RevBayes Manual Pages :: Index


Functions

Probability

Show more... >> << Show less

Name

Probability

Usage

Probability(Real x)

Arguments

x
The value.

Argument type: pass by const reference
Value type: Real

[]

Show more... >> << Show less

Name

[]

Usage

[](Integer[] v, Natural index)

Arguments

v
The vector.

Argument type: pass by const reference
Value type: Integer[]

index
The index.

Argument type: pass by const reference
Value type: Natural

abs

The 'abs' function returns the absolute value of a number.

Show more... >> << Show less

Name

abs

Description

The 'abs' function returns the absolute value of a number.

Usage

abs(Real x)

Arguments

x
A (possibly negative) number.

Argument type: pass by const reference
Value type: Real

Example

# compute the absolute value of a real number
number <- -3.0
absoluteValueOfTheNumber <- abs(number)
if (number + absoluteValueOfTheNumber != 0.0) {
    print("Problem when computing an absolute value.")
} else {
    print("Correct computation of an absolute value.")
}

Author

Sebastian Hoehna

See also

ceil
floor
round


ancestralStateTree

Show more... >> << Show less

Name

ancestralStateTree

Usage

ancestralStateTree(Tree inputtree, AncestralStateTrace[] ancestralstatetrace_vector, TraceTree TraceTree, String file, Integer burnin)

Arguments

inputtree
The input tree.

Argument type: pass by value
Value type: Tree

ancestralstatetrace_vector
A vector of ancestral state traces.

Argument type: pass by value
Value type: AncestralStateTrace[]

TraceTree
A vector (trace) of tree samples.

Argument type: pass by value
Value type: TraceTree

file
The name of the file where to store the annotated tree.

Argument type: pass by value
Value type: String

burnin
The number of samples to discard as burnin.

Argument type: pass by value
Value type: Integer
Default value -1

annotateHPDAges

Show more... >> << Show less

Name

annotateHPDAges

Usage

annotateHPDAges(Probability hpd, Tree inputtree, TraceTree TraceTree, String file, Integer burnin)

Arguments

hpd
The probability contained in the highest posterior density interval.

Argument type: pass by value
Value type: Probability
Default value 0.95

inputtree
The input tree which will be annotated.

Argument type: pass by value
Value type: Tree

TraceTree
The sample trace.

Argument type: pass by value
Value type: TraceTree

file
The name of the file where to store the tree.

Argument type: pass by value
Value type: String

burnin
The number of samples to discard as burnin.

Argument type: pass by value
Value type: Integer
Default value -1

branchScoreDistance

Show more... >> << Show less

Name

branchScoreDistance

Usage

branchScoreDistance(TimeTree tree1, TimeTree tree2)

Arguments

tree1
The first tree.

Argument type: pass by const reference
Value type: TimeTree

tree2
The second tree.

Argument type: pass by const reference
Value type: TimeTree

ceil

The 'ceil' function maps the value of a number to the smallest following integer.

Show more... >> << Show less

Name

ceil

Description

The 'ceil' function maps the value of a number to the smallest following integer.

Usage

ceil(Real x)

Arguments

x
The value.

Argument type: pass by const reference
Value type: Real

Example

# compute the ceiling of a real number
number <- 3.4
ceiled_number <- ceil(number)
if (ceiled_number != 4.0) {
    print("Problem when computing a ceiled value.")
} else {
    print("Correct computation of a ceiled value.")
}

Author

Sebastian Hoehna

See also

abs
floor
round


clade

Show more... >> << Show less

Name

clade

Usage

clade(String[] taxa, RealPos age)

Arguments

taxa
A vector a taxa that is contained in this clade.

Argument type: pass by value
Value type: String[]

age
The age of the clade (optional).

Argument type: pass by value
Value type: RealPos
Default value NULL

clear

Clear (e.g., remove) variables and functions from the workspace.

Show more... >> << Show less

Name

clear

Description

Clear (e.g., remove) variables and functions from the workspace.

Usage

clear(RevObject ...)

Arguments

Variables to remove.

Argument type: pass by const reference
Value type: RevObject

Details

The clear function removes either a given variable or all variables from the workspace. Clearing the workspace is very useful between analysis if you do not want to have old connections between variables hanging around.

Example

ls()   # check what is in the workspace
a <- 1
b := exp(a)
ls()   # check what is in the workspace
clear()
ls()   # check what is in the workspace
a <- 1
b := exp(a)
ls()   # check what is in the workspace
clear( b )
ls()   # check what is in the workspace

Author

Sebastian Hoehna

See also

exists


concatenate

Show more... >> << Show less

Name

concatenate

Usage

concatenate(AbstractHomologousDiscreteCharacterData a, AbstractHomologousDiscreteCharacterData v, AbstractHomologousDiscreteCharacterData ...)

Arguments

a
First character data object.

Argument type: pass by const reference
Value type: AbstractHomologousDiscreteCharacterData

v
Second character data object.

Argument type: pass by const reference
Value type: AbstractHomologousDiscreteCharacterData

Additional character data objects.

Argument type: pass by const reference
Value type: AbstractHomologousDiscreteCharacterData

consensusTree

Show more... >> << Show less

Name

consensusTree

Usage

consensusTree(TraceTree TraceTree, String file, RealPos cutoff, Integer burnin)

Arguments

TraceTree
The trace of tree samples.

Argument type: pass by value
Value type: TraceTree

file
The name of the file for storing the tree.

Argument type: pass by value
Value type: String

cutoff
The minimum threshold for clade probabilities.

Argument type: pass by value
Value type: RealPos

burnin
The number of samples to discard as burnin.

Argument type: pass by value
Value type: Integer
Default value -1

convertToPhylowood

Show more... >> << Show less

Name

convertToPhylowood

Usage

convertToPhylowood(String statefile, String treefile, String geofile, String outfile, Probability burnin, String chartype {valid options: "NaturalNumbers"|"Standard"} , String bgtype {valid options: "Range"|"Area"} )

Arguments

statefile


Argument type: pass by value
Value type: String

treefile


Argument type: pass by value
Value type: String

geofile


Argument type: pass by value
Value type: String

outfile


Argument type: pass by value
Value type: String

burnin


Argument type: pass by value
Value type: Probability
Default value -1

chartype


Argument type: pass by value
Value type: String

Options
NaturalNumbers
Standard

Default value "NaturalNumbers"

bgtype


Argument type: pass by value
Value type: String

Options
Range
Area

Default value "Area"

dBDPTopology

Show more... >> << Show less

Name

dBDPTopology

Usage

dBDPTopology(TimeTree x, RealPos lambda, RealPos mu, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dBimodalLognormal

Show more... >> << Show less

Name

dBimodalLognormal

Usage

dBimodalLognormal(RealPos x, Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: RealPos

mean1
The mean (in log-space) of the first lognormal distribution.

Argument type: pass by const reference
Value type: Real

mean2
The mean (in log-space) of the second lognormal distribution.

Argument type: pass by const reference
Value type: Real

sd1
The standard deviation of the first lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

sd2
The standard deviation of the secind lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability to belong to the first distribution.

Argument type: pass by const reference
Value type: Probability

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dBimodalNormal

Show more... >> << Show less

Name

dBimodalNormal

Usage

dBimodalNormal(Real x, Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real

mean1
Mean of the first normal distribution.

Argument type: pass by const reference
Value type: Real

mean2
Mean of the second normal distribution.

Argument type: pass by const reference
Value type: Real

sd1
Standard deviation of the first normal distributin.

Argument type: pass by const reference
Value type: RealPos

sd2
Standard deviation of the second normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
Probability that the value belongs to the first normal distribution.

Argument type: pass by const reference
Value type: Probability

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dBirthDeath

Show more... >> << Show less

Name

dBirthDeath

Alias

dBDP

Usage

dBirthDeath(TimeTree x, RealPos lambda, RealPos mu, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dBirthDeathMultiRate

Show more... >> << Show less

Name

dBirthDeathMultiRate

Usage

dBirthDeathMultiRate(TimeTree x, RealPos origin, RealPos rootAge, Probability rho, RealPos[] lambda, RealPos[] mu, RateGenerator Q, RealPos rate, Simplex pi, String condition {valid options: "time"|"survival"} , Taxon[] taxa, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

origin
The origin of the process.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The root age.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon-sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

lambda
Vector of speciation rates per rate category.

Argument type: pass by const reference
Value type: RealPos[]

mu
Vector of extinction rates per rate category.

Argument type: pass by const reference
Value type: RealPos[]

Q
Rate matrix of transition rates between diversification-rate categories.

Argument type: pass by const reference
Value type: RateGenerator

rate
Global rate of transition between rate categories.

Argument type: pass by const reference
Value type: RealPos

pi
State frequencies at the root.

Argument type: pass by const reference
Value type: Simplex

condition
The condition of the birth-death process.

Argument type: pass by value
Value type: String

Options
time
survival

Default value "survival"

taxa
The taxon names used for initialization.

Argument type: pass by value
Value type: Taxon[]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dCoalescent

Show more... >> << Show less

Name

dCoalescent

Usage

dCoalescent(TimeTree x, RealPos theta, String[] names, Clade[] constraints, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

theta
The constant population size.

Argument type: pass by const reference
Value type: RealPos

names
The taxon names used when drawing a random tree.

Argument type: pass by value
Value type: String[]

constraints
The topological constraints strictly enforced.

Argument type: pass by value
Value type: Clade[]
Default value [ ]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dCoalescentSkyline

Show more... >> << Show less

Name

dCoalescentSkyline

Usage

dCoalescentSkyline(TimeTree x, RealPos[] theta, RealPos[] times, String method {valid options: "events"|"uniform"|"specified"} , String[] names, Clade[] constraints, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

theta
A vector of per interval population sizes.

Argument type: pass by const reference
Value type: RealPos[]

times
A vector of times for the intervals, if applicable.

Argument type: pass by const reference
Value type: RealPos[]
Default value NULL

method
The method how intervals are defined.

Argument type: pass by value
Value type: String

Options
events
uniform
specified

Default value "events"

names
The names of the taxa used for simulation.

Argument type: pass by value
Value type: String[]

constraints
The strictly enforced topology constraints.

Argument type: pass by value
Value type: Clade[]
Default value [ ]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dDPP

Show more... >> << Show less

Name

dDPP

Usage

dDPP(Real[] x, RealPos concentration, Distribution__Real baseDistribution, Natural numElements, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real[]

concentration
The concentration parameter.

Argument type: pass by const reference
Value type: RealPos

baseDistribution
The base distribution for the per category values.

Argument type: pass by const reference
Value type: Distribution__Real

numElements
The number of elements drawn from this distribution.

Argument type: pass by value
Value type: Natural

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dDecomposedInvWishart

Show more... >> << Show less

Name

dDecomposedInvWishart

Usage

dDecomposedInvWishart(MatrixReal x, MatrixRealSymmetric sigma, RealPos[] diagonal, Natural df, RealPos kappa, Natural dim, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: MatrixReal

sigma


Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value [ [ 0.0000 ] ]

diagonal


Argument type: pass by const reference
Value type: RealPos[]
Default value [ ]

df


Argument type: pass by const reference
Value type: Natural
Default value 0

kappa


Argument type: pass by const reference
Value type: RealPos
Default value 0

dim


Argument type: pass by const reference
Value type: Natural
Default value 0

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dDiversityDependentYule

Show more... >> << Show less

Name

dDiversityDependentYule

Usage

dDiversityDependentYule(TimeTree x, RealPos lambda, Natural capacity, RealPos origin, RealPos rootAge, String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

lambda
The initial speciation rate.

Argument type: pass by const reference
Value type: RealPos

capacity
The carrying capacity.

Argument type: pass by const reference
Value type: Natural

origin
The time of the process since the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process since the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The names of the taxa used for simulation.

Argument type: pass by value
Value type: Taxon[]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dEmpiricalTree

Show more... >> << Show less

Name

dEmpiricalTree

Usage

dEmpiricalTree(Tree x, Natural burnin, TraceTree TraceTree, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Tree

burnin
The number of samples to discard.

Argument type: pass by value
Value type: Natural

TraceTree
The trace of tree samples.

Argument type: pass by value
Value type: TraceTree

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dFossilBirthDeath

Show more... >> << Show less

Name

dFossilBirthDeath

Alias

dFBDP

Usage

dFossilBirthDeath(TimeTree x, RealPos lambda, RealPos mu, RealPos psi, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

psi
The constant fossilization rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dInverseWishart

Show more... >> << Show less

Name

dInverseWishart

Alias

dinvWishart

Usage

dInverseWishart(MatrixRealSymmetric x, MatrixRealSymmetric sigma, RealPos[] diagonal, Natural df, RealPos kappa, Natural dim, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: MatrixRealSymmetric

sigma


Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

diagonal


Argument type: pass by const reference
Value type: RealPos[]
Default value NULL

df


Argument type: pass by const reference
Value type: Natural
Default value NULL

kappa


Argument type: pass by const reference
Value type: RealPos
Default value NULL

dim


Argument type: pass by const reference
Value type: Natural
Default value NULL

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dMixture

Show more... >> << Show less

Name

dMixture

Usage

dMixture(Real x, Real[] values, Simplex probabilities, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real

values
The potential values.

Argument type: pass by const reference
Value type: Real[]

probabilities
The probabilitoes for each value.

Argument type: pass by const reference
Value type: Simplex

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dMultiSpeciesCoalescent

Show more... >> << Show less

Name

dMultiSpeciesCoalescent

Usage

dMultiSpeciesCoalescent(TimeTree x, TimeTree speciesTree, RealPos|RealPos[] Ne, Taxon[] taxa, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

speciesTree
The species in which the gene trees evolve.

Argument type: pass by const reference
Value type: TimeTree

Ne
The population sizes.

Argument type: pass by const reference
Value type: RealPos

taxa
The vector of taxa which have species and individual names.

Argument type: pass by value
Value type: Taxon[]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dMultivariateNormal

Show more... >> << Show less

Name

dMultivariateNormal

Usage

dMultivariateNormal(Real[] x, Real[] mean, MatrixRealSymmetric covariance, MatrixRealSymmetric precision, RealPos scale, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real[]

mean
The vector of mean values.

Argument type: pass by const reference
Value type: Real[]

covariance
The variance-covariance matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

precision
The precision matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

scale
The scaling factor of the variance matrix.

Argument type: pass by const reference
Value type: RealPos
Default value 1

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dNormal

Show more... >> << Show less

Name

dNormal

Usage

dNormal(Real x, Real mean, RealPos sd, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real

mean
The mean parameter.

Argument type: pass by const reference
Value type: Real
Default value 0

sd
The standard deviation parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dOrnsteinUhlenbeck

Show more... >> << Show less

Name

dOrnsteinUhlenbeck

Alias

dOU

Usage

dOrnsteinUhlenbeck(Real x, Real x0, Real theta, RealPos alpha, RealPos sigma, RealPos time, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real

x0
The root parameter value.

Argument type: pass by const reference
Value type: Real

theta
The location of the optimum parameter.

Argument type: pass by const reference
Value type: Real

alpha
The attraction to the optimum parameter.

Argument type: pass by const reference
Value type: RealPos

sigma
The scaling parameter of the time.

Argument type: pass by const reference
Value type: RealPos

time
The duration of the process.

Argument type: pass by const reference
Value type: RealPos

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dPhyloBrownian

Show more... >> << Show less

Name

dPhyloBrownian

Alias

dPhyloBM

Usage

dPhyloBrownian(Real[] x, TimeTree tree, RealPos sigma, Real drift, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real[]

tree
The tree along which the continuous character evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The branch-length multiplier to scale the variance of the Brownian motion.

Argument type: pass by const reference
Value type: RealPos

drift
The drift parameter of the Brownian motion.

Argument type: pass by const reference
Value type: Real
Default value 0

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dPhyloBrownianMVN

Show more... >> << Show less

Name

dPhyloBrownianMVN

Usage

dPhyloBrownianMVN(ContinuousCharacterData x, Tree tree, RealPos|RealPos[] branchRates, RealPos|RealPos[] siteRates, Real|Real[] rootStates, Natural nSites, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: ContinuousCharacterData

tree
The tree along which the character evolves.

Argument type: pass by const reference
Value type: Tree

branchRates
The rate of evolution along a branch.

Argument type: pass by const reference
Value type: RealPos
Default value 1

siteRates
The rate of evolution per site.

Argument type: pass by const reference
Value type: RealPos
Default value 1

rootStates
The vector of root states.

Argument type: pass by const reference
Value type: Real
Default value 0

nSites
The number of sites which is used for the initialized (random draw) from this distribution.

Argument type: pass by value
Value type: Natural
Default value 10

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dPhyloBrownianMultiVariate

Show more... >> << Show less

Name

dPhyloBrownianMultiVariate

Usage

dPhyloBrownianMultiVariate(Real[][] x, TimeTree tree, MatrixRealSymmetric sigma, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real[][]

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The variance-covariance matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dPhyloBrownianREML

Show more... >> << Show less

Name

dPhyloBrownianREML

Usage

dPhyloBrownianREML(ContinuousCharacterData x, Tree tree, RealPos|RealPos[] branchRates, RealPos|RealPos[] siteRates, Natural nSites, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: ContinuousCharacterData

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: Tree

branchRates
The per branch rate-multiplier(s).

Argument type: pass by const reference
Value type: RealPos
Default value 1

siteRates
The per site rate-multiplier(s).

Argument type: pass by const reference
Value type: RealPos
Default value 1

nSites
The number of sites used for simulation.

Argument type: pass by value
Value type: Natural
Default value 10

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dPhyloDistanceGamma

Show more... >> << Show less

Name

dPhyloDistanceGamma

Usage

dPhyloDistanceGamma(RlDistanceMatrix x, Tree tree, RlDistanceMatrix distanceMatrix, RlDistanceMatrix varianceMatrix, String[] names, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: RlDistanceMatrix

tree


Argument type: pass by const reference
Value type: Tree

distanceMatrix


Argument type: pass by const reference
Value type: RlDistanceMatrix

varianceMatrix


Argument type: pass by const reference
Value type: RlDistanceMatrix

names


Argument type: pass by value
Value type: String[]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dPhyloOrnsteinUhlenbeck

Show more... >> << Show less

Name

dPhyloOrnsteinUhlenbeck

Alias

dPhyloOU

Usage

dPhyloOrnsteinUhlenbeck(Real[] x, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real[]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dPhyloWhiteNoise

Show more... >> << Show less

Name

dPhyloWhiteNoise

Usage

dPhyloWhiteNoise(RealPos[] x, TimeTree tree, RealPos sigma, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: RealPos[]

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The standard deviation.

Argument type: pass by const reference
Value type: RealPos

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dPoisson

Show more... >> << Show less

Name

dPoisson

Usage

dPoisson(Natural x, RealPos lambda, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Natural

lambda
The rate (rate = 1/mean) parameter.

