

main = do
let !x = ... -- S

let !y = ... -- S

let z = ... -- L

print (x + if odd y then y else z)

2



GHC’s Demand Analyser

• Performs strictness analysis (among other things)

• Fuels Worker/Wrapper transformation

• Backward analysis
• Which strictness does an expression place on its free variables?
• Which strictness does a function place on its arguments?

• Strictness type: StrType = 〈FVs ⇀ Str, Str∗〉

3



Strictness Signatures

• Looks at the right-hand side of const before the let body!

• Unleashes strictness type of const’s RHS at call sites

let const a b = a -- const :: 〈[], [S , L]〉
in const

y -- S

(error " ") -- L

4



Call Context Matters

• Whole expression is strict in z

• Only digests f for manifest arity 1, can’t look under lambda

• f is called with 2 arguments

Õ Analyse bound function when incoming arity is known

let f x = -- f :: 〈 [z 7→ L] , [S ]〉
if odd x

then \y -> y*z
else \y -> y+z

in f 1 2

5



Call Context Matters

• Whole expression is strict in z

• Only digests f for manifest arity 1, can’t look under lambda

• f is called with 2 arguments

Õ Analyse bound function when incoming arity is known

let f x = -- f :: 〈 [z 7→ L] , [S ]〉
if odd x

then \y -> y*z
else \y -> y+z

in seq (f 1) 42

5



Call Context Matters

• Whole expression is strict in z

• Only digests f for manifest arity 1, can’t look under lambda

• f is called with 2 arguments

Õ Analyse bound function when incoming arity is known

let f x = -- f :: 〈 [z 7→ L] , [S ]〉
if odd x

then \y -> y*z
else \y -> y+z

in f 1 2

5



Call Context Matters

• Solution: Analyse RHS when incoming arity is known

• Formally: Finite approximation of strictness transformer
• StrTrans = N→ StrType

• Exploit laziness to memoise results?
let f x = -- f1 :: 〈 [z 7→ L] , [S ]〉

if odd x
then \y -> y*z
else \y -> y+z

in f 1 2

5



Call Context Matters

• Solution: Analyse RHS when incoming arity is known

• Formally: Finite approximation of strictness transformer
• StrTrans = N→ StrType

• Exploit laziness to memoise results?
let f x = -- f2 :: 〈 [z 7→ S ] , [S ,S ]〉

if odd x
then \y -> y*z
else \y -> y+z

in f 1 2

5



Recursion

• Exploit laziness to memoise approximations?

7 Recursion leads to termination problems

• Rediscovered fixed-point iteration, detached from the syntax
tree

• Leads to data-flow problem, solved by worklist algorithm

let fac n =
if n == 0

then 1
else n * fac (n-1)

in fac 12

6



Data-flow Graph for Strictness Analysis

• Allocate nodes to break recursion
• One top-level node
• One node per pair of (let binding, incoming arity)

• Initialise worklist to top-level node

• Initialise nodes with ⊥

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥

fnfnfn

⊥

7



Data-flow Graph for Strictness Analysis

• Allocate nodes to break recursion
• One top-level node
• One node per pair of (let binding, incoming arity)

• Initialise worklist to top-level node

• Initialise nodes with ⊥

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥

fnfnfn

⊥

7



Data-flow Graph for Strictness Analysis

• Allocate nodes to break recursion
• One top-level node
• One node per pair of (let binding, incoming arity)

• Initialise worklist to top-level node

• Initialise nodes with ⊥

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥

fnfnfn

⊥

Worklist: {<root>0}

7



Data-flow Graph for Strictness Analysis

• Allocate nodes to break recursion
• One top-level node
• One node per pair of (let binding, incoming arity)

• Initialise worklist to top-level node

• Initialise nodes with ⊥

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥

fnfnfn

⊥

Worklist: {<root>0}

7



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

fnfnfnf2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {<root>0}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

fnfnfnf2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {f2}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {f2}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {f2}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {f2}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {}

8



Data-flow Graph for Strictness Analysis

let f 0 = const 0
f 1 = id
f n = f (n ‘mod‘ 2)

in f x y

⇒ <root>0

⊥〈 [x 7→ S , y 7→ L] , []〉

f2

⊥⊥ = 〈[], [S , S ]〉〈[], [S , L]〉

Worklist: {}

8



Implementation

• Hide iteration strategy behind TransferFunction monad

• Data-flow nodes k, denoting lattice v

• Single ‘impure’ primitive dependOn

data TransferFunction k v a
instance Monad (TransferFunction k v)

dependOn
:: Ord k
=> k
-> TransferFunction k v (Maybe v)

9



Implementation

• DataFlowProblem assigns TransferFunction and
ChangeDetector to nodes

type ChangeDetector k v
= v -> v -> Bool

data DataFlowProblem k v
= DFP
{ transfer :: k -> TransferFunction k v v
, detectChanges :: k -> ChangeDetector k v
}