Argument type: pass by const reference
Value type: RealPos

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dReversibleJumpMixture

Show more... >> << Show less

Name

dReversibleJumpMixture

Alias

dRJMixture

Usage

dReversibleJumpMixture(Real x, Real constantValue, Distribution__Real baseDistribution, Probability p, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real

constantValue
The fixed value this distribution can take.

Argument type: pass by const reference
Value type: Real

baseDistribution
The distribution from which the value is alternatively drawn.

Argument type: pass by const reference
Value type: Distribution__Real

p
The probability of being the fixed value.

Argument type: pass by const reference
Value type: Probability

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dSoftBoundUniformNormal

Show more... >> << Show less

Name

dSoftBoundUniformNormal

Usage

dSoftBoundUniformNormal(Real x, Real min, Real max, RealPos sd, Probability p, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real

min
The min value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

max
The max value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

sd
The standard deviation of the normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability of being within the uniform distribution.

Argument type: pass by const reference
Value type: Probability

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dUniform

Show more... >> << Show less

Name

dUniform

Alias

dunif

Usage

dUniform(Real x, Real lower, Real upper, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real

lower
The lower bound.

Argument type: pass by const reference
Value type: Real

upper
The upper bound.

Argument type: pass by const reference
Value type: Real

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dUniformTimeTree

Show more... >> << Show less

Name

dUniformTimeTree

Usage

dUniformTimeTree(TimeTree x, RealPos rootAge, Taxon[] taxa, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: TimeTree

rootAge
The age of the root.

Argument type: pass by const reference
Value type: RealPos

taxa
The taxa used for simulation.

Argument type: pass by value
Value type: Taxon[]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dUniformTopology

Show more... >> << Show less

Name

dUniformTopology

Usage

dUniformTopology(BranchLengthTree x, Taxon[] taxa, Clade[] constraints, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: BranchLengthTree

taxa
The vector of taxa that will be used for the tips.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

constraints
The topological constraints that will be enforced.

Argument type: pass by value
Value type: Clade[]
Default value NULL

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dWishart

Show more... >> << Show less

Name

dWishart

Usage

dWishart(MatrixRealSymmetric x, Natural df, RealPos kappa, Natural dim, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: MatrixRealSymmetric

df
The degrees of dreedom.

Argument type: pass by const reference
Value type: Natural

kappa
The scaling parameter.

Argument type: pass by const reference
Value type: RealPos

dim
The dimension of the distribution.

Argument type: pass by const reference
Value type: Natural

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dbernoulli

Show more... >> << Show less

Name

dbernoulli

Usage

dbernoulli(Natural x, Probability p, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Natural

p
The probability of success.

Argument type: pass by const reference
Value type: Probability

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dbeta

Show more... >> << Show less

Name

dbeta

Usage

dbeta(Probability x, RealPos alpha, RealPos beta, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Probability

alpha
The alpha shape parameter.

Argument type: pass by const reference
Value type: RealPos

beta
The beta shape parameter.

Argument type: pass by const reference
Value type: RealPos

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dbinomial

Show more... >> << Show less

Name

dbinomial

Usage

dbinomial(Natural x, Probability p, Natural n, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Natural

p
Probability of success.

Argument type: pass by const reference
Value type: Probability

n
Number of trials.

Argument type: pass by const reference
Value type: Natural

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dcategorical

Show more... >> << Show less

Name

dcategorical

Alias

dcat

Usage

dcategorical(Natural x, Simplex p, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Natural

p
The probability for each category.

Argument type: pass by const reference
Value type: Simplex

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dchisq

Show more... >> << Show less

Name

dchisq

Usage

dchisq(RealPos x, Natural df, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: RealPos

df
The degrees of freedom.

Argument type: pass by const reference
Value type: Natural

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dcppNormal

Show more... >> << Show less

Name

dcppNormal

Usage

dcppNormal(Real x, RealPos lambda, Real mu, RealPos sigma, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Real

lambda
The rate of the Poisson distribution.

Argument type: pass by const reference
Value type: RealPos

mu
The mean of the normal distribution

Argument type: pass by const reference
Value type: Real

sigma
The standard deviation of the normal distribution

Argument type: pass by const reference
Value type: RealPos

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

ddirichlet

Show more... >> << Show less

Name

ddirichlet

Usage

ddirichlet(Simplex x, RealPos[] alpha, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Simplex

alpha
The concentration parameter.

Argument type: pass by const reference
Value type: RealPos[]

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dexponential

Show more... >> << Show less

Name

dexponential

Alias

dexp

Usage

dexponential(RealPos x, RealPos lambda, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: RealPos

lambda
The rate ( rate==1/mean) parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dgamma

Show more... >> << Show less

Name

dgamma

Usage

dgamma(RealPos x, RealPos shape, RealPos rate, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: RealPos

shape
The shape parameter.

Argument type: pass by const reference
Value type: RealPos

rate
The rate parameter (rate = 1/scale).

Argument type: pass by const reference
Value type: RealPos

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dgeometric

Show more... >> << Show less

Name

dgeometric

Alias

dgeom

Usage

dgeometric(Natural x, Probability p, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Natural

p
The probability of success.

Argument type: pass by const reference
Value type: Probability

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

diagonalMatrix

Building a identity/diagonal matrix with 'n' columns and rows.

Show more... >> << Show less

Name

diagonalMatrix

Description

Building a identity/diagonal matrix with 'n' columns and rows.

Usage

diagonalMatrix(Natural n)

Arguments

n
The number of rows/columns (dimension).

Argument type: pass by value
Value type: Natural

Author

Sebastian Hoehna

dlognormal

Show more... >> << Show less

Name

dlognormal

Alias

dlnorm

Usage

dlognormal(RealPos x, Real mean, RealPos sd, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: RealPos

mean
The mean in log-space (observed mean is exp(m)).

Argument type: pass by const reference
Value type: Real

sd
The standard deviation in log-space.

Argument type: pass by const reference
Value type: RealPos

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dloguniform

Show more... >> << Show less

Name

dloguniform

Usage

dloguniform(RealPos x, RealPos min, RealPos max, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: RealPos

min
The lower bound.

Argument type: pass by const reference
Value type: RealPos

max
The upper bound.

Argument type: pass by const reference
Value type: RealPos

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

dmultinomial

Show more... >> << Show less

Name

dmultinomial

Usage

dmultinomial(Natural[] x, Simplex p, Natural n, Bool log)

Arguments

x
The observed value.

Argument type: pass by const reference
Value type: Natural[]

p
The simplex of probabilities for the categories.

Argument type: pass by const reference
Value type: Simplex

n
The number of draws.

Argument type: pass by const reference
Value type: Natural

log
Log-transformed probability?

Argument type: pass by value
Value type: Bool
Default value true

exists

Determines whether the RevBayes workspace contains a variable named 'name'

Show more... >> << Show less

Name

exists

Description

Determines whether the RevBayes workspace contains a variable named 'name'

Usage

exists(String name)

Arguments

name
The name of the variable we wish to check for existence.

Argument type: pass by value
Value type: String

Details

'exists' returns 'true' if the workspace contains a variable whose name matches the String 'name' and 'false' otherwise. One use of 'exists' is to add Move and Monitor objects conditional on the variable 'x' existing. The function 'ls' provides a summary for all variable names that 'exists' would evaluate as 'true'.

Example

## Correct usage: does "x" exist?
x <- 1.0
exists("x")

## Incorrect usage: does "1.0" exist?
exists(x)

Author

Michael Landis

See also

clear


exp

Show more... >> << Show less

Name

exp

Usage

exp(Real x)

Arguments

x
A number.

Argument type: pass by const reference
Value type: Real

floor

Show more... >> << Show less

Name

floor

Usage

floor(Real x)

Arguments

x
The value.

Argument type: pass by const reference
Value type: Real

fnBiogeoDE

Show more... >> << Show less

Name

fnBiogeoDE

Usage

fnBiogeoDE(RateGenerator gainLossRates, Simplex rootFrequencies, GeographyRateModifier geoRateMod, Natural numAreas, Bool forbidExtinction, RealPos|RealPos[] branchRates)

Arguments

gainLossRates


Argument type: pass by const reference
Value type: RateGenerator

rootFrequencies


Argument type: pass by const reference
Value type: Simplex
Default value [ 0.5, 0.5 ]

geoRateMod


Argument type: pass by const reference
Value type: GeographyRateModifier
Default value NULL

numAreas


Argument type: pass by const reference
Value type: Natural

forbidExtinction


Argument type: pass by const reference
Value type: Bool
Default value true

branchRates


Argument type: pass by const reference
Value type: RealPos
Default value 1

fnBiogeoGRM

Show more... >> << Show less

Name

fnBiogeoGRM

Usage

fnBiogeoGRM(RlAtlas atlas, Real distancePower, Bool useDistances, Bool useAvailable)

Arguments

atlas


Argument type: pass by const reference
Value type: RlAtlas

distancePower


Argument type: pass by const reference
Value type: Real
Default value 1e-05

useDistances


Argument type: pass by const reference
Value type: Bool
Default value true

useAvailable


Argument type: pass by const reference
Value type: Bool
Default value false

fnBlosum62

Show more... >> << Show less

Name

fnBlosum62

Usage

fnBlosum62()

fnChromosomes

Show more... >> << Show less

Name

fnChromosomes

Usage

fnChromosomes(Natural maxChromosomes, RealPos lambda, RealPos delta, RealPos rho, RealPos mu, RealPos lambda_l, RealPos delta_l)

Arguments

maxChromosomes


Argument type: pass by const reference
Value type: Natural

lambda


Argument type: pass by const reference
Value type: RealPos
Default value 0

delta


Argument type: pass by const reference
Value type: RealPos
Default value 0

rho


Argument type: pass by const reference
Value type: RealPos
Default value 0

mu


Argument type: pass by const reference
Value type: RealPos
Default value 0

lambda_l


Argument type: pass by const reference
Value type: RealPos
Default value 0

delta_l


Argument type: pass by const reference
Value type: RealPos
Default value 0

fnCladoProbs

Show more... >> << Show less

Name

fnCladoProbs

Usage

fnCladoProbs(Simplex eventProbs, Natural numCharacters, Natural numStates)

Arguments

eventProbs
The probabilities of the different event types.

Argument type: pass by const reference
Value type: Simplex

numCharacters
The number of characters.

Argument type: pass by value
Value type: Natural

numStates
The number of states,

Argument type: pass by value
Value type: Natural

fnCoala

Show more... >> << Show less

Name

fnCoala

Usage

fnCoala(Real[] coordinates, MatrixReal corAnalysis, RealPos[] weights)

Arguments

coordinates
A vector of coordinates.

Argument type: pass by const reference
Value type: Real[]

corAnalysis
A correspondence analysis object.

Argument type: pass by value
Value type: MatrixReal

weights
A vector of weight for the coordinates.

Argument type: pass by value
Value type: RealPos[]

fnCpRev

Show more... >> << Show less

Name

fnCpRev

Usage

fnCpRev()

fnDECRateMatrix

Show more... >> << Show less

Name

fnDECRateMatrix

Usage

fnDECRateMatrix(RealPos[][] dispersalRates, RealPos[] extirpationRates, Simplex rangeSize)

Arguments

dispersalRates
Matrix of dispersal rates between areas.

Argument type: pass by const reference
Value type: RealPos[][]

extirpationRates
The per are extinction rates.

Argument type: pass by const reference
Value type: RealPos[]

rangeSize
Range size ...

Argument type: pass by value
Value type: Simplex

fnDECRates

Show more... >> << Show less

Name

fnDECRates

Usage

fnDECRates(RealPos[][] dispersalRates, RealPos[] extinctionRates, Natural maxRangeSize)

Arguments

dispersalRates


Argument type: pass by const reference
Value type: RealPos[][]

extinctionRates


Argument type: pass by const reference
Value type: RealPos[]

maxRangeSize


Argument type: pass by value
Value type: Natural
Default value 2147483647

fnDECRoot

Show more... >> << Show less

Name

fnDECRoot

Usage

fnDECRoot(RealPos[] rootFreqs, Simplex rangeSize)

Arguments

rootFreqs


Argument type: pass by const reference
Value type: RealPos[]

rangeSize


Argument type: pass by value
Value type: Simplex
Default value NULL

fnDayhoff

Show more... >> << Show less

Name

fnDayhoff

Usage

fnDayhoff()

fnDecompVarCovar

Show more... >> << Show less

Name

fnDecompVarCovar

Usage

fnDecompVarCovar(RealPos[] standardDeviations, MatrixReal correlationCoefficients)

Arguments

standardDeviations
A vector of standard deviations.

Argument type: pass by const reference
Value type: RealPos[]

correlationCoefficients
A matrix of correlation coefficients.

Argument type: pass by const reference
Value type: MatrixReal

fnDiscretizeDistribution

Show more... >> << Show less

Name

fnDiscretizeDistribution

Usage

fnDiscretizeDistribution(ContinuousDistribution G0, Integer num_cats)

Arguments

G0
The distribution to discretize.

Argument type: pass by const reference
Value type: ContinuousDistribution

num_cats
The number of categories into which this distribution is categorize.

Argument type: pass by value
Value type: Integer

fnDiscretizeGamma

Show more... >> << Show less

Name

fnDiscretizeGamma

Usage

fnDiscretizeGamma(RealPos shape, RealPos rate, Integer numCats, Bool median)

Arguments

shape
The shape parameter of the gamma distribution.

Argument type: pass by const reference
Value type: RealPos

rate
The rate parameter (rate = 1/scale) of the gamma distribution

Argument type: pass by const reference
Value type: RealPos

numCats
The number of categories.

Argument type: pass by value
Value type: Integer

median
Should we use the median or mean?

Argument type: pass by value
Value type: Bool
Default value false

fnDppConcFromMean

Show more... >> << Show less

Name

fnDppConcFromMean

Usage

fnDppConcFromMean(RealPos numCats, Natural numElements)

Arguments

numCats
Number of Categories of the DPP.

Argument type: pass by value
Value type: RealPos

numElements
Total number of elements.

Argument type: pass by value
Value type: Natural

fnDppMeanFromConc

Show more... >> << Show less

Name

fnDppMeanFromConc

Usage

fnDppMeanFromConc(RealPos concentration, RealPos numElements)

Arguments

concentration
The concentration parameter of the DPP.

Argument type: pass by value
Value type: RealPos

numElements
The number of elements of the DPP.

Argument type: pass by value
Value type: RealPos

fnEpoch

Show more... >> << Show less

Name

fnEpoch

Usage

fnEpoch(RateGenerator[] Q, RealPos[] times, RealPos[] rates)

Arguments

Q
The per epoch rate matrices

Argument type: pass by const reference
Value type: RateGenerator[]

times
The times of the epochs.

Argument type: pass by const reference
Value type: RealPos[]

rates
The rate multipliers per epoch.

Argument type: pass by const reference
Value type: RealPos[]

fnF81

Show more... >> << Show less

Name

fnF81

Usage

fnF81(Simplex baseFrequencies)

Arguments

baseFrequencies
The stationary frequencies of the states.

Argument type: pass by const reference
Value type: Simplex

fnFreeBinary

Show more... >> << Show less

Name

fnFreeBinary

Usage

fnFreeBinary(RealPos[] transitionRates)

Arguments

transitionRates
The transition rates between the two states.

Argument type: pass by const reference
Value type: RealPos[]

fnFreeK

Show more... >> << Show less

Name

fnFreeK

Usage

fnFreeK(Simplex transitionRates)

Arguments

transitionRates
Transition rates between states.

Argument type: pass by const reference
Value type: Simplex

fnFreeSymmetricRateMatrix

Show more... >> << Show less

Name

fnFreeSymmetricRateMatrix

Usage

fnFreeSymmetricRateMatrix(RealPos[] transitionRates, Bool rescaled)

Arguments

transitionRates
The transition rates between states.

Argument type: pass by const reference
Value type: RealPos[]

rescaled
Should the matrix be normalized?

Argument type: pass by value
Value type: Bool

fnGTR

Show more... >> << Show less

Name

fnGTR

Usage

fnGTR(Simplex exchangeRates, Simplex baseFrequencies)

Arguments

exchangeRates
The exchangeability rates between states.

Argument type: pass by const reference
Value type: Simplex

baseFrequencies
The stationary frequencies of the states.

Argument type: pass by const reference
Value type: Simplex

fnHKY

Show more... >> << Show less

Name

fnHKY

Usage

fnHKY(RealPos kappa, Simplex baseFrequencies)

Arguments

kappa
The transition-transversion rate ratio.

Argument type: pass by const reference
Value type: RealPos

baseFrequencies
The stationary frequencies.

Argument type: pass by const reference
Value type: Simplex

fnInfiniteSites

Show more... >> << Show less

Name

fnInfiniteSites

Usage

fnInfiniteSites(Natural numStates)

Arguments

numStates
The number of states.

Argument type: pass by value
Value type: Natural
Default value 2

fnJC

Show more... >> << Show less

Name

fnJC

Usage

fnJC(Natural numStates)

Arguments

numStates
The number of state or state space.

Argument type: pass by value
Value type: Natural

fnJones

Show more... >> << Show less

Name

fnJones

Usage

fnJones()

fnK80

Show more... >> << Show less

Name

fnK80

Usage

fnK80(RealPos kappa)

Arguments

kappa
The transition/transversion rate.

Argument type: pass by const reference
Value type: RealPos

fnLnProbability

Show more... >> << Show less

Name

fnLnProbability

Usage

fnLnProbability(Real x)

Arguments

x
The value.

Argument type: pass by reference
Value type: Real

fnMtMam

Show more... >> << Show less

Name

fnMtMam

Usage

fnMtMam()

fnMtRev

Show more... >> << Show less

Name

fnMtRev

Usage

fnMtRev()

fnNormalizedQuantile

Show more... >> << Show less

Name

fnNormalizedQuantile

Usage

fnNormalizedQuantile(Distribution__Real contDistribution, Integer numCategories)

Arguments

contDistribution
The distribution which we discretize.

Argument type: pass by const reference
Value type: Distribution__Real

numCategories
How many discrete categories?

Argument type: pass by const reference
Value type: Integer

fnNumUniqueInVector

Show more... >> << Show less

Name

fnNumUniqueInVector

Usage

fnNumUniqueInVector(Real[] vector)

Arguments

vector
The vector of values.

Argument type: pass by const reference
Value type: Real[]

fnPD

Show more... >> << Show less

Name

fnPD

Usage

fnPD(Tree tree, Clade sample, Bool includeRoot, RealPos[] weights)

Arguments

tree


Argument type: pass by const reference
Value type: Tree

sample


Argument type: pass by value
Value type: Clade

includeRoot


Argument type: pass by value
Value type: Bool
Default value false

weights


Argument type: pass by value
Value type: RealPos[]
Default value [ ]

fnPattersonsD

Show more... >> << Show less

Name

fnPattersonsD

Usage

fnPattersonsD(String p1, String p2, String p3, String outgroup, AbstractHomologousDiscreteCharacterData data)

Arguments

p1


Argument type: pass by value
Value type: String

p2


Argument type: pass by value
Value type: String

p3


Argument type: pass by value
Value type: String

outgroup


Argument type: pass by value
Value type: String

data


Argument type: pass by const reference
Value type: AbstractHomologousDiscreteCharacterData

fnPomo

Show more... >> << Show less

Name

fnPomo

Usage

fnPomo(RateGenerator mutationRates, Real[] fitness, Natural virtualNe)

Arguments

mutationRates


Argument type: pass by const reference
Value type: RateGenerator

fitness


Argument type: pass by const reference
Value type: Real[]

virtualNe


Argument type: pass by const reference
Value type: Natural

fnRtRev

Show more... >> << Show less

Name

fnRtRev

Usage

fnRtRev()

fnSegregatingSites

Show more... >> << Show less

Name

fnSegregatingSites

Usage

fnSegregatingSites(AbstractHomologousDiscreteCharacterData data)

Arguments

data
The alignment for which to compute the number of segregating sites.

Argument type: pass by const reference
Value type: AbstractHomologousDiscreteCharacterData

fnStirling

Show more... >> << Show less

Name

fnStirling

Usage

fnStirling(String kind {valid options: "first"|"lnFirst"|"second"} , Natural n, Natural k)

Arguments

kind
The type of the stirling number to compute.

Argument type: pass by value
Value type: String

Options
first
lnFirst
second

Default value "first"

n


Argument type: pass by value
Value type: Natural

k


Argument type: pass by value
Value type: Natural

fnT92

Show more... >> << Show less

Name

fnT92

Usage

fnT92(RealPos kappa, Probability gc)

Arguments

kappa
The transition-tranversion rate ratio.

Argument type: pass by const reference
Value type: RealPos

gc
The frequency of GC.

Argument type: pass by const reference
Value type: Probability

fnTajimasD

Show more... >> << Show less

Name

fnTajimasD

Usage

fnTajimasD(AbstractHomologousDiscreteCharacterData data)

Arguments

data
The character data matrix.

Argument type: pass by const reference
Value type: AbstractHomologousDiscreteCharacterData

fnTajimasPi

Show more... >> << Show less

Name

fnTajimasPi

Usage

fnTajimasPi(AbstractHomologousDiscreteCharacterData data, Bool perSite)

Arguments

data
The character data matrix for which to compute the summary.

Argument type: pass by const reference
Value type: AbstractHomologousDiscreteCharacterData

perSite
Is the statistic normalized per site?

Argument type: pass by const reference
Value type: Bool
Default value true

fnTreeAssembly

Show more... >> << Show less

Name

fnTreeAssembly

Alias

treeAssembly

Usage

fnTreeAssembly(Tree topology, RealPos[] brlens)

Arguments

topology
The tree topology variable.

Argument type: pass by const reference
Value type: Tree

brlens
The vector of branch lengths.

Argument type: pass by const reference
Value type: RealPos[]

fnTreePairwiseDistances

Show more... >> << Show less

Name

fnTreePairwiseDistances

Usage

fnTreePairwiseDistances(Tree tree)

Arguments

tree


Argument type: pass by const reference
Value type: Tree

fnTreeScale

Show more... >> << Show less

Name

fnTreeScale

Usage

fnTreeScale(RealPos scale, TimeTree tree, RealPos|RealPos[] tipAges)

Arguments

scale
The multiplicator by which to scale the tree,

Argument type: pass by const reference
Value type: RealPos

tree
The tree which will be re-scaled.

Argument type: pass by const reference
Value type: TimeTree

tipAges
A vector of ages for the tips.

Argument type: pass by const reference
Value type: RealPos
Default value 1

fnVT

Show more... >> << Show less

Name

fnVT

Usage

fnVT()

fnVarCovar

Show more... >> << Show less

Name

fnVarCovar

Usage

fnVarCovar(RealPos[] standardDeviations, Real[] correlationCoefficients)

Arguments

standardDeviations
The vector of standard deviations.

Argument type: pass by const reference
Value type: RealPos[]

correlationCoefficients
The correlation coefficients.

Argument type: pass by const reference
Value type: Real[]

fnWAG

Show more... >> << Show less

Name

fnWAG

Usage

fnWAG()

fnWattersonsTheta

Show more... >> << Show less

Name

fnWattersonsTheta

Usage

fnWattersonsTheta(AbstractHomologousDiscreteCharacterData data, Bool perSite)

Arguments

data
The character data object.

Argument type: pass by const reference
Value type: AbstractHomologousDiscreteCharacterData

perSite
Should we normalize per site?

Argument type: pass by const reference
Value type: Bool
Default value true

getOption

Get a global option for RevBayes.

Show more... >> << Show less

Name

getOption

Description

Get a global option for RevBayes.

Usage

getOption(String key)

Arguments

key
The key-identifier for the option.

Argument type: pass by value
Value type: String

Details

Options are used to personalize RevBayes and are stored on the local machine. Currently this is rather experimental.

Example

# compute the absolute value of a real number
getOption("linewidth")

# let us set the linewidth to a new value
setOption("linewidth", 200)

# now let's check what the value is
getOption("linewidth")

Author

Sebastian Hoehna

See also

setOption


getwd

Get the current working directory which RevBayes uses.

Show more... >> << Show less

Name

getwd

Description

Get the current working directory which RevBayes uses.

Usage

getwd()

Example

# get the current working directory
getwd()

# let us set a new working directory
setwd("~/Desktop")

# check the working directory again
getwd()

Author

Sebastian Hoehna

See also

setwd


ifelse

If the expression is true, then the function returns the first value, otherwise the second value.

Show more... >> << Show less

Name

ifelse

Description

If the expression is true, then the function returns the first value, otherwise the second value.

Usage

ifelse(Bool condition, Real a, Real b)

Arguments

condition
A variable representing the condition of the if-else statement.

Argument type: pass by const reference
Value type: Bool

a
The value if the statement is true.

Argument type: pass by const reference
Value type: Real

b
The value if the statement is false.

Argument type: pass by const reference
Value type: Real

Details

The ifelse function is important when the value of a variable should deterministically change during an analysis depending on other variables. Standard if-else statements are not dynamically re-evaluated.

Example

a <- 1
b := ifelse( a == 1, 10, -10 )
b

a <- 2
b

Author

Sebastian Hoehna

license

Print the copyright license of RevBayes.

Show more... >> << Show less

Name

license

Description

Print the copyright license of RevBayes.

Usage

license()

Example

license()

Author

Sebastian Hoehna

ln

Show more... >> << Show less

Name

ln

Usage

ln(RealPos x)

Arguments

x
The value.

Argument type: pass by const reference
Value type: RealPos

log

Show more... >> << Show less

Name

log

Usage

log(RealPos x, RealPos base)

Arguments

x
A positive number.

Argument type: pass by const reference
Value type: RealPos

base
The base of the logarithm.

Argument type: pass by const reference
Value type: RealPos

logistic

Show more... >> << Show less

Name

logistic

Usage

logistic(Real x)

Arguments

x
The value.

Argument type: pass by const reference
Value type: Real

ls

Show the content of the workspace.

Show more... >> << Show less

Name

ls

Description

Show the content of the workspace.

Usage

ls(Bool all)

Arguments

all
Should we print all variables and functions including provided ones by RevBayes?

Argument type: pass by value
Value type: Bool
Default value false

Details

The list functions shows all the variables in the current workspace. You can also see all the functions available if you use ls(all=TRUE)

Example

# now we have an empty workspace
ls()
# next wee add a variable
a <- 1
# and we can see it
ls()

Author

Sebastian Hoehna

See also

clear
exists


mapTree

Show more... >> << Show less

Name

mapTree

Usage

mapTree(TraceTree TraceTree, String file, Integer burnin)

Arguments

TraceTree
The samples of trees from the posterior.

Argument type: pass by value
Value type: TraceTree

file
The name of the file where to store the tree.

Argument type: pass by value
Value type: String

burnin
The number of trees to discard as burnin.

Argument type: pass by value
Value type: Integer
Default value -1

max

Show more... >> << Show less

Name

max

Usage

max(Real[] x)

Arguments

x
A vector of numbers.

Argument type: pass by const reference
Value type: Real[]

maximumTree

Show more... >> << Show less

Name

maximumTree

Usage

maximumTree(TimeTree[] geneTrees)

Arguments

geneTrees
The vector of trees from which to pick the maximum.

Argument type: pass by const reference
Value type: TimeTree[]

mean

Show more... >> << Show less

Name

mean

Usage

mean(Real[] x)

Arguments

x
A vector of numbers.

Argument type: pass by const reference
Value type: Real[]

min

Show more... >> << Show less

Name

min

Usage

min(Real[] x)

Arguments

x
A vector of values.

Argument type: pass by const reference
Value type: Real[]

module

Show more... >> << Show less

Name

module

Usage

module(String file, String namespace, RevObject ...)

Arguments

file
Relative or absolute name of module file.

Argument type: pass by value
Value type: String

namespace
Namespace used to rescue variables from overwriting.

Argument type: pass by value
Value type: String
Default value NULL

Additinal variables passed into the module.

Argument type: pass by const reference
Value type: RevObject

mrcaIndex

Show more... >> << Show less

Name

mrcaIndex

Usage

mrcaIndex(TimeTree tree, Clade clade)

Arguments

tree
The tree which is used to compute the MRCA.

Argument type: pass by const reference
Value type: TimeTree

clade
The clade for which the MRCA is searched.

Argument type: pass by value
Value type: Clade

normalize

Show more... >> << Show less

Name

normalize

Usage

normalize(RealPos[] x, RealPos sum)

Arguments

x
The vector of numbers.

Argument type: pass by const reference
Value type: RealPos[]

sum
The sum the vector will have after normalization.

Argument type: pass by const reference
Value type: RealPos
Default value 1

pBimodalLognormal

Show more... >> << Show less

Name

pBimodalLognormal

Usage

pBimodalLognormal(Real x, Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

mean1
The mean (in log-space) of the first lognormal distribution.

Argument type: pass by const reference
Value type: Real

mean2
The mean (in log-space) of the second lognormal distribution.

Argument type: pass by const reference
Value type: Real

sd1
The standard deviation of the first lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

sd2
The standard deviation of the secind lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability to belong to the first distribution.

Argument type: pass by const reference
Value type: Probability

pBimodalNormal

Show more... >> << Show less

Name

pBimodalNormal

Usage

pBimodalNormal(Real x, Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

mean1
Mean of the first normal distribution.

Argument type: pass by const reference
Value type: Real

mean2
Mean of the second normal distribution.

Argument type: pass by const reference
Value type: Real

sd1
Standard deviation of the first normal distributin.

Argument type: pass by const reference
Value type: RealPos

sd2
Standard deviation of the second normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
Probability that the value belongs to the first normal distribution.

Argument type: pass by const reference
Value type: Probability

pNormal

Show more... >> << Show less

Name

pNormal

Usage

pNormal(Real x, Real mean, RealPos sd)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

mean
The mean parameter.

Argument type: pass by const reference
Value type: Real
Default value 0

sd
The standard deviation parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

pSoftBoundUniformNormal

Show more... >> << Show less

Name

pSoftBoundUniformNormal

Usage

pSoftBoundUniformNormal(Real x, Real min, Real max, RealPos sd, Probability p)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

min
The min value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

max
The max value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

sd
The standard deviation of the normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability of being within the uniform distribution.

Argument type: pass by const reference
Value type: Probability

pUniform

Show more... >> << Show less

Name

pUniform

Alias

punif

Usage

pUniform(Real x, Real lower, Real upper)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

lower
The lower bound.

Argument type: pass by const reference
Value type: Real

upper
The upper bound.

Argument type: pass by const reference
Value type: Real

pchisq

Show more... >> << Show less

Name

pchisq

Usage

pchisq(Real x, Natural df)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

df
The degrees of freedom.

Argument type: pass by const reference
Value type: Natural

pexponential

Show more... >> << Show less

Name

pexponential

Usage

pexponential(Real x, RealPos lambda)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

lambda
The rate ( rate==1/mean) parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

pgamma

Show more... >> << Show less

Name

pgamma

Usage

pgamma(Real x, RealPos shape, RealPos rate)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

shape
The shape parameter.

Argument type: pass by const reference
Value type: RealPos

rate
The rate parameter (rate = 1/scale).

Argument type: pass by const reference
Value type: RealPos

plognormal

Show more... >> << Show less

Name

plognormal

Usage

plognormal(Real x, Real mean, RealPos sd)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

mean
The mean in log-space (observed mean is exp(m)).

Argument type: pass by const reference
Value type: Real

sd
The standard deviation in log-space.

Argument type: pass by const reference
Value type: RealPos

ploguniform

Show more... >> << Show less

Name

ploguniform

Usage

ploguniform(Real x, RealPos min, RealPos max)

Arguments

x
The value for which to compute the probability.

Argument type: pass by const reference
Value type: Real

min
The lower bound.

Argument type: pass by const reference
Value type: RealPos

max
The upper bound.

Argument type: pass by const reference
Value type: RealPos

pomoRF

Show more... >> << Show less

Name

pomoRF

Usage

pomoRF(Simplex root_base_frequencies, Real root_polymorphism_proportion, RateGenerator mutation_rate_matrix, Natural virtualNe)

Arguments

root_base_frequencies


Argument type: pass by const reference
Value type: Simplex

root_polymorphism_proportion


Argument type: pass by const reference
Value type: Real

mutation_rate_matrix


Argument type: pass by const reference
Value type: RateGenerator

virtualNe


Argument type: pass by const reference
Value type: Natural

pomoStateConvert

Show more... >> << Show less

Name

pomoStateConvert

Usage

pomoStateConvert(AbstractHomologousDiscreteCharacterData aln, Natural virtualNe, Taxon[] taxa)

Arguments

aln


Argument type: pass by value
Value type: AbstractHomologousDiscreteCharacterData

virtualNe


Argument type: pass by value
Value type: Natural

taxa


Argument type: pass by value
Value type: Taxon[]

power

Show more... >> << Show less

Name

power

Usage

power(Real base, Real exponent)

Arguments

base
The base.

Argument type: pass by const reference
Value type: Real

exponent
The exponent.

Argument type: pass by const reference
Value type: Real

printSeed

Print the seed of the random number generator.

Show more... >> << Show less

Name

printSeed

Description

Print the seed of the random number generator.

Usage

printSeed()

Example

printSeed()

# Set the seed to a new value
seed(12345)
# Now print the seed again
printSeed()

Author

Sebastian Hoehna

See also

seed


qBimodalLognormal

Show more... >> << Show less

Name

qBimodalLognormal

Usage

qBimodalLognormal(Probability p, Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p)

Arguments

p
The probability for this quantile.

Argument type: pass by const reference
Value type: Probability

mean1
The mean (in log-space) of the first lognormal distribution.

Argument type: pass by const reference
Value type: Real

mean2
The mean (in log-space) of the second lognormal distribution.

Argument type: pass by const reference
Value type: Real

sd1
The standard deviation of the first lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

sd2
The standard deviation of the secind lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability to belong to the first distribution.

Argument type: pass by const reference
Value type: Probability

qBimodalNormal

Show more... >> << Show less

Name

qBimodalNormal

Usage

qBimodalNormal(Probability p, Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p)

Arguments

p
The probability (i.e., quantile) of the distribution.

Argument type: pass by const reference
Value type: Probability

mean1
Mean of the first normal distribution.

Argument type: pass by const reference
Value type: Real

mean2
Mean of the second normal distribution.

Argument type: pass by const reference
Value type: Real

sd1
Standard deviation of the first normal distributin.

Argument type: pass by const reference
Value type: RealPos

sd2
Standard deviation of the second normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
Probability that the value belongs to the first normal distribution.

Argument type: pass by const reference
Value type: Probability

qNormal

Show more... >> << Show less

Name

qNormal

Usage

qNormal(Probability p, Real mean, RealPos sd)

Arguments

p
The probability (i.e., quantile) of the distribution.

Argument type: pass by const reference
Value type: Probability

mean
The mean parameter.

Argument type: pass by const reference
Value type: Real
Default value 0

sd
The standard deviation parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

qSoftBoundUniformNormal

Show more... >> << Show less

Name

qSoftBoundUniformNormal

Usage

qSoftBoundUniformNormal(Probability p, Real min, Real max, RealPos sd, Probability p)

Arguments

p
The probability (i.e., quantile) of the distribution.

Argument type: pass by const reference
Value type: Probability

min
The min value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

max
The max value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

sd
The standard deviation of the normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability of being within the uniform distribution.

Argument type: pass by const reference
Value type: Probability

qUniform

Show more... >> << Show less

Name

qUniform

Usage

qUniform(Probability p, Real lower, Real upper)

Arguments

p
The probability (i.e., quantile) of the distribution.

Argument type: pass by const reference
Value type: Probability

lower
The lower bound.

Argument type: pass by const reference
Value type: Real

upper
The upper bound.

Argument type: pass by const reference
Value type: Real

qchisq

Show more... >> << Show less

Name

qchisq

Usage

qchisq(Probability p, Natural df)

Arguments

p
The probability for this quantile.

Argument type: pass by const reference
Value type: Probability

df
The degrees of freedom.

Argument type: pass by const reference
Value type: Natural

qexponential

Show more... >> << Show less

Name

qexponential

Usage

qexponential(Probability p, RealPos lambda)

Arguments

p
The probability for this quantile.

Argument type: pass by const reference
Value type: Probability

lambda
The rate ( rate==1/mean) parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

qgamma

Show more... >> << Show less

Name

qgamma

Usage

qgamma(Probability p, RealPos shape, RealPos rate)

Arguments

p
The probability for this quantile.

Argument type: pass by const reference
Value type: Probability

shape
The shape parameter.

Argument type: pass by const reference
Value type: RealPos

rate
The rate parameter (rate = 1/scale).

Argument type: pass by const reference
Value type: RealPos

qlognormal

Show more... >> << Show less

Name

qlognormal

Usage

qlognormal(Probability p, Real mean, RealPos sd)

Arguments

p
The probability for this quantile.

Argument type: pass by const reference
Value type: Probability

mean
The mean in log-space (observed mean is exp(m)).

Argument type: pass by const reference
Value type: Real

sd
The standard deviation in log-space.

Argument type: pass by const reference
Value type: RealPos

qloguniform

Show more... >> << Show less

Name

qloguniform

Usage

qloguniform(Probability p, RealPos min, RealPos max)

Arguments

p
The probability for this quantile.

Argument type: pass by const reference
Value type: Probability

min
The lower bound.

Argument type: pass by const reference
Value type: RealPos

max
The upper bound.

Argument type: pass by const reference
Value type: RealPos

quit

Terminates the currently running instance of RevBayes.