10



Implementation

• fixProblem solves data-flow problems

• Specification as DataFlowProblem

• Implements fixed-point iteration strategy
• Can use worklist algorithm, starting from a specified root set

fixProblem
:: Ord k
=> DataFlowProblem k v
-> Set k
-> Map k v

11



Applied to Strictness Analysis

• Denote expressions by their strictness transformer

• Model points of strictness transformer separately

• Instantiate as
DataFlowProblem (ExprNode, Arity) StrType

• ExprNode: Totally ordered, allocated as needed
• Dictates priority in worklist
• Performance depends on suitable priorities

12



Comparison to hoopl

• hoopl (Ramsey et al. 2010) works on CFGs
• Data-flow Graph
• Basic blocks vs. transfer functions
• Edges implicit in DSL

• Imperative languages vs. declarative languages

• ‘Operational’ rather than ‘denotational’
• Small-step vs. compositional

• Makes (join-semi)lattice explicit
• TODO

• Also includes a solution for transformations

13



Discussion

3 Decouple analysis logic from iteration logic by a graph-based
approach

7 Coupling not as painful as it would be in imperative programs

3 Still obscures intent, even obstructs ideas

3 ‘Hacks’ such as caching of analysis results as in Peyton Jones
et al. (2006, §9.2) between iterations for free

7 Unclear how performance is affected

7 Can only shine if shared concerns are actually extracted from a
number of analyses

14



Conclusion

• Pitched an interesting idea that came out of my thesis

• Separate specification of data-flow problems from computing
its solution

• Unobtrusive monadic DSL

• Future Work:
1. (Monotone) maps with partially-ordered keys2

2. Polish API, make a package3

3. Testdrive and measure it in GHC

2
https://github.com/sgraf812/pomaps/

3
https://github.com/sgraf812/datafix

15

https://github.com/sgraf812/pomaps/
https://github.com/sgraf812/datafix


Done

Slides Real-world example

16

https://rawgit.com/sgraf812/hiw17/master/slides.pdf
https://github.com/sgraf812/ghc/blob/6f9f06c2d1bf3a9168ec4079ebf6da26398e54b9/compiler/simplCore/UsageAnal/Analysis.hs##L252


Bibliography

Peyton Jones, Simon, Peter Sestoft, and John Hughes (2006).
Demand Analysis. URL: https://www.microsoft.com/en-
us/research/publication/demand-analysis/.

Ramsey, Norman, João Dias, and Simon Peyton Jones (2010).
“Hoopl: A Modular, Reusable Library for Dataflow Analysis and
Transformation”. In: Proceedings of the Third ACM Haskell
Symposium on Haskell. Haskell ’10. Baltimore, Maryland, USA:
ACM, pp. 121–134. ISBN: 978-1-4503-0252-4. DOI:
10.1145/1863523.1863539. URL:
http://doi.acm.org/10.1145/1863523.1863539.

17

https://www.microsoft.com/en-us/research/publication/demand-analysis/
https://www.microsoft.com/en-us/research/publication/demand-analysis/
http://dx.doi.org/10.1145/1863523.1863539
http://doi.acm.org/10.1145/1863523.1863539


Backup



Example

let f 0 = const 0
f 1 = id
f n =

const (f (n ‘mod‘ 2) 4)
in f x y

⇒ <root>0 fnfnfn

f1

f2

18



Example

let f 0 = const 0
f 1 = id
f n =

const (f (n ‘mod‘ 2) 4)
in seq (f x) (f x y)

⇒ <root>0 fnfnfn

f1

f2

18



Example

let f 0 = const 0
f 1 = id
f n =

const (f (n ‘mod‘ 2) 4)
in seq (f x) (f x y)

⇒ <root>0

f1

f2

18



Implementation: Behind the Curtain

• TransferFunction is a State monad around WorklistState

data TransferFunction node lattice a
= TFM (State (WorklistState node lattice ) a)
deriving (Functor, Applicative, Monad)

19



Threading annotated expressions

• Annotated CoreExprs are the reason why we do this!

• Thread it through all nodes:
DataFlowProblem (ExprNode, Arity) (StrType, CoreExpr)

• Complicates change detection
• Expressions follow AST structure
• Possibly change when strictness type did not
• ChangeDetector has to check set of changed dependencies

• Str ::= S | L not enough for annotating functions
• Str ::= Sn | L with arity n ∈ N
• ‘f was called at least once, with at least n arguments’

• ... Or do it as the Demand Analyser does: Assume manifest
arity for annotation
• Be careful not to inline unsaturated wrappers!

20



Caching of Analysis Results due to Henglein

let f x =
let g y =

if odd y
then g (y - 1)
else x

in if even x
then g x
else f (3*x + 1)

in f 7

21


	Backup