Show more... >> << Show less

Name

quit

Alias

q

Description

Terminates the currently running instance of RevBayes.

Usage

quit()

Example

# if you really want to quit
q()
# you can always start again later ...

Author

Sebastian Hoehna

rBDPTopology

Show more... >> << Show less

Name

rBDPTopology

Usage

rBDPTopology(Natural n, RealPos lambda, RealPos mu, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

rBimodalLognormal

Show more... >> << Show less

Name

rBimodalLognormal

Usage

rBimodalLognormal(Natural n, Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

mean1
The mean (in log-space) of the first lognormal distribution.

Argument type: pass by const reference
Value type: Real

mean2
The mean (in log-space) of the second lognormal distribution.

Argument type: pass by const reference
Value type: Real

sd1
The standard deviation of the first lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

sd2
The standard deviation of the secind lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability to belong to the first distribution.

Argument type: pass by const reference
Value type: Probability

rBimodalNormal

Show more... >> << Show less

Name

rBimodalNormal

Usage

rBimodalNormal(Natural n, Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

mean1
Mean of the first normal distribution.

Argument type: pass by const reference
Value type: Real

mean2
Mean of the second normal distribution.

Argument type: pass by const reference
Value type: Real

sd1
Standard deviation of the first normal distributin.

Argument type: pass by const reference
Value type: RealPos

sd2
Standard deviation of the second normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
Probability that the value belongs to the first normal distribution.

Argument type: pass by const reference
Value type: Probability

rBirthDeath

Show more... >> << Show less

Name

rBirthDeath

Alias

rBDP

Usage

rBirthDeath(Natural n, RealPos lambda, RealPos mu, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

rBirthDeathMultiRate

Show more... >> << Show less

Name

rBirthDeathMultiRate

Usage

rBirthDeathMultiRate(Natural n, RealPos origin, RealPos rootAge, Probability rho, RealPos[] lambda, RealPos[] mu, RateGenerator Q, RealPos rate, Simplex pi, String condition {valid options: "time"|"survival"} , Taxon[] taxa)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

origin
The origin of the process.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The root age.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon-sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

lambda
Vector of speciation rates per rate category.

Argument type: pass by const reference
Value type: RealPos[]

mu
Vector of extinction rates per rate category.

Argument type: pass by const reference
Value type: RealPos[]

Q
Rate matrix of transition rates between diversification-rate categories.

Argument type: pass by const reference
Value type: RateGenerator

rate
Global rate of transition between rate categories.

Argument type: pass by const reference
Value type: RealPos

pi
State frequencies at the root.

Argument type: pass by const reference
Value type: Simplex

condition
The condition of the birth-death process.

Argument type: pass by value
Value type: String

Options
time
survival

Default value "survival"

taxa
The taxon names used for initialization.

Argument type: pass by value
Value type: Taxon[]

rCoalescent

Show more... >> << Show less

Name

rCoalescent

Usage

rCoalescent(Natural n, RealPos theta, String[] names, Clade[] constraints)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

theta
The constant population size.

Argument type: pass by const reference
Value type: RealPos

names
The taxon names used when drawing a random tree.

Argument type: pass by value
Value type: String[]

constraints
The topological constraints strictly enforced.

Argument type: pass by value
Value type: Clade[]
Default value [ ]

rCoalescentSkyline

Show more... >> << Show less

Name

rCoalescentSkyline

Usage

rCoalescentSkyline(Natural n, RealPos[] theta, RealPos[] times, String method {valid options: "events"|"uniform"|"specified"} , String[] names, Clade[] constraints)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

theta
A vector of per interval population sizes.

Argument type: pass by const reference
Value type: RealPos[]

times
A vector of times for the intervals, if applicable.

Argument type: pass by const reference
Value type: RealPos[]
Default value NULL

method
The method how intervals are defined.

Argument type: pass by value
Value type: String

Options
events
uniform
specified

Default value "events"

names
The names of the taxa used for simulation.

Argument type: pass by value
Value type: String[]

constraints
The strictly enforced topology constraints.

Argument type: pass by value
Value type: Clade[]
Default value [ ]

rDPP

Show more... >> << Show less

Name

rDPP

Usage

rDPP(Natural n, RealPos concentration, Distribution__Real baseDistribution, Natural numElements)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

concentration
The concentration parameter.

Argument type: pass by const reference
Value type: RealPos

baseDistribution
The base distribution for the per category values.

Argument type: pass by const reference
Value type: Distribution__Real

numElements
The number of elements drawn from this distribution.

Argument type: pass by value
Value type: Natural

rDecomposedInvWishart

Show more... >> << Show less

Name

rDecomposedInvWishart

Usage

rDecomposedInvWishart(Natural n, MatrixRealSymmetric sigma, RealPos[] diagonal, Natural df, RealPos kappa, Natural dim)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

sigma


Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value [ [ 0.0000 ] ]

diagonal


Argument type: pass by const reference
Value type: RealPos[]
Default value [ ]

df


Argument type: pass by const reference
Value type: Natural
Default value 0

kappa


Argument type: pass by const reference
Value type: RealPos
Default value 0

dim


Argument type: pass by const reference
Value type: Natural
Default value 0

rDiversityDependentYule

Show more... >> << Show less

Name

rDiversityDependentYule

Usage

rDiversityDependentYule(Natural n, RealPos lambda, Natural capacity, RealPos origin, RealPos rootAge, String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

lambda
The initial speciation rate.

Argument type: pass by const reference
Value type: RealPos

capacity
The carrying capacity.

Argument type: pass by const reference
Value type: Natural

origin
The time of the process since the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process since the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The names of the taxa used for simulation.

Argument type: pass by value
Value type: Taxon[]

rEmpiricalTree

Show more... >> << Show less

Name

rEmpiricalTree

Usage

rEmpiricalTree(Natural n, Natural burnin, TraceTree TraceTree)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

burnin
The number of samples to discard.

Argument type: pass by value
Value type: Natural

TraceTree
The trace of tree samples.

Argument type: pass by value
Value type: TraceTree

rFossilBirthDeath

Show more... >> << Show less

Name

rFossilBirthDeath

Alias

rFBDP

Usage

rFossilBirthDeath(Natural n, RealPos lambda, RealPos mu, RealPos psi, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

psi
The constant fossilization rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

rInverseWishart

Show more... >> << Show less

Name

rInverseWishart

Alias

rinvWishart

Usage

rInverseWishart(Natural n, MatrixRealSymmetric sigma, RealPos[] diagonal, Natural df, RealPos kappa, Natural dim)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

sigma


Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

diagonal


Argument type: pass by const reference
Value type: RealPos[]
Default value NULL

df


Argument type: pass by const reference
Value type: Natural
Default value NULL

kappa


Argument type: pass by const reference
Value type: RealPos
Default value NULL

dim


Argument type: pass by const reference
Value type: Natural
Default value NULL

rMixture

Show more... >> << Show less

Name

rMixture

Usage

rMixture(Natural n, Real[] values, Simplex probabilities)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

values
The potential values.

Argument type: pass by const reference
Value type: Real[]

probabilities
The probabilitoes for each value.

Argument type: pass by const reference
Value type: Simplex

rMultiSpeciesCoalescent

Show more... >> << Show less

Name

rMultiSpeciesCoalescent

Usage

rMultiSpeciesCoalescent(Natural n, TimeTree speciesTree, RealPos|RealPos[] Ne, Taxon[] taxa)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

speciesTree
The species in which the gene trees evolve.

Argument type: pass by const reference
Value type: TimeTree

Ne
The population sizes.

Argument type: pass by const reference
Value type: RealPos

taxa
The vector of taxa which have species and individual names.

Argument type: pass by value
Value type: Taxon[]

rMultivariateNormal

Show more... >> << Show less

Name

rMultivariateNormal

Usage

rMultivariateNormal(Natural n, Real[] mean, MatrixRealSymmetric covariance, MatrixRealSymmetric precision, RealPos scale)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

mean
The vector of mean values.

Argument type: pass by const reference
Value type: Real[]

covariance
The variance-covariance matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

precision
The precision matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

scale
The scaling factor of the variance matrix.

Argument type: pass by const reference
Value type: RealPos
Default value 1

rNormal

Show more... >> << Show less

Name

rNormal

Usage

rNormal(Natural n, Real mean, RealPos sd)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

mean
The mean parameter.

Argument type: pass by const reference
Value type: Real
Default value 0

sd
The standard deviation parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

rOrnsteinUhlenbeck

Show more... >> << Show less

Name

rOrnsteinUhlenbeck

Alias

rOU

Usage

rOrnsteinUhlenbeck(Natural n, Real x0, Real theta, RealPos alpha, RealPos sigma, RealPos time)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

x0
The root parameter value.

Argument type: pass by const reference
Value type: Real

theta
The location of the optimum parameter.

Argument type: pass by const reference
Value type: Real

alpha
The attraction to the optimum parameter.

Argument type: pass by const reference
Value type: RealPos

sigma
The scaling parameter of the time.

Argument type: pass by const reference
Value type: RealPos

time
The duration of the process.

Argument type: pass by const reference
Value type: RealPos

rPhyloBrownian

Show more... >> << Show less

Name

rPhyloBrownian

Alias

rPhyloBM

Usage

rPhyloBrownian(Natural n, TimeTree tree, RealPos sigma, Real drift)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

tree
The tree along which the continuous character evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The branch-length multiplier to scale the variance of the Brownian motion.

Argument type: pass by const reference
Value type: RealPos

drift
The drift parameter of the Brownian motion.

Argument type: pass by const reference
Value type: Real
Default value 0

rPhyloBrownianMVN

Show more... >> << Show less

Name

rPhyloBrownianMVN

Usage

rPhyloBrownianMVN(Natural n, Tree tree, RealPos|RealPos[] branchRates, RealPos|RealPos[] siteRates, Real|Real[] rootStates, Natural nSites)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

tree
The tree along which the character evolves.

Argument type: pass by const reference
Value type: Tree

branchRates
The rate of evolution along a branch.

Argument type: pass by const reference
Value type: RealPos
Default value 1

siteRates
The rate of evolution per site.

Argument type: pass by const reference
Value type: RealPos
Default value 1

rootStates
The vector of root states.

Argument type: pass by const reference
Value type: Real
Default value 0

nSites
The number of sites which is used for the initialized (random draw) from this distribution.

Argument type: pass by value
Value type: Natural
Default value 10

rPhyloBrownianMultiVariate

Show more... >> << Show less

Name

rPhyloBrownianMultiVariate

Usage

rPhyloBrownianMultiVariate(Natural n, TimeTree tree, MatrixRealSymmetric sigma)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The variance-covariance matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric

rPhyloBrownianREML

Show more... >> << Show less

Name

rPhyloBrownianREML

Usage

rPhyloBrownianREML(Natural n, Tree tree, RealPos|RealPos[] branchRates, RealPos|RealPos[] siteRates, Natural nSites)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: Tree

branchRates
The per branch rate-multiplier(s).

Argument type: pass by const reference
Value type: RealPos
Default value 1

siteRates
The per site rate-multiplier(s).

Argument type: pass by const reference
Value type: RealPos
Default value 1

nSites
The number of sites used for simulation.

Argument type: pass by value
Value type: Natural
Default value 10

rPhyloDistanceGamma

Show more... >> << Show less

Name

rPhyloDistanceGamma

Usage

rPhyloDistanceGamma(Natural n, Tree tree, RlDistanceMatrix distanceMatrix, RlDistanceMatrix varianceMatrix, String[] names)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

tree


Argument type: pass by const reference
Value type: Tree

distanceMatrix


Argument type: pass by const reference
Value type: RlDistanceMatrix

varianceMatrix


Argument type: pass by const reference
Value type: RlDistanceMatrix

names


Argument type: pass by value
Value type: String[]

rPhyloOrnsteinUhlenbeck

Show more... >> << Show less

Name

rPhyloOrnsteinUhlenbeck

Alias

rPhyloOU

Usage

rPhyloOrnsteinUhlenbeck(Natural n)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

rPhyloWhiteNoise

Show more... >> << Show less

Name

rPhyloWhiteNoise

Usage

rPhyloWhiteNoise(Natural n, TimeTree tree, RealPos sigma)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The standard deviation.

Argument type: pass by const reference
Value type: RealPos

rPoisson

Show more... >> << Show less

Name

rPoisson

Usage

rPoisson(Natural n, RealPos lambda)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

lambda
The rate (rate = 1/mean) parameter.

Argument type: pass by const reference
Value type: RealPos

rReversibleJumpMixture

Show more... >> << Show less

Name

rReversibleJumpMixture

Alias

rRJMixture

Usage

rReversibleJumpMixture(Natural n, Real constantValue, Distribution__Real baseDistribution, Probability p)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

constantValue
The fixed value this distribution can take.

Argument type: pass by const reference
Value type: Real

baseDistribution
The distribution from which the value is alternatively drawn.

Argument type: pass by const reference
Value type: Distribution__Real

p
The probability of being the fixed value.

Argument type: pass by const reference
Value type: Probability

rSoftBoundUniformNormal

Show more... >> << Show less

Name

rSoftBoundUniformNormal

Usage

rSoftBoundUniformNormal(Natural n, Real min, Real max, RealPos sd, Probability p)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

min
The min value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

max
The max value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

sd
The standard deviation of the normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability of being within the uniform distribution.

Argument type: pass by const reference
Value type: Probability

rUniform

Show more... >> << Show less

Name

rUniform

Alias

runif

Usage

rUniform(Natural n, Real lower, Real upper)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

lower
The lower bound.

Argument type: pass by const reference
Value type: Real

upper
The upper bound.

Argument type: pass by const reference
Value type: Real

rUniformTimeTree

Show more... >> << Show less

Name

rUniformTimeTree

Usage

rUniformTimeTree(Natural n, RealPos rootAge, Taxon[] taxa)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

rootAge
The age of the root.

Argument type: pass by const reference
Value type: RealPos

taxa
The taxa used for simulation.

Argument type: pass by value
Value type: Taxon[]

rUniformTopology

Show more... >> << Show less

Name

rUniformTopology

Usage

rUniformTopology(Natural n, Taxon[] taxa, Clade[] constraints)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

taxa
The vector of taxa that will be used for the tips.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

constraints
The topological constraints that will be enforced.

Argument type: pass by value
Value type: Clade[]
Default value NULL

rWishart

Show more... >> << Show less

Name

rWishart

Usage

rWishart(Natural n, Natural df, RealPos kappa, Natural dim)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

df
The degrees of dreedom.

Argument type: pass by const reference
Value type: Natural

kappa
The scaling parameter.

Argument type: pass by const reference
Value type: RealPos

dim
The dimension of the distribution.

Argument type: pass by const reference
Value type: Natural

range

Create a sequence of number in the given range (interval).

Show more... >> << Show less

Name

range

Description

Create a sequence of number in the given range (interval).

Usage

range(Integer first, Integer last)

Arguments

first
Lower value.

Argument type: pass by value
Value type: Integer

last
Upper value.

Argument type: pass by value
Value type: Integer

Details

This function is a simplified version of the sequence function 'seq'. The range function creates a sequence of integer numbers with a step size of 1.

Example

range(1,20)
range(20,-20)

# this function is actually the same as the ':'
20:-20

Author

Sebastian Hoehna

See also

seq
rep


rbernoulli

Show more... >> << Show less

Name

rbernoulli

Usage

rbernoulli(Natural n, Probability p)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

p
The probability of success.

Argument type: pass by const reference
Value type: Probability

rbeta

Show more... >> << Show less

Name

rbeta

Usage

rbeta(Natural n, RealPos alpha, RealPos beta)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

alpha
The alpha shape parameter.

Argument type: pass by const reference
Value type: RealPos

beta
The beta shape parameter.

Argument type: pass by const reference
Value type: RealPos

rbinomial

Show more... >> << Show less

Name

rbinomial

Usage

rbinomial(Natural n, Probability p, Natural n)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

p
Probability of success.

Argument type: pass by const reference
Value type: Probability

n
Number of trials.

Argument type: pass by const reference
Value type: Natural

rcategorical

Show more... >> << Show less

Name

rcategorical

Alias

rcat

Usage

rcategorical(Natural n, Simplex p)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

p
The probability for each category.

Argument type: pass by const reference
Value type: Simplex

rchisq

Show more... >> << Show less

Name

rchisq

Usage

rchisq(Natural n, Natural df)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

df
The degrees of freedom.

Argument type: pass by const reference
Value type: Natural

rcppNormal

Show more... >> << Show less

Name

rcppNormal

Usage

rcppNormal(Natural n, RealPos lambda, Real mu, RealPos sigma)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

lambda
The rate of the Poisson distribution.

Argument type: pass by const reference
Value type: RealPos

mu
The mean of the normal distribution

Argument type: pass by const reference
Value type: Real

sigma
The standard deviation of the normal distribution

Argument type: pass by const reference
Value type: RealPos

rdirichlet

Show more... >> << Show less

Name

rdirichlet

Usage

rdirichlet(Natural n, RealPos[] alpha)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

alpha
The concentration parameter.

Argument type: pass by const reference
Value type: RealPos[]

readAncestralStateTrace

Show more... >> << Show less

Name

readAncestralStateTrace

Usage

readAncestralStateTrace(String file, String separator)

Arguments

file
The name of the file which holds the trace the trace

Argument type: pass by value
Value type: String

separator
The separater between sampled values.

Argument type: pass by value
Value type: String
Default value " "

readAncestralStateTreeTrace

Show more... >> << Show less

Name

readAncestralStateTreeTrace

Usage

readAncestralStateTreeTrace(String file, String treetype {valid options: "clock"|"non-clock"} , String separator)

Arguments

file
The name of the file.

Argument type: pass by value
Value type: String

treetype
The type of tree.

Argument type: pass by value
Value type: String

Options
clock
non-clock

Default value "clock"

separator
The separater/delimiter between values.

Argument type: pass by value
Value type: String
Default value " "

readAtlas

Show more... >> << Show less

Name

readAtlas

Usage

readAtlas(String file)

Arguments

file
The name of the file.

Argument type: pass by value
Value type: String

readBranchLengthTrees

Show more... >> << Show less

Name

readBranchLengthTrees

Usage

readBranchLengthTrees(String file)

Arguments

file
The name of the file.

Argument type: pass by value
Value type: String

readCharacterData

Show more... >> << Show less

Name

readCharacterData

Usage

readCharacterData(String file, Bool alwaysReturnAsVector)

Arguments

file
File or directory names where to find the character data.

Argument type: pass by value
Value type: String

alwaysReturnAsVector
Should the value be returned as a vector even it is only a single matrix?

Argument type: pass by value
Value type: Bool
Default value false

readCharacterDataDelimited

Show more... >> << Show less

Name

readCharacterDataDelimited

Usage

readCharacterDataDelimited(String file, String type, String delimiter)

Arguments

file
The name of the file to read in.

Argument type: pass by value
Value type: String

type
The type of data.

Argument type: pass by value
Value type: String

delimiter
The delimiter between columns.

Argument type: pass by value
Value type: String
Default value " "

readContinuousCharacterData

Show more... >> << Show less

Name

readContinuousCharacterData

Usage

readContinuousCharacterData(String file, Bool alwaysReturnAsVector)

Arguments

file
The name of the file or directory for the character data matrices.

Argument type: pass by value
Value type: String

alwaysReturnAsVector
Should we return this object as a vector even if it is just a single matrix?

Argument type: pass by value
Value type: Bool
Default value false

readDiscreteCharacterData

Show more... >> << Show less

Name

readDiscreteCharacterData

Usage

readDiscreteCharacterData(String file, Bool alwaysReturnAsVector)

Arguments

file
The name of the file or directory from which to read in the character data matrix.

Argument type: pass by value
Value type: String

alwaysReturnAsVector
Should we always return the character data matrix as a vector of matrices even if there is only one?

Argument type: pass by value
Value type: Bool
Default value false

readDistanceMatrix

Show more... >> << Show less

Name

readDistanceMatrix

Usage

readDistanceMatrix(String file)

Arguments

file
Relative or absolute name of the file.

Argument type: pass by value
Value type: String

readRelativeNodeAgeConstraints

Show more... >> << Show less

Name

readRelativeNodeAgeConstraints

Usage

readRelativeNodeAgeConstraints(String file)

Arguments

file
Relative or absolute name of the file.

Argument type: pass by value
Value type: String

readStochasticVariableTrace

Show more... >> << Show less

Name

readStochasticVariableTrace

Usage

readStochasticVariableTrace(String file, String delimiter)

Arguments

file
The name of the file.

Argument type: pass by value
Value type: String

delimiter
The delimiter used between the output of variables.

Argument type: pass by value
Value type: String
Default value " "

readTaxonData

Show more... >> << Show less

Name

readTaxonData

Usage

readTaxonData(String filename, String delimiter)

Arguments

filename
Relative or absolute file name.

Argument type: pass by value
Value type: String

delimiter
Delimiter between columns.

Argument type: pass by value
Value type: String
Default value " "

readTrace

Show more... >> << Show less

Name

readTrace

Usage

readTrace(String file, String delimiter)

Arguments

file
Name of the file.

Argument type: pass by value
Value type: String

delimiter
The delimiter between columns (e.g., the iteration number and the trees).

Argument type: pass by value
Value type: String
Default value " "

readTreeTrace

Show more... >> << Show less

Name

readTreeTrace

Usage

readTreeTrace(String file, String treetype {valid options: "clock"|"non-clock"} , String separator)

Arguments

file
The name of the tree trace file.

Argument type: pass by value
Value type: String

treetype
The type of trees.

Argument type: pass by value
Value type: String

Options
clock
non-clock

Default value "clock"

separator
The separator/delimiter between values in the file.

Argument type: pass by value
Value type: String
Default value " "

readTrees

Show more... >> << Show less

Name

readTrees

Usage

readTrees(String file)

Arguments

file
The name of the file containing the trees.

Argument type: pass by value
Value type: String

rep

'rep' creates a vector of 'n' copies of the value 'x'.

Show more... >> << Show less

Name

rep

Description

'rep' creates a vector of 'n' copies of the value 'x'.

Usage

rep(Integer x, Natural n)

Arguments

x
The value that we replicate.

Argument type: pass by value
Value type: Integer

n
How often we replicate the value.

Argument type: pass by value
Value type: Natural

Details

'rep' creates a vector of 'n' elements, each with value 'x', preserving the type of 'x' in the returned vector.

Example

rep(0.1, 3)

Author

Michael Landis

See also

seq


rexponential

Show more... >> << Show less

Name

rexponential

Alias

rexp

Usage

rexponential(Natural n, RealPos lambda)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

lambda
The rate ( rate==1/mean) parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

rgamma

Show more... >> << Show less

Name

rgamma

Usage

rgamma(Natural n, RealPos shape, RealPos rate)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

shape
The shape parameter.

Argument type: pass by const reference
Value type: RealPos

rate
The rate parameter (rate = 1/scale).

Argument type: pass by const reference
Value type: RealPos

rgeometric

Show more... >> << Show less

Name

rgeometric

Alias

rgeom

Usage

rgeometric(Natural n, Probability p)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

p
The probability of success.

Argument type: pass by const reference
Value type: Probability

rlognormal

Show more... >> << Show less

Name

rlognormal

Alias

rlnorm

Usage

rlognormal(Natural n, Real mean, RealPos sd)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

mean
The mean in log-space (observed mean is exp(m)).

Argument type: pass by const reference
Value type: Real

sd
The standard deviation in log-space.

Argument type: pass by const reference
Value type: RealPos

rloguniform

Show more... >> << Show less

Name

rloguniform

Usage

rloguniform(Natural n, RealPos min, RealPos max)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

min
The lower bound.

Argument type: pass by const reference
Value type: RealPos

max
The upper bound.

Argument type: pass by const reference
Value type: RealPos

rmultinomial

Show more... >> << Show less

Name

rmultinomial

Usage

rmultinomial(Natural n, Simplex p, Natural n)

Arguments

n
Number of random values to draw.

Argument type: pass by value
Value type: Natural
Default value 1

p
The simplex of probabilities for the categories.

Argument type: pass by const reference
Value type: Simplex

n
The number of draws.

Argument type: pass by const reference
Value type: Natural

rootedTripletDist

Show more... >> << Show less

Name

rootedTripletDist

Usage

rootedTripletDist(Tree geneTrees, String[] speciesNames, Bool keepBranchLengths)

Arguments

geneTrees


Argument type: pass by const reference
Value type: Tree

speciesNames


Argument type: pass by const reference
Value type: String[]

keepBranchLengths


Argument type: pass by const reference
Value type: Bool

round

Show more... >> << Show less

Name

round

Usage

round(Real x)

Arguments

x
The value.

Argument type: pass by const reference
Value type: Real

seed

Show more... >> << Show less

Name

seed

Usage

seed(Natural x)

Arguments

x
The number used to seed the random number generator.

Argument type: pass by value
Value type: Natural

seq

Create a sequence of values separate by a given step-size.

Show more... >> << Show less

Name

seq

Description

Create a sequence of values separate by a given step-size.

Usage

seq(Integer from, Integer to, Integer by)

Arguments

from
The first value of the sequence.

Argument type: pass by value
Value type: Integer

to
The last value of the sequence.

Argument type: pass by value
Value type: Integer

by
The step-size between value.

Argument type: pass by value
Value type: Integer

Details

The 'seq' function create a sequence of values, starting with the initial value and then adding the step-size to it until the value reaches the 'to'-value.

Example

seq(-0.5, 10.5, 2)

Author

Sebastian Hoehna

See also

rep


setOption

Set a global option for RevBayes.

Show more... >> << Show less

Name

setOption

Description

Set a global option for RevBayes.

Usage

setOption(String key, String value)

Arguments

key
The key-identifier for which to set a new value.

Argument type: pass by value
Value type: String

value
The new value.

Argument type: pass by value
Value type: String

Details

Options are used to personalize RevBayes and are stored on the local machine. Currently this is rather experimental.

Example

# compute the absolute value of a real number
getOption("linewidth")

# let us set the linewidth to a new value
setOption("linewidth", 200)

# now let's check what the value is
getOption("linewidth")

Author

Sebastian Hoehna

See also

getOption


setwd

Set the current working directory which RevBayes uses.

Show more... >> << Show less

Name

setwd

Description

Set the current working directory which RevBayes uses.

Usage

setwd(String wd)

Arguments

wd
The new working directory.

Argument type: pass by value
Value type: String

Example

# get the current working directory
getwd()

# let us set a new working directory
setwd("~/Desktop")

# check the working directory again
getwd()

Author

Sebastian Hoehna

See also

getwd


simTree

Show more... >> << Show less

Name

simTree

Usage

simTree(Natural numTaxa, String type {valid options: "balanced"|"caterpillar"} )

Arguments

numTaxa
How many taxa this tree has.

Argument type: pass by const reference
Value type: Natural

type
The type of the shape of the topology.

Argument type: pass by value
Value type: String

Options
balanced
caterpillar

Default value "balanced"

simplex

Show more... >> << Show less

Name

simplex

Usage

simplex(RealPos x1, RealPos x2, RealPos ...)

Arguments

x1
first value

Argument type: pass by const reference
Value type: RealPos

x2
second value

Argument type: pass by const reference
Value type: RealPos

additional values

Argument type: pass by const reference
Value type: RealPos

source

Show more... >> << Show less

Name

source

Usage

source(String file, Bool echo.on)

Arguments

file
The name of the file to read-in.

Argument type: pass by value
Value type: String

echo.on
Should we print the commands from the file on the screen?

Argument type: pass by value
Value type: Bool
Default value false

sqrt

Show more... >> << Show less

Name

sqrt

Usage

sqrt(RealPos x)

Arguments

x
A number.

Argument type: pass by const reference
Value type: RealPos

stdev

Show more... >> << Show less

Name

stdev

Usage

stdev(Real[] x)

Arguments

x
The vector of samples.

Argument type: pass by const reference
Value type: Real[]

structure

Shows all the information about a given variable.

Show more... >> << Show less

Name

structure

Alias

str

Description

Shows all the information about a given variable.

Usage

structure(RevObject x, Bool verbose)

Arguments

x
The variable.

Argument type: pass by const reference
Value type: RevObject

verbose
Do you want all the information?

Argument type: pass by value
Value type: Bool
Default value false

Example

# create a variable
a <- 1
b := exp(a)
# now create a deterministic variable which will be a child of 'b'
c := ln(b)
# now create a constant variable which will not be a child of 'b'
d <- ln(b)

str(b)

Author

Sebastian Hoehna

See also

type


sum

Show more... >> << Show less

Name

sum

Usage

sum(Real[] x)

Arguments

x
A vector of numbers.

Argument type: pass by const reference
Value type: Real[]

symDiff

Show more... >> << Show less

Name

symDiff

Usage

symDiff(TimeTree tree1, TimeTree tree2)

Arguments

tree1
The first tree.

Argument type: pass by const reference
Value type: TimeTree

tree2
The second tree.

Argument type: pass by const reference
Value type: TimeTree

system

Run a system command.

Show more... >> << Show less

Name

system

Description

Run a system command.

Usage

system(String command)

Arguments

command
The system command to execute.

Argument type: pass by value
Value type: String

Details

This function will delegate the command to the system. In that way, the function works as an interface to the shell.

Example

# We can execute any command just as if you are using a terminal
system("ls")
system("pwd")

Author

Sebastian Hoehna

tanh

Show more... >> << Show less

Name

tanh

Usage

tanh(Real x)

Arguments

x
The value.

Argument type: pass by const reference
Value type: Real

tmrca

Show more... >> << Show less

Name

tmrca

Usage

tmrca(TimeTree tree, Clade clade, Bool stemAge)

Arguments

tree
The tree variable.

Argument type: pass by const reference
Value type: TimeTree

clade
The clade.

Argument type: pass by value
Value type: Clade

stemAge
Do we want the stem age or crown age?

Argument type: pass by value
Value type: Bool
Default value false

trunc

Show more... >> << Show less

Name

trunc

Usage

trunc(Real x)

Arguments

x
The value.

Argument type: pass by const reference
Value type: Real

type

The value type of a variable.

Show more... >> << Show less

Name

type

Description

The value type of a variable.

Usage

type(RevObject x)

Arguments

x
A variable.

Argument type: pass by value
Value type: RevObject

Example

a <- 2
type(a)

b <- 2.0
type(b)

Author

Sebastian Hoehna

See also

structure


v

'v' creates a vector of the elements '...'

Show more... >> << Show less

Name

v

Description

'v' creates a vector of the elements '...'

Usage

v(Integer , Integer ...)

Arguments

first value

Argument type: pass by const reference
Value type: Integer

more values

Argument type: pass by const reference
Value type: Integer

Details

'v' creates a vector of the elements '...', which are objects of a common base type. Vector elements may themselves be vectors.

Example

# create a vector, Natural[]
x <- v(1,2,3)
x <- x + 1
x

y <- v(2,4,6)
# create a vector of Natural[][]
z <- v(x,y)
z
z[0]

Author

Michael Landis

See also

simplex
rep


var

Show more... >> << Show less

Name

var

Usage

var(Real[] x)

Arguments

x
A vector of values.

Argument type: pass by const reference
Value type: Real[]

vectorFlatten

Show more... >> << Show less

Name

vectorFlatten

Usage

vectorFlatten(Real[][] x)

Arguments

x
A vector of a vector.

Argument type: pass by const reference
Value type: Real[][]

write

Show more... >> << Show less

Name

write

Alias

print

Usage

write(RevObject , RevObject ..., String filename, Bool append, String separator)

Arguments

A variable to write.

Argument type: pass by value
Value type: RevObject

Additional variables to write.

Argument type: pass by const reference
Value type: RevObject

filename
Writing to this file, or to the screen if name is empty.

Argument type: pass by value
Value type: String
Default value ""

append
Append or overwrite existing file?

Argument type: pass by value
Value type: Bool
Default value false

separator
How to separate values between variables.

Argument type: pass by value
Value type: String
Default value " "

writeFasta

Show more... >> << Show less

Name

writeFasta

Usage

writeFasta(String filename, AbstractHomologousDiscreteCharacterData data)

Arguments

filename
The name of the file.

Argument type: pass by value
Value type: String

data
The character data object.

Argument type: pass by value
Value type: AbstractHomologousDiscreteCharacterData

writeNexus

Show more... >> << Show less

Name

writeNexus

Usage

writeNexus(String filename, AbstractHomologousDiscreteCharacterData|ContinuousCharacterData data)

Arguments

filename
The name of the file.

Argument type: pass by value
Value type: String

data
The character data matrix to print.

Argument type: pass by value
Value type: AbstractHomologousDiscreteCharacterData



Distribution

dnBDPTopology

Show more... >> << Show less

Name

dnBDPTopology

Description

Constructors


Name

Usage

dnBDPTopology(RealPos lambda, RealPos mu, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa)

Arguments

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnBernoulli

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnBernoulli

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnBernoulli(Probability p)

Arguments

p
The probability of success.

Argument type: pass by const reference
Value type: Probability

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

John Huelsenbeck

dnBeta

The Beta probability distribution.

Show more... >> << Show less

Name

dnBeta

Description

The Beta probability distribution.

Constructors


Name

Usage

dnBeta(RealPos alpha, RealPos beta)

Arguments

alpha
The alpha shape parameter.

Argument type: pass by const reference
Value type: RealPos

beta
The beta shape parameter.

Argument type: pass by const reference
Value type: RealPos

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnBimodalLognormal

A bimodal lognormal distribution, that is, with probability p a value is distributed according to the first lognormal distribution and with probability 1-p from the second lognormal distribution.

Show more... >> << Show less

Name

dnBimodalLognormal

Description

A bimodal lognormal distribution, that is, with probability p a value is distributed according to the first lognormal distribution and with probability 1-p from the second lognormal distribution.

Constructors


Name

Usage

dnBimodalLognormal(Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p)

Arguments

mean1
The mean (in log-space) of the first lognormal distribution.

Argument type: pass by const reference
Value type: Real

mean2
The mean (in log-space) of the second lognormal distribution.

Argument type: pass by const reference
Value type: Real

sd1
The standard deviation of the first lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

sd2
The standard deviation of the secind lognormal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability to belong to the first distribution.

Argument type: pass by const reference
Value type: Probability

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnBimodalNormal

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnBimodalNormal

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnBimodalNormal(Real mean1, Real mean2, RealPos sd1, RealPos sd2, Probability p)

Arguments

mean1
Mean of the first normal distribution.

Argument type: pass by const reference
Value type: Real

mean2
Mean of the second normal distribution.

Argument type: pass by const reference
Value type: Real

sd1
Standard deviation of the first normal distributin.

Argument type: pass by const reference
Value type: RealPos

sd2
Standard deviation of the second normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
Probability that the value belongs to the first normal distribution.

Argument type: pass by const reference
Value type: Probability

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnBinomial

Binomial probability distribution of x successes in n trials.

Show more... >> << Show less

Name

dnBinomial

Description

Binomial probability distribution of x successes in n trials.

Constructors


Name

Usage

dnBinomial(Probability p, Natural n)

Arguments

p
Probability of success.

Argument type: pass by const reference
Value type: Probability

n
Number of trials.

Argument type: pass by const reference
Value type: Natural

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnBirthDeath

Show more... >> << Show less

Name

dnBirthDeath

Alias

dnBDP

Description

Constructors


Name

Usage

dnBirthDeath(RealPos lambda, RealPos mu, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa)

Arguments

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnBirthDeathMultiRate

Show more... >> << Show less

Name

dnBirthDeathMultiRate

Description

Constructors


Name

Usage

dnBirthDeathMultiRate(RealPos origin, RealPos rootAge, Probability rho, RealPos[] lambda, RealPos[] mu, RateGenerator Q, RealPos rate, Simplex pi, String condition {valid options: "time"|"survival"} , Taxon[] taxa)

Arguments

origin
The origin of the process.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The root age.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon-sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

lambda
Vector of speciation rates per rate category.

Argument type: pass by const reference
Value type: RealPos[]

mu
Vector of extinction rates per rate category.

Argument type: pass by const reference
Value type: RealPos[]

Q
Rate matrix of transition rates between diversification-rate categories.

Argument type: pass by const reference
Value type: RateGenerator

rate
Global rate of transition between rate categories.

Argument type: pass by const reference
Value type: RealPos

pi
State frequencies at the root.

Argument type: pass by const reference
Value type: Simplex

condition
The condition of the birth-death process.

Argument type: pass by value
Value type: String

Options
time
survival

Default value "survival"

taxa
The taxon names used for initialization.

Argument type: pass by value
Value type: Taxon[]

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnCategorical

The categorical distribution, sometimes referred to as the generalized Bernoullidistribution. It describes the probability of one of K different outcomes,labeled from 1 to K, with each outcome probability separately specified.

Show more... >> << Show less

Name

dnCategorical

Alias

dnCat

Description

The categorical distribution, sometimes referred to as the generalized Bernoullidistribution. It describes the probability of one of K different outcomes,labeled from 1 to K, with each outcome probability separately specified.

Constructors


Name

Usage

dnCategorical(Simplex p)

Arguments

p
The probability for each category.

Argument type: pass by const reference
Value type: Simplex

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Fredrik Ronquist

dnChisq

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnChisq

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnChisq(Natural df)

Arguments

df
The degrees of freedom.

Argument type: pass by const reference
Value type: Natural

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnCoalescent

Show more... >> << Show less

Name

dnCoalescent

Description

Constructors


Name

Usage

dnCoalescent(RealPos theta, String[] names, Clade[] constraints)

Arguments

theta
The constant population size.

Argument type: pass by const reference
Value type: RealPos

names
The taxon names used when drawing a random tree.

Argument type: pass by value
Value type: String[]

constraints
The topological constraints strictly enforced.

Argument type: pass by value
Value type: Clade[]
Default value [ ]

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnCoalescentSkyline

Show more... >> << Show less

Name

dnCoalescentSkyline

Description

Constructors


Name

Usage

dnCoalescentSkyline(RealPos[] theta, RealPos[] times, String method {valid options: "events"|"uniform"|"specified"} , String[] names, Clade[] constraints)

Arguments

theta
A vector of per interval population sizes.

Argument type: pass by const reference
Value type: RealPos[]

times
A vector of times for the intervals, if applicable.

Argument type: pass by const reference
Value type: RealPos[]
Default value NULL

method
The method how intervals are defined.

Argument type: pass by value
Value type: String

Options
events
uniform
specified

Default value "events"

names
The names of the taxa used for simulation.

Argument type: pass by value
Value type: String[]

constraints
The strictly enforced topology constraints.

Argument type: pass by value
Value type: Clade[]
Default value [ ]

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnCppNormal

Show more... >> << Show less

Name

dnCppNormal

Description

Constructors


Name

Usage

dnCppNormal(RealPos lambda, Real mu, RealPos sigma)

Arguments

lambda
The rate of the Poisson distribution.

Argument type: pass by const reference
Value type: RealPos

mu
The mean of the normal distribution

Argument type: pass by const reference
Value type: Real

sigma
The standard deviation of the normal distribution

Argument type: pass by const reference
Value type: RealPos

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnDPP

Show more... >> << Show less

Name

dnDPP

Description

Constructors


Name

Usage

dnDPP(RealPos concentration, Distribution__Real baseDistribution, Natural numElements)

Arguments

concentration
The concentration parameter.

Argument type: pass by const reference
Value type: RealPos

baseDistribution
The base distribution for the per category values.

Argument type: pass by const reference
Value type: Distribution__Real

numElements
The number of elements drawn from this distribution.

Argument type: pass by value
Value type: Natural

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnDecomposedInvWishart

Show more... >> << Show less

Name

dnDecomposedInvWishart

Description

Constructors


Name

Usage

dnDecomposedInvWishart(MatrixRealSymmetric sigma, RealPos[] diagonal, Natural df, RealPos kappa, Natural dim)

Arguments

sigma


Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value [ [ 0.0000 ] ]

diagonal


Argument type: pass by const reference
Value type: RealPos[]
Default value [ ]

df


Argument type: pass by const reference
Value type: Natural
Default value 0

kappa


Argument type: pass by const reference
Value type: RealPos
Default value 0

dim


Argument type: pass by const reference
Value type: Natural
Default value 0

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnDirichlet

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnDirichlet

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnDirichlet(RealPos[] alpha)

Arguments

alpha
The concentration parameter.

Argument type: pass by const reference
Value type: RealPos[]

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnDiversityDependentYule

Show more... >> << Show less

Name

dnDiversityDependentYule

Description

Constructors


Name

Usage

dnDiversityDependentYule(RealPos lambda, Natural capacity, RealPos origin, RealPos rootAge, String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa)

Arguments

lambda
The initial speciation rate.

Argument type: pass by const reference
Value type: RealPos

capacity
The carrying capacity.

Argument type: pass by const reference
Value type: Natural

origin
The time of the process since the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process since the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The names of the taxa used for simulation.

Argument type: pass by value
Value type: Taxon[]

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnEmpiricalTree

Show more... >> << Show less

Name

dnEmpiricalTree

Description

Constructors


Name

Usage

dnEmpiricalTree(Natural burnin, TraceTree TraceTree)

Arguments

burnin
The number of samples to discard.

Argument type: pass by value
Value type: Natural

TraceTree
The trace of tree samples.

Argument type: pass by value
Value type: TraceTree

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnExponential

Show more... >> << Show less

Name

dnExponential

Alias

dnExp

Description

Constructors


Name

Usage

dnExponential(RealPos lambda)

Arguments

lambda
The rate ( rate==1/mean) parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnFossilBirthDeath

Show more... >> << Show less

Name

dnFossilBirthDeath

Alias

dnFBDP

Description

Constructors


Name

Usage

dnFossilBirthDeath(RealPos lambda, RealPos mu, RealPos psi, RealPos origin, RealPos rootAge, Probability rho, String samplingStrategy {valid options: "uniform"|"diversified"} , String condition {valid options: "time"|"survival"|"nTaxa"} , Taxon[] taxa)

Arguments

lambda
The constant speciation rate.

Argument type: pass by const reference
Value type: RealPos

mu
The constant extinction rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

psi
The constant fossilization rate.

Argument type: pass by const reference
Value type: RealPos
Default value 0

origin
The time of the process starting at the origin, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rootAge
The time of the process starting at the root, if applicable.

Argument type: pass by const reference
Value type: RealPos
Default value NULL

rho
The taxon sampling probability.

Argument type: pass by const reference
Value type: Probability
Default value 1

samplingStrategy
The sampling strategy of including taxa at the present.

Argument type: pass by value
Value type: String

Options
uniform
diversified

Default value "uniform"

condition
The condition of the process.

Argument type: pass by value
Value type: String

Options
time
survival
nTaxa

Default value "survival"

taxa
The taxa used for initialization.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnGamma

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnGamma

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnGamma(RealPos shape, RealPos rate)

Arguments

shape
The shape parameter.

Argument type: pass by const reference
Value type: RealPos

rate
The rate parameter (rate = 1/scale).

Argument type: pass by const reference
Value type: RealPos

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnGeometric

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnGeometric

Alias

dnGeom

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnGeometric(Probability p)

Arguments

p
The probability of success.

Argument type: pass by const reference
Value type: Probability

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnInverseWishart

Show more... >> << Show less

Name

dnInverseWishart

Alias

dnInvWishart

Description

Constructors


Name

Usage

dnInverseWishart(MatrixRealSymmetric sigma, RealPos[] diagonal, Natural df, RealPos kappa, Natural dim)

Arguments

sigma


Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

diagonal


Argument type: pass by const reference
Value type: RealPos[]
Default value NULL

df


Argument type: pass by const reference
Value type: Natural
Default value NULL

kappa


Argument type: pass by const reference
Value type: RealPos
Default value NULL

dim


Argument type: pass by const reference
Value type: Natural
Default value NULL

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnLognormal

Show more... >> << Show less

Name

dnLognormal

Alias

dnLnorm

Description

Constructors


Name

Usage

dnLognormal(Real mean, RealPos sd)

Arguments

mean
The mean in log-space (observed mean is exp(m)).

Argument type: pass by const reference
Value type: Real

sd
The standard deviation in log-space.

Argument type: pass by const reference
Value type: RealPos

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnLoguniform

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnLoguniform

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnLoguniform(RealPos min, RealPos max)

Arguments

min
The lower bound.

Argument type: pass by const reference
Value type: RealPos

max
The upper bound.

Argument type: pass by const reference
Value type: RealPos

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnMixture

Show more... >> << Show less

Name

dnMixture

Description

Constructors


Name

Usage

dnMixture(Real[] values, Simplex probabilities)

Arguments

values
The potential values.

Argument type: pass by const reference
Value type: Real[]

probabilities
The probabilitoes for each value.

Argument type: pass by const reference
Value type: Simplex

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnMultiSpeciesCoalescent

Show more... >> << Show less

Name

dnMultiSpeciesCoalescent

Description

Constructors


Name

Usage

dnMultiSpeciesCoalescent(TimeTree speciesTree, RealPos|RealPos[] Ne, Taxon[] taxa)

Arguments

speciesTree
The species in which the gene trees evolve.

Argument type: pass by const reference
Value type: TimeTree

Ne
The population sizes.

Argument type: pass by const reference
Value type: RealPos

taxa
The vector of taxa which have species and individual names.

Argument type: pass by value
Value type: Taxon[]

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnMultinomial

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnMultinomial

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnMultinomial(Simplex p, Natural n)

Arguments

p
The simplex of probabilities for the categories.

Argument type: pass by const reference
Value type: Simplex

n
The number of draws.

Argument type: pass by const reference
Value type: Natural

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnMultivariateNormal

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnMultivariateNormal

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnMultivariateNormal(Real[] mean, MatrixRealSymmetric covariance, MatrixRealSymmetric precision, RealPos scale)

Arguments

mean
The vector of mean values.

Argument type: pass by const reference
Value type: Real[]

covariance
The variance-covariance matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

precision
The precision matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric
Default value NULL

scale
The scaling factor of the variance matrix.

Argument type: pass by const reference
Value type: RealPos
Default value 1

Methods

clampAt >> << Show less

Name

clampAt

Usage

clampAt(Natural index, Real value)

Arguments

index
The index of the value.

Argument type: value
Value type: Natural

value
The observed value.

Argument type: value
Value type: Real


methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnNormal

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnNormal

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnNormal(Real mean, RealPos sd)

Arguments

mean
The mean parameter.

Argument type: pass by const reference
Value type: Real
Default value 0

sd
The standard deviation parameter.

Argument type: pass by const reference
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnOrnsteinUhlenbeck

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnOrnsteinUhlenbeck

Alias

dnOU

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnOrnsteinUhlenbeck(Real x0, Real theta, RealPos alpha, RealPos sigma, RealPos time)

Arguments

x0
The root parameter value.

Argument type: pass by const reference
Value type: Real

theta
The location of the optimum parameter.

Argument type: pass by const reference
Value type: Real

alpha
The attraction to the optimum parameter.

Argument type: pass by const reference
Value type: RealPos

sigma
The scaling parameter of the time.

Argument type: pass by const reference
Value type: RealPos

time
The duration of the process.

Argument type: pass by const reference
Value type: RealPos

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnPhyloBrownian

Show more... >> << Show less

Name

dnPhyloBrownian

Alias

dnPhyloBM

Description

Constructors


Name

Usage

dnPhyloBrownian(TimeTree tree, RealPos sigma, Real drift)

Arguments

tree
The tree along which the continuous character evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The branch-length multiplier to scale the variance of the Brownian motion.

Argument type: pass by const reference
Value type: RealPos

drift
The drift parameter of the Brownian motion.

Argument type: pass by const reference
Value type: Real
Default value 0

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloBrownianMVN

Show more... >> << Show less

Name

dnPhyloBrownianMVN

Description

Constructors


Name

Usage

dnPhyloBrownianMVN(Tree tree, RealPos|RealPos[] branchRates, RealPos|RealPos[] siteRates, Real|Real[] rootStates, Natural nSites)

Arguments

tree
The tree along which the character evolves.

Argument type: pass by const reference
Value type: Tree

branchRates
The rate of evolution along a branch.

Argument type: pass by const reference
Value type: RealPos
Default value 1

siteRates
The rate of evolution per site.

Argument type: pass by const reference
Value type: RealPos
Default value 1

rootStates
The vector of root states.

Argument type: pass by const reference
Value type: Real
Default value 0

nSites
The number of sites which is used for the initialized (random draw) from this distribution.

Argument type: pass by value
Value type: Natural
Default value 10

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloBrownianMultiVariate

Show more... >> << Show less

Name

dnPhyloBrownianMultiVariate

Description

Constructors


Name

Usage

dnPhyloBrownianMultiVariate(TimeTree tree, MatrixRealSymmetric sigma)

Arguments

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The variance-covariance matrix.

Argument type: pass by const reference
Value type: MatrixRealSymmetric

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloBrownianREML

Show more... >> << Show less

Name

dnPhyloBrownianREML

Description

Constructors


Name

Usage

dnPhyloBrownianREML(Tree tree, RealPos|RealPos[] branchRates, RealPos|RealPos[] siteRates, Natural nSites)

Arguments

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: Tree

branchRates
The per branch rate-multiplier(s).

Argument type: pass by const reference
Value type: RealPos
Default value 1

siteRates
The per site rate-multiplier(s).

Argument type: pass by const reference
Value type: RealPos
Default value 1

nSites
The number of sites used for simulation.

Argument type: pass by value
Value type: Natural
Default value 10

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloCTMC

Show more... >> << Show less

Name

dnPhyloCTMC

Description

Constructors


Name

Usage

dnPhyloCTMC(Tree tree, RateGenerator|RateGenerator[] Q, Simplex rootFrequencies, RealPos|RealPos[] branchRates, RealPos[] siteRates, Probability pInv, Natural nSites, String type {valid options: "DNA"|"RNA"|"AA"|"Pomo"|"Protein"|"Standard"|"NaturalNumbers"|"Restriction"} , Bool treatAmbiguousAsGap, String coding)

Arguments

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: Tree

Q
The global or branch-specific rate matrices.

Argument type: pass by const reference
Value type: RateGenerator

rootFrequencies
The root specific frequencies of the characters, if applicable.

Argument type: pass by const reference
Value type: Simplex
Default value NULL

branchRates
The global or branch-specific rate multipliers.

Argument type: pass by const reference
Value type: RealPos
Default value 1

siteRates
The rate categories for the sites.

Argument type: pass by const reference
Value type: RealPos[]
Default value [ ]

pInv
The probability of a site being invariant.

Argument type: pass by const reference
Value type: Probability
Default value 0

nSites
The number of sites, used for simulation.

Argument type: pass by value
Value type: Natural
Default value 10

type
The data type, used for simulation and initialization.

Argument type: pass by value
Value type: String

Options
DNA
RNA
AA
Pomo
Protein
Standard
NaturalNumbers
Restriction

Default value "DNA"

treatAmbiguousAsGap
Should we treat ambiguous characters as gaps/missing?

Argument type: pass by value
Value type: Bool
Default value false

coding


Argument type: pass by value
Value type: String
Default value "all"

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloCTMCClado

Show more... >> << Show less

Name

dnPhyloCTMCClado

Description

Constructors


Name

Usage

dnPhyloCTMCClado(Tree tree, RateGenerator|RateGenerator[] Q, MatrixReal|MatrixReal[] cladoProbs, Simplex rootFrequencies, RealPos|RealPos[] branchRates, RealPos[] siteRates, Probability pInv, Natural nSites, String type {valid options: "DNA"|"RNA"|"AA"|"Pomo"|"Protein"|"Standard"|"NaturalNumbers"} , Bool treatAmbiguousAsGap)

Arguments

tree


Argument type: pass by const reference
Value type: Tree

Q


Argument type: pass by const reference
Value type: RateGenerator

cladoProbs


Argument type: pass by const reference
Value type: MatrixReal

rootFrequencies


Argument type: pass by const reference
Value type: Simplex
Default value NULL

branchRates


Argument type: pass by const reference
Value type: RealPos
Default value 1

siteRates


Argument type: pass by const reference
Value type: RealPos[]
Default value [ ]

pInv


Argument type: pass by const reference
Value type: Probability
Default value 0

nSites


Argument type: pass by value
Value type: Natural
Default value 10

type


Argument type: pass by value
Value type: String

Options
DNA
RNA
AA
Pomo
Protein
Standard
NaturalNumbers

Default value "NaturalNumbers"

treatAmbiguousAsGap


Argument type: pass by value
Value type: Bool
Default value false

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloDACTMC

Show more... >> << Show less

Name

dnPhyloDACTMC

Description

Constructors


Name

Usage

dnPhyloDACTMC(Tree tree, RateMap Q, Simplex cladoProbs, Bool forbidExtinction, Bool useCladogenesis, String type {valid options: "Biogeo"|"DNA"|"RNA"|"AA"|"Protein"|"Standard"} )

Arguments

tree
The along which the character(s) evolve.

Argument type: pass by const reference
Value type: Tree

Q
The transition rate matrix.

Argument type: pass by const reference
Value type: RateMap

cladoProbs
The cladogenetic probabilities.

Argument type: pass by const reference
Value type: Simplex
Default value NULL

forbidExtinction
Should we exclude complete extinction (zero areas occupied)?

Argument type: pass by value
Value type: Bool
Default value true

useCladogenesis
Should we use cladigenesis?

Argument type: pass by value
Value type: Bool
Default value true

type
The character data type used for initialization and simulation.

Argument type: pass by value
Value type: String

Options
Biogeo
DNA
RNA
AA
Protein
Standard

Default value "DNA"

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloDistanceGamma

Show more... >> << Show less

Name

dnPhyloDistanceGamma

Description

Constructors


Name

Usage

dnPhyloDistanceGamma(Tree tree, RlDistanceMatrix distanceMatrix, RlDistanceMatrix varianceMatrix, String[] names)

Arguments

tree


Argument type: pass by const reference
Value type: Tree

distanceMatrix


Argument type: pass by const reference
Value type: RlDistanceMatrix

varianceMatrix


Argument type: pass by const reference
Value type: RlDistanceMatrix

names


Argument type: pass by value
Value type: String[]

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloOrnsteinUhlenbeck

Show more... >> << Show less

Name

dnPhyloOrnsteinUhlenbeck

Alias

dnPhyloOU

Description

Constructors


Name

Usage

dnPhyloOrnsteinUhlenbeck()

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPhyloWhiteNoise

Show more... >> << Show less

Name

dnPhyloWhiteNoise

Description

Constructors


Name

Usage

dnPhyloWhiteNoise(TimeTree tree, RealPos sigma)

Arguments

tree
The tree along which the process evolves.

Argument type: pass by const reference
Value type: TimeTree

sigma
The standard deviation.

Argument type: pass by const reference
Value type: RealPos

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnPoisson

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnPoisson

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnPoisson(RealPos lambda)

Arguments

lambda
The rate (rate = 1/mean) parameter.

Argument type: pass by const reference
Value type: RealPos

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnReversibleJumpMixture

Show more... >> << Show less

Name

dnReversibleJumpMixture

Alias

dnRJMixture

Description

Constructors


Name

Usage

dnReversibleJumpMixture(Real constantValue, Distribution__Real baseDistribution, Probability p)

Arguments

constantValue
The fixed value this distribution can take.

Argument type: pass by const reference
Value type: Real

baseDistribution
The distribution from which the value is alternatively drawn.

Argument type: pass by const reference
Value type: Distribution__Real

p
The probability of being the fixed value.

Argument type: pass by const reference
Value type: Probability

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnSoftBoundUniformNormal

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Show more... >> << Show less

Name

dnSoftBoundUniformNormal

Description

A Bernoulli-distributed random variable takes the value 1 with probability p and the value 0 with probability 1-p.

Constructors


Name

Usage

dnSoftBoundUniformNormal(Real min, Real max, RealPos sd, Probability p)

Arguments

min
The min value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

max
The max value of the uniform distribution.

Argument type: pass by const reference
Value type: Real

sd
The standard deviation of the normal distribution.

Argument type: pass by const reference
Value type: RealPos

p
The probability of being within the uniform distribution.

Argument type: pass by const reference
Value type: Probability

Methods

methods >> << Show less

Name

methods

Usage

methods()


Author

Sebastian Hoehna

dnUniform

Show more... >> << Show less

Name

dnUniform

Alias

dnUnif

Description

Constructors


Name

Usage

dnUniform(Real lower, Real upper)

Arguments

lower
The lower bound.

Argument type: pass by const reference
Value type: Real

upper
The upper bound.

Argument type: pass by const reference
Value type: Real

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnUniformTimeTree

Show more... >> << Show less

Name

dnUniformTimeTree

Description

Constructors


Name

Usage

dnUniformTimeTree(RealPos rootAge, Taxon[] taxa)

Arguments

rootAge
The age of the root.

Argument type: pass by const reference
Value type: RealPos

taxa
The taxa used for simulation.

Argument type: pass by value
Value type: Taxon[]

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnUniformTopology

Show more... >> << Show less

Name

dnUniformTopology

Description

Constructors


Name

Usage

dnUniformTopology(Taxon[] taxa, Clade[] constraints)

Arguments

taxa
The vector of taxa that will be used for the tips.

Argument type: pass by const reference
Value type: Taxon[]
Default value NULL

constraints
The topological constraints that will be enforced.

Argument type: pass by value
Value type: Clade[]
Default value NULL

Methods

methods >> << Show less

Name

methods

Usage

methods()


dnWishart

Show more... >> << Show less

Name

dnWishart

Description

Constructors


Name

Usage

dnWishart(Natural df, RealPos kappa, Natural dim)

Arguments

df
The degrees of dreedom.

Argument type: pass by const reference
Value type: Natural

kappa
The scaling parameter.

Argument type: pass by const reference
Value type: RealPos

dim
The dimension of the distribution.

Argument type: pass by const reference
Value type: Natural

Methods

methods >> << Show less

Name

methods

Usage

methods()




Moves

mvBetaSimplex

Show more... >> << Show less

Name

mvBetaSimplex

Alias

mvSimplexElementScale

Description

Constructors


Name

Arguments

x
The variable this move operates on.

Argument type: reference
Value type: Simplex

alpha
The concentration parameter on the current value.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the concentration parameter during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvCharacterHistory

Show more... >> << Show less

Name

mvCharacterHistory

Description

Constructors


Name

Arguments

ctmc
The PhyloCTMC variable.

Argument type: reference
Value type: AbstractHomologousDiscreteCharacterData

qmap
Some rate-map.

Argument type: reference
Value type: RateMap

tree
The tree.

Argument type: reference
Value type: Tree

lambda


Argument type: value
Value type: Probability
Default value 1

type
The data type.

Argument type: value
Value type: String

Options
Biogeo
DNA
RNA
AA
Protein
Standard

Default value "Standard"

graph


Argument type: value
Value type: String

Options
node
branch

Default value "node"

proposal


Argument type: value
Value type: String

Options
rejection
uniformization

Default value "rejection"

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvCollapseExpandFossilBranch

Show more... >> << Show less

Name

mvCollapseExpandFossilBranch

Description

Constructors


Name

Arguments

tree
The tree on which this moves operates on. It should be a fossil tree!

Argument type: reference
Value type: TimeTree

origin
The variable for the origin of the process giving a maximum age for the new fossil attachement time.

Argument type: reference
Value type: RealPos

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvConjugateInverseWishartBrownian

Show more... >> << Show less

Name

mvConjugateInverseWishartBrownian

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: MatrixRealSymmetric

kappa
The scaling parameter of the distribution.

Argument type: reference
Value type: Real

df
The degrees of freedom of the distribution.

Argument type: reference
Value type: Natural

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvDPPAllocateAuxGibbs

Show more... >> << Show less

Name

mvDPPAllocateAuxGibbs

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Real[]

numAux
The number of auxillary categories.

Argument type: value
Value type: Integer
Default value 4

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvDPPGibbsConcentration

Show more... >> << Show less

Name

mvDPPGibbsConcentration

Description

Constructors


Name

Arguments

concentration


Argument type: reference
Value type: RealPos

numDPPCats


Argument type: const reference
Value type: Integer

gammaShape


Argument type: const reference
Value type: RealPos

gammaRate


Argument type: const reference
Value type: RealPos

numElements


Argument type: const reference
Value type: RealPos

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvDirichletSimplex

Show more... >> << Show less

Name

mvDirichletSimplex

Alias

mvSimplex

Description

Constructors


Name

Arguments

x
The simplex on which this move operates.

Argument type: reference
Value type: Simplex

alpha
The concentration parameter on the previous value.

Argument type: value
Value type: RealPos
Default value 1

numCats
The number of categories changed per move.

Argument type: value
Value type: Natural
Default value 1

offset
The offset of the current value to center new proposals (x+offset).

Argument type: value
Value type: Natural
Default value 0

tune
Should we tune this move during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvEmpiricalTree

Show more... >> << Show less

Name

mvEmpiricalTree

Description

Constructors


Name

Arguments

tree
The stochastic tree variable on which this moves operates.

Argument type: reference
Value type: Tree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvFNPR

Show more... >> << Show less

Name

mvFNPR

Description

Constructors


Name

Arguments

tree
The time-tree variable on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvGPR

Show more... >> << Show less

Name

mvGPR

Description

Constructors


Name

Arguments

tree
The tree variable on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvLevyJump

Show more... >> << Show less

Name

mvLevyJump

Description

Constructors


Name

Arguments

x
The variable this move operates on.

Argument type: reference
Value type: Real

delta
The window size of the proposals.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvLevyJumpSum

Show more... >> << Show less

Name

mvLevyJumpSum

Description

Constructors


Name

Arguments

value_1


Argument type: reference
Value type: Real

value_2


Argument type: reference
Value type: Real

slide


Argument type: value
Value type: RealPos
Default value 1

tune


Argument type: value
Value type: Bool
Default value false

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvMatrixElementSlide

Show more... >> << Show less

Name

mvMatrixElementSlide

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: MatrixReal

lambda
The scaling factor (strength) of the proposal.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the scaling factor during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvMixtureAllocation

Show more... >> << Show less

Name

mvMixtureAllocation

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Real

delta
The window of how many categories to propose left and right.

Argument type: value
Value type: Natural
Default value 0

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvNNI

Show more... >> << Show less

Name

mvNNI

Description

Constructors


Name

Arguments

tree
The tree on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvNarrow

Show more... >> << Show less

Name

mvNarrow

Description

Constructors


Name

Arguments

tree
The tree variable on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvNodeCharacterHistoryRejectionSample

Show more... >> << Show less

Name

mvNodeCharacterHistoryRejectionSample

Description

Constructors


Name

Arguments

ctmc


Argument type: reference
Value type: AbstractHomologousDiscreteCharacterData

qmap


Argument type: reference
Value type: RateMap

tree


Argument type: reference
Value type: TimeTree

lambda


Argument type: value
Value type: Probability
Default value 1

type


Argument type: value
Value type: String

Options
std
biogeo

Default value "std"

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvNodeTimeScale

Show more... >> << Show less

Name

mvNodeTimeScale

Description

Constructors


Name

Arguments

tree
The tree on which this move operates.

Argument type: reference
Value type: TimeTree

lambda
The scaling factor (strength) of the proposals.

Argument type: value
Value type: RealPos
Default value 1

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvNodeTimeSlideBeta

Show more... >> << Show less

Name

mvNodeTimeSlideBeta

Description

Constructors


Name

Arguments

tree
The tree variable on which this move operates.

Argument type: reference
Value type: TimeTree

delta
The concentration parameter.

Argument type: value
Value type: RealPos
Default value 1

offset
The offset for the proposal density.

Argument type: value
Value type: RealPos
Default value 2

tune
Should we tune the concentration parameter during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvNodeTimeSlideUniform

Show more... >> << Show less

Name

mvNodeTimeSlideUniform

Description

Constructors


Name

Arguments

tree
The tree on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvPathCharacterHistoryRejectionSample

Show more... >> << Show less

Name

mvPathCharacterHistoryRejectionSample

Description

Constructors


Name

Arguments

ctmc


Argument type: reference
Value type: AbstractHomologousDiscreteCharacterData

qmap


Argument type: reference
Value type: RateMap

tree


Argument type: reference
Value type: TimeTree

lambda


Argument type: value
Value type: Probability
Default value 0.1

type


Argument type: value
Value type: String

Options
std
biogeo

Default value "std"

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvRJSwitch

Show more... >> << Show less

Name

mvRJSwitch

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Real

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvRandomGeometricWalk

Show more... >> << Show less

Name

mvRandomGeometricWalk

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Integer

alpha
The success probability of the geometric distribution.

Argument type: value
Value type: Probability
Default value 0.5

tune
Should we tune the success probability during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvRandomIntegerWalk

Show more... >> << Show less

Name

mvRandomIntegerWalk

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Integer

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvRateAgeBetaShift

Show more... >> << Show less

Name

mvRateAgeBetaShift

Description

Constructors


Name

Arguments

tree
The tree on which this move operates on.

Argument type: reference
Value type: Tree

rates
The vector of per-branch rates (from a relaxed clock).

Argument type: reference
Value type: RealPos[]

delta
The concentration of the move on the previous age.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune this move during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvRootTimeSlide

Show more... >> << Show less

Name

mvRootTimeSlide

Description

Constructors


Name

Arguments

tree
The tree variable on which this move operates.

Argument type: reference
Value type: TimeTree

origin
The origin giving an upper bound.

Argument type: reference
Value type: RealPos

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvSPR

Show more... >> << Show less

Name

mvSPR

Description

Constructors


Name

Arguments

tree
The tree variable this move operates on.

Argument type: reference
Value type: BranchLengthTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvScale

Show more... >> << Show less

Name

mvScale

Description

Constructors


Name

Arguments

x
The variable this move operates on.

Argument type: reference
Value type: RealPos

lambda
The strength of the proposal.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune lambda during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvScalerUpDown

Show more... >> << Show less

Name

mvScalerUpDown

Description

Constructors


Name

Arguments

value_1


Argument type: reference
Value type: Real

value_2


Argument type: reference
Value type: Real

scale


Argument type: value
Value type: RealPos
Default value 1

tune


Argument type: value
Value type: Bool
Default value false

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvSlice

Show more... >> << Show less

Name

mvSlice

Description

Constructors


Name

Arguments

x
The variable on which this move operates

Argument type: reference
Value type: Real

window
The window (steps-size) of proposals.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the move during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvSlide

Show more... >> << Show less

Name

mvSlide

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Real

delta
The window size parameter.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the window size during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvSliderUpDown

Show more... >> << Show less

Name

mvSliderUpDown

Description

Constructors


Name

Arguments

value_1
The variable to slide up.

Argument type: reference
Value type: Real

value_2
The variable to slide down.

Argument type: reference
Value type: Real

slide
The window size parameter.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the window size during burnin?

Argument type: value
Value type: Bool
Default value false

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvSpeciesNarrow

Show more... >> << Show less

Name

mvSpeciesNarrow

Description

Constructors


Name

Arguments

speciesTree
The species tree variable on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

addGeneTreeVariable >> << Show less

Name

addGeneTreeVariable

Usage

addGeneTreeVariable(TimeTree geneTree)

Arguments

geneTree
A gene tree.

Argument type: reference
Value type: TimeTree


methods >> << Show less

Name

methods

Usage

methods()


mvSpeciesNodeTimeSlideUniform

Show more... >> << Show less

Name

mvSpeciesNodeTimeSlideUniform

Description

Constructors


Name

Arguments

speciesTree
The species tree on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

addGeneTreeVariable >> << Show less

Name

addGeneTreeVariable

Usage

addGeneTreeVariable(TimeTree geneTree)

Arguments

geneTree
A gene tree.

Argument type: reference
Value type: TimeTree


methods >> << Show less

Name

methods

Usage

methods()


mvSpeciesSubtreeScale

Show more... >> << Show less

Name

mvSpeciesSubtreeScale

Description

Constructors


Name

Arguments

speciesTree
The species variable on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

addGeneTreeVariable >> << Show less

Name

addGeneTreeVariable

Usage

addGeneTreeVariable(TimeTree geneTree)

Arguments

geneTree
A gene tree to scale.

Argument type: reference
Value type: TimeTree


methods >> << Show less

Name

methods

Usage

methods()


mvSpeciesSubtreeScaleBeta

Show more... >> << Show less

Name

mvSpeciesSubtreeScaleBeta

Description

Constructors


Name

Arguments

speciesTree
The species tree on which this move operates on.

Argument type: reference
Value type: TimeTree

alpha
The concentration parameter.

Argument type: value
Value type: RealPos
Default value 10

tune
Should we tune the concentration parameter during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

addGeneTreeVariable >> << Show less

Name

addGeneTreeVariable

Usage

addGeneTreeVariable(TimeTree geneTree)

Arguments

geneTree
A gene tree.

Argument type: reference
Value type: TimeTree


methods >> << Show less

Name

methods

Usage

methods()


mvSpeciesTreeScale

Show more... >> << Show less

Name

mvSpeciesTreeScale

Description

Constructors


Name

Arguments

speciesTree
The species tree on which this move operates.

Argument type: reference
Value type: TimeTree

rootAge
The root age variable.

Argument type: reference
Value type: RealPos

delta
The strength of the proposal

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the strength during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

addGeneTreeVariable >> << Show less

Name

addGeneTreeVariable

Usage

addGeneTreeVariable(TimeTree geneTree)

Arguments

geneTree
A gene tree variable.

Argument type: reference
Value type: TimeTree


methods >> << Show less

Name

methods

Usage

methods()


mvSubtreeScale

Show more... >> << Show less

Name

mvSubtreeScale

Description

Constructors


Name

Arguments

tree
The tree variable on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvSymmetricMatrixElementSlide

Show more... >> << Show less

Name

mvSymmetricMatrixElementSlide

Description

Constructors


Name

Arguments

x
The matrix variable on which this move operates.

Argument type: reference
Value type: MatrixRealSymmetric

lambda
The sliding window size.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the move during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvTreeNodeAgeSlide

Show more... >> << Show less

Name

mvTreeNodeAgeSlide

Description

Constructors


Name

Arguments

tree
A (time-) tree on which this move operates.

Argument type: reference
Value type: TimeTree

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

addGeneTreeVariable >> << Show less

Name

addGeneTreeVariable

Usage

addGeneTreeVariable(TimeTree geneTree)

Arguments

geneTree
A gene tree.

Argument type: reference
Value type: TimeTree


methods >> << Show less

Name

methods

Usage

methods()


mvTreeScale

Show more... >> << Show less

Name

mvTreeScale

Description

Constructors


Name

Arguments

tree
The tree variable the move operates on.

Argument type: reference
Value type: TimeTree

rootAge
The root age variable.

Argument type: reference
Value type: RealPos
Default value NULL

delta
The scaling factor (strength) of the proposal.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the scaling factor during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvUpDownScale

Show more... >> << Show less

Name

mvUpDownScale

Description

Constructors


Name

Arguments

lambda
The scaling factor (strength) of the proposal.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the scaling factor during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(TimeTree tree, Bool up)

Arguments

tree
The tree variable to scale.

Argument type: reference
Value type: TimeTree

up
Scaling up or down?

Argument type: value
Value type: Bool


addVariable >> << Show less

Name

addVariable

Usage

addVariable(Real var, Bool up)

Arguments

var
The variable to scale

Argument type: reference
Value type: Real

up
Scaling up or down?

Argument type: value
Value type: Bool


addVariable >> << Show less

Name

addVariable

Usage

addVariable(Real[] var, Bool up)

Arguments

var
The variable to scale

Argument type: reference
Value type: Real[]

up
Scaling up or down?

Argument type: value
Value type: Bool


addVariable >> << Show less

Name

addVariable

Usage

addVariable(Real[] var, Bool up)

Arguments

var
The variable to scale

Argument type: reference
Value type: Real[]

up
Scaling up or down?

Argument type: value
Value type: Bool


addVariable >> << Show less

Name

addVariable

Usage

addVariable(RealPos[] var, Bool up)

Arguments

var
The variable to scale

Argument type: reference
Value type: RealPos[]

up
Scaling up or down?

Argument type: value
Value type: Bool


methods >> << Show less

Name

methods

Usage

methods()


removeVariable >> << Show less

Name

removeVariable

Usage

removeVariable(TimeTree tree, Bool up)

Arguments

tree
The tree variable to scale.

Argument type: reference
Value type: TimeTree

up
The variable to scale

Argument type: value
Value type: Bool


removeVariable >> << Show less

Name

removeVariable

Usage

removeVariable(Real var, Bool up)

Arguments

var
Scaling up or down?

Argument type: reference
Value type: Real

up
The variable to scale

Argument type: value
Value type: Bool


removeVariable >> << Show less

Name

removeVariable

Usage

removeVariable(Real[] var, Bool up)

Arguments

var
Scaling up or down?

Argument type: reference
Value type: Real[]

up
The variable to scale

Argument type: value
Value type: Bool


removeVariable >> << Show less

Name

removeVariable

Usage

removeVariable(Real[] var, Bool up)

Arguments

var
Scaling up or down?

Argument type: reference
Value type: Real[]

up
The variable to scale

Argument type: value
Value type: Bool


removeVariable >> << Show less

Name

removeVariable

Usage

removeVariable(RealPos[] var, Bool up)

Arguments

var
Scaling up or down?

Argument type: reference
Value type: RealPos[]

up
The variable to scale

Argument type: value
Value type: Bool


mvVectorFixedSingleElementSlide

Show more... >> << Show less

Name

mvVectorFixedSingleElementSlide

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Real[]

lambda
The scaling factor (strength) of this move.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the scaling factor during burnin?

Argument type: value
Value type: Bool
Default value true

element
The index of the element to scale.

Argument type: value
Value type: Natural
Default value 1

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvVectorScale

Show more... >> << Show less

Name

mvVectorScale

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: RealPos[]

lambda
The scaling parameter (strength) of the move.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the scaling parameter during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvVectorSingleElementScale

Show more... >> << Show less

Name

mvVectorSingleElementScale

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: RealPos[]

lambda
The scaling factor (strength) of this move.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the scaling factor during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvVectorSingleElementSlide

Show more... >> << Show less

Name

mvVectorSingleElementSlide

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Real[]

lambda
The scaling factor (or strength) of the proposals.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we auto tune during burning?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()


mvVectorSlide

Show more... >> << Show less

Name

mvVectorSlide

Description

Constructors


Name

Arguments

x
The variable on which this move operates.

Argument type: reference
Value type: Real[]

delta
The window size parameter.

Argument type: value
Value type: RealPos
Default value 1

tune
Should we tune the window size during burnin?

Argument type: value
Value type: Bool
Default value true

weight
The weight how often on average this move will be used per iteration.

Argument type: value
Value type: RealPos
Default value 1

Methods

methods >> << Show less

Name

methods

Usage

methods()




Monitors

mnAncestralState

Show more... >> << Show less

Name

mnAncestralState

Description

Constructors


Name

Arguments

tree
The tree which we monitor.

Argument type: const reference
Value type: Tree

ctmc
The CTMC process.

Argument type: reference
Value type: RevObject

filename
The name of the file for storing the samples.

Argument type: value
Value type: String

type
The type of data to store.

Argument type: value
Value type: String

printgen
The frequency how often to sample.

Argument type: value
Value type: Natural
Default value 1

separator
The separator between columns in the file.

Argument type: value
Value type: String
Default value " "

append
Should we append or overwrite if the file exists?

Argument type: value
Value type: Bool
Default value false

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()


mnCharHistoryNewick

Show more... >> << Show less

Name

mnCharHistoryNewick

Description

Constructors


Name

Arguments

filename


Argument type: value
Value type: String

ctmc


Argument type: const reference
Value type: AbstractHomologousDiscreteCharacterData

tree


Argument type: const reference
Value type: TimeTree

printgen


Argument type: value
Value type: Natural
Default value 1

separator


Argument type: value
Value type: String
Default value " "

posterior


Argument type: value
Value type: Bool
Default value true

likelihood


Argument type: value
Value type: Bool
Default value true

prior


Argument type: value
Value type: Bool
Default value true

append


Argument type: value
Value type: Bool
Default value true

style


Argument type: value
Value type: String

Options
events
counts

Default value "events"

type


Argument type: value
Value type: String

Options
biogeo

Default value "biogeo"

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()


mnCharHistoryNhx

Show more... >> << Show less

Name

mnCharHistoryNhx

Description

Constructors


Name

Arguments

filename


Argument type: value
Value type: String

ctmc


Argument type: const reference
Value type: AbstractHomologousDiscreteCharacterData

tree


Argument type: const reference
Value type: TimeTree

atlas


Argument type: const reference
Value type: RlAtlas

samplegen


Argument type: value
Value type: Natural
Default value 1

maxgen


Argument type: value
Value type: Natural
Default value NULL

burnin


Argument type: value
Value type: Probability
Default value 0.2

separator


Argument type: value
Value type: String
Default value " "

posterior


Argument type: value
Value type: Bool
Default value true

likelihood


Argument type: value
Value type: Bool
Default value true

prior


Argument type: value
Value type: Bool
Default value true

type


Argument type: value
Value type: String

Options
biogeo

Default value "biogeo"

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()


mnExtNewick

Show more... >> << Show less

Name

mnExtNewick

Description

Constructors


Name

Arguments

filename
The name of the file.

Argument type: value
Value type: String

tree
The tree variable.

Argument type: const reference
Value type: TimeTree

Variables at nodes or branches.

Argument type: const reference
Value type: RevObject

isNodeParameter
Is this a node or branch parameter?

Argument type: value
Value type: Bool
Default value true

printgen
How frequently do we print.

Argument type: value
Value type: Natural
Default value 1

separator
The separator between variables.

Argument type: value
Value type: String
Default value " "

posterior
Should we print the posterior probability as well.

Argument type: value
Value type: Bool
Default value true

likelihood
Should we print the likelihood as well?

Argument type: value
Value type: Bool
Default value true

prior
Should we print the prior probability as well?

Argument type: value
Value type: Bool
Default value true

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()


mnFile

Show more... >> << Show less

Name

mnFile

Description

Constructors


Name

Arguments

Variables to monitor

Argument type: const reference
Value type: RevObject

filename
The name of the file.

Argument type: value
Value type: String

printgen
How often should we print.

Argument type: value
Value type: Natural
Default value 1

separator
The separator/delimiter between values.

Argument type: value
Value type: String
Default value " "

posterior
Should we print the posterior probability as well?

Argument type: value
Value type: Bool
Default value true

likelihood
Should we print the likelihood as well?

Argument type: value
Value type: Bool
Default value true

prior
Should we print the prior probability as well?

Argument type: value
Value type: Bool
Default value true

append
Should we append or overwrite if the file exists?

Argument type: value
Value type: Bool
Default value false

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()


mnJointConditionalAncestralState

Show more... >> << Show less

Name

mnJointConditionalAncestralState

Description

Constructors


Name

Arguments

tree


Argument type: reference
Value type: Tree

ctmc


Argument type: reference
Value type: AbstractHomologousDiscreteCharacterData

filename


Argument type: value
Value type: String

type


Argument type: value
Value type: String

printgen


Argument type: value
Value type: Natural
Default value 1

separator


Argument type: value
Value type: String
Default value " "

append


Argument type: value
Value type: Bool
Default value false

withTips


Argument type: value
Value type: Bool
Default value true

withStartStates


Argument type: value
Value type: Bool
Default value true

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()


mnModel

Show more... >> << Show less

Name

mnModel

Description

Constructors


Name

Arguments

filename
The name of the file where to store the values.

Argument type: value
Value type: String

printgen
The frequency how often to sample values.

Argument type: value
Value type: Natural
Default value 1

separator
The separator between different variables.

Argument type: value
Value type: String
Default value " "

posterior
Should we print the joint posterior probability?

Argument type: value
Value type: Bool
Default value true

likelihood
Should we print the likelihood?

Argument type: value
Value type: Bool
Default value true

prior
Should we print the joint prior probability?

Argument type: value
Value type: Bool
Default value true

append
Should we append to an existing file?

Argument type: value
Value type: Bool
Default value false

stochasticOnly
Should we monitor stochastic variables onle?

Argument type: value
Value type: Bool
Default value false

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()


mnScreen

Show more... >> << Show less

Name

mnScreen

Description

Constructors


Name

Arguments

Variables to monitor.

Argument type: const reference
Value type: RevObject

printgen
The frequency how often the variables are monitored.

Argument type: value
Value type: Natural
Default value 1

posterior
Monitor the joint posterior probability.

Argument type: value
Value type: Bool
Default value true

likelihood
Monitor the joint likelihood.

Argument type: value
Value type: Bool
Default value true

prior
Monitor the joint prior probability.

Argument type: value
Value type: Bool
Default value true

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()


mnStochasticVariable

Show more... >> << Show less

Name

mnStochasticVariable

Description

Constructors


Name

Arguments

filename
The name of the file.

Argument type: value
Value type: String

printgen
The frequency how often we print.

Argument type: value
Value type: Natural
Default value 1

separator
The delimiter between variables.

Argument type: value
Value type: String
Default value " "

append
Should we append or overwrite if the file exists?

Argument type: value
Value type: Bool
Default value false

Methods

addVariable >> << Show less

Name

addVariable

Usage

addVariable(RevObject x)

Arguments

x
A variable you want to monitor.

Argument type: reference
Value type: RevObject


methods >> << Show less

Name

methods

Usage

methods()




Types

CorrespondenceAnalysis

Show more... >> << Show less

Name

CorrespondenceAnalysis

Description

Constructors


Name

Usage

CorrespondenceAnalysis(MatrixReal data, Natural numAxes, RealPos tolerance)

Arguments

data
The matrix of numerical values.

Argument type: pass by value
Value type: MatrixReal

numAxes
The number of principle components.

Argument type: pass by value
Value type: Natural

tolerance
The allowed machine tolerance.

Argument type: pass by value
Value type: RealPos
Default value 1e-07

Methods

columnCoordinates >> << Show less

Name

columnCoordinates

Usage

columnCoordinates()


columnWeights >> << Show less

Name

columnWeights

Usage

columnWeights()


methods >> << Show less

Name

methods

Usage

methods()


principalAxes >> << Show less

Name

principalAxes

Usage

principalAxes()


rank >> << Show less

Name

rank

Usage

rank()


rowCoordinates >> << Show less

Name

rowCoordinates

Usage

rowCoordinates()


beca

Show more... >> << Show less

Name

beca

Description

Constructors


Name

Usage

beca(String|String[] filename, String delimiter)

Arguments

filename
The name of the file with the parameter samples.

Argument type: pass by value
Value type: String

delimiter
The delimiter/separator between values.

Argument type: pass by value
Value type: String
Default value " "

Methods

methods >> << Show less

Name

methods

Usage

methods()


run >> << Show less

Name

run

Usage

run()


setBurninMethod >> << Show less

Name

setBurninMethod

Usage

setBurninMethod(String method {valid options: "ESS"|"SEM"} )

Arguments

method
The burnin estimation method.

Argument type: value
Value type: String

Options
ESS
SEM



verbose >> << Show less

Name

verbose

Usage

verbose(Bool x)

Arguments

x
Should the output be verbose?

Argument type: value
Value type: Bool


mcmc

The MCMC analysis object keeps a model and the associated moves and monitors.The object is used to run Markov chain Monte Carlo (MCMC) simulation onthe model, using the provided moves, to obtain a sample of the posterior probabilitydistribution. During the analysis, the monitors are responsible for sampling model parameters of interest.

Show more... >> << Show less

Name

mcmc

Description

The MCMC analysis object keeps a model and the associated moves and monitors.The object is used to run Markov chain Monte Carlo (MCMC) simulation onthe model, using the provided moves, to obtain a sample of the posterior probabilitydistribution. During the analysis, the monitors are responsible for sampling model parameters of interest.

Constructors


Name

Usage

mcmc(Model model, Monitor[] monitors, Move[] moves, String moveschedule {valid options: "sequential"|"random"|"single"} , Natural nruns)

Arguments

model
The model graph.

Argument type: pass by value
Value type: Model

monitors
The monitors used for this analysis.

Argument type: pass by value
Value type: Monitor[]

moves
The moves used for this analysis.

Argument type: pass by value
Value type: Move[]

moveschedule
The strategy how the moves are used.

Argument type: pass by value
Value type: String

Options
sequential
random
single

Default value "random"

nruns
The number of replicate analyses.

Argument type: pass by value
Value type: Natural
Default value 1

Methods

burnin >> << Show less

Name

burnin

Usage

burnin(Natural generations, Natural tuningInterval)

Arguments

generations
The number of generation to run this burnin simulation.

Argument type: value
Value type: Natural

tuningInterval
The interval when to update the tuning parameters of the moves.

Argument type: value
Value type: Natural


methods >> << Show less

Name

methods

Usage

methods()


operatorSummary >> << Show less

Name

operatorSummary

Usage

operatorSummary()


run >> << Show less

Name

run

Usage

run(Natural generations, StoppingRule[] rules, Bool underPrior)

Arguments

generations
The number of generations to run.

Argument type: value
Value type: Natural

rules
The rules when to automatically stop the run.

Argument type: value
Value type: StoppingRule[]
Default value NULL

underPrior
Should we run this analysis under the prior only?

Argument type: value
Value type: Bool
Default value false


Author

Sebastian Hoehna

Reference

Metropolis N, AW Rosenbluth, MN Rosenbluth, AH Teller, E Teller (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087-1092.


Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97-109.



mcmcmc

The Mcmcmc analysis object keeps a model and the associated moves and monitors.The object is used to run Metropolis Couped Markov chain Monte Carlo (Mcmcmc) simulation onthe model, using the provided moves, to obtain a sample of the posterior probabilitydistribution. During the analysis, the monitors are responsible for sampling model parameters of interest.

Show more... >> << Show less

Name

mcmcmc

Description

The Mcmcmc analysis object keeps a model and the associated moves and monitors.The object is used to run Metropolis Couped Markov chain Monte Carlo (Mcmcmc) simulation onthe model, using the provided moves, to obtain a sample of the posterior probabilitydistribution. During the analysis, the monitors are responsible for sampling model parameters of interest.

Constructors


Name

Usage

mcmcmc(Model model, Monitor[] monitors, Move[] moves, String moveschedule {valid options: "sequential"|"random"|"single"} , Natural nruns, Natural nchains, Natural swapInterval, RealPos deltaHeat)

Arguments

model
The model graph.

Argument type: pass by value
Value type: Model

monitors
The monitors used for this analysis.

Argument type: pass by value
Value type: Monitor[]

moves
The moves used for this analysis.

Argument type: pass by value
Value type: Move[]

moveschedule
The strategy how the moves are used.

Argument type: pass by value
Value type: String

Options
sequential
random
single

Default value "random"

nruns
The number of replicate analyses.

Argument type: pass by value
Value type: Natural
Default value 1

nchains
The number of chains to run.

Argument type: pass by value
Value type: Natural
Default value 4

swapInterval
The interval at which swaps will be attempted.

Argument type: pass by value
Value type: Natural
Default value 100

deltaHeat
The delta parameter for the heat function.

Argument type: pass by value
Value type: RealPos
Default value 0.2

Methods

burnin >> << Show less

Name

burnin

Usage

burnin(Natural generations, Natural tuningInterval)

Arguments

generations
The number of generation to run this burnin simulation.

Argument type: value
Value type: Natural

tuningInterval
The interval when to update the tuning parameters of the moves.

Argument type: value
Value type: Natural


methods >> << Show less

Name

methods

Usage

methods()


operatorSummary >> << Show less

Name

operatorSummary

Usage

operatorSummary()


run >> << Show less

Name

run

Usage

run(Natural generations, StoppingRule[] rules, Bool underPrior)

Arguments

generations
The number of generations to run.

Argument type: value
Value type: Natural

rules
The rules when to automatically stop the run.

Argument type: value
Value type: StoppingRule[]
Default value NULL

underPrior
Should we run this analysis under the prior only?

Argument type: value
Value type: Bool
Default value false


Authors

Michael Landis

Sebastian Hoehna

Reference

Geyer,C.J. (1991) Markov chain Monte Carlo maximum likelihood. In Keramidas (ed.), Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Interface Foundation, Fairfax Station, pp. 156–163.


Gilks,W.R. and Roberts,G.O. (1996) Strategies for improving MCMC. In Gilks,W.R., Richardson,S. and Spiegelhalter (eds) Markov chain Monte Carlo in Practice. Chapman&Hall, London, 89–114.


Altekar, G.; Dwarkadas, S.; Huelsenbeck, J. P. & Ronquist, F. Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference Bioinformatics, Oxford Univ Press, 2004, 20, 407-415.



model

Show more... >> << Show less

Name

model

Description

Constructors


Name

Usage

model(RevObject x, RevObject ...)

Arguments

x
Any variable that is connected in the model graph.

Argument type: pass by const reference
Value type: RevObject

Additional variables.

Argument type: pass by const reference
Value type: RevObject

Methods

graph >> << Show less

Name

graph

Usage

graph(String file, Bool verbose, String bg)

Arguments

file
The name of the file where to save the model graph.

Argument type: value
Value type: String

verbose
Verbose output?

Argument type: value
Value type: Bool
Default value false

bg
The background color.

Argument type: value
Value type: String
Default value "lavenderblush2"


methods >> << Show less

Name

methods

Usage

methods()


pathSampler

Show more... >> << Show less

Name

pathSampler

Description

Constructors


Name

Usage

pathSampler(String filename, String powerColumnName, String likelihoodColumnName, String delimiter)

Arguments

filename
The filename where the likelihood samples are stored in.

Argument type: pass by value
Value type: String

powerColumnName
The name of the column that holds the values of the powers.

Argument type: pass by value
Value type: String

likelihoodColumnName
The name of the column that holds the likelihood values.

Argument type: pass by value
Value type: String

delimiter
The delimiter between columns.

Argument type: pass by value
Value type: String
Default value " "

Methods

marginal >> << Show less

Name

marginal

Usage

marginal()


methods >> << Show less

Name

methods

Usage

methods()


posteriorPredictiveAnalysis

Show more... >> << Show less

Name

posteriorPredictiveAnalysis

Description

Constructors


Name

Usage

posteriorPredictiveAnalysis(MonteCarloAnalysis sampler, String directory)

Arguments

sampler
The template Monte Carlo sampler instance.

Argument type: pass by value
Value type: MonteCarloAnalysis

directory
The name of the directory where the simulated data are.

Argument type: pass by value
Value type: String

Methods

burnin >> << Show less

Name

burnin

Usage

burnin(Natural generations, Natural tuningInterval)

Arguments

generations
The number of generations to run.

Argument type: value
Value type: Natural

tuningInterval
The number of iterations after which we tune the parameters of the moves.

Argument type: value
Value type: Natural


methods >> << Show less

Name

methods

Usage

methods()


run >> << Show less

Name

run

Usage

run(Natural generations)

Arguments

generations
The number of generation to run.

Argument type: value
Value type: Natural


posteriorPredictiveSimulation

Show more... >> << Show less

Name

posteriorPredictiveSimulation

Description

Constructors


Name

Usage

posteriorPredictiveSimulation(Model model, String directory, ModelTrace[] trace)

Arguments

model
The reference model instance.

Argument type: pass by const reference
Value type: Model

directory
The name of the directory where we store the simulations.

Argument type: pass by value
Value type: String

trace
The sample trace object.

Argument type: pass by const reference
Value type: ModelTrace[]

Methods

methods >> << Show less

Name

methods

Usage

methods()


run >> << Show less

Name

run

Usage

run(Natural thinning)

Arguments

thinning
The number of samples to jump over.

Argument type: value
Value type: Natural
Default value 1


powerPosterior

Show more... >> << Show less

Name

powerPosterior

Description

Constructors


Name

Usage

powerPosterior(Model model, Move[] moves, Monitor[] monitors, String filename, RealPos[] powers, Natural cats, RealPos alpha, Natural sampleFreq)

Arguments

model
The model graph.

Argument type: pass by value
Value type: Model

moves
The vector moves to use.

Argument type: pass by value
Value type: Move[]

monitors
The monitors to call. Do not provide a screen monitor.

Argument type: pass by value
Value type: Monitor[]

filename
The name of the file for the likelihood samples.

Argument type: pass by value
Value type: String

powers
A vector of powers.

Argument type: pass by value
Value type: RealPos[]
Default value NULL

cats
The number of categories if no powers are specified.

Argument type: pass by value
Value type: Natural
Default value 100

alpha
The alpha parameter of the beta distribution if no powers are specified.

Argument type: pass by value
Value type: RealPos
Default value 0.2

sampleFreq
The sampling frequency of the likelihood values.

Argument type: pass by value
Value type: Natural
Default value 100

Methods

burnin >> << Show less

Name

burnin

Usage

burnin(Natural generations, Natural tuningInterval)

Arguments

generations
The number of generations to run.

Argument type: value
Value type: Natural

tuningInterval
The frequency when the moves are tuned (usually between 50 and 1000).

Argument type: value
Value type: Natural


methods >> << Show less

Name

methods

Usage

methods()


run >> << Show less

Name

run

Usage

run(Natural generations)

Arguments

generations
The number of generations to run.

Argument type: value
Value type: Natural


srGelmanRubin

Show more... >> << Show less

Name

srGelmanRubin

Description

Constructors


Name

Usage

srGelmanRubin(RealPos R, String filename, Natural frequency, String burninMethod {valid options: "ESS"|"SEM"} )

Arguments

R
The maximum allowed potential scale reduction factor.

Argument type: pass by value
Value type: RealPos

filename
The name of the file containing the samples.

Argument type: pass by value
Value type: String

frequency
The frequency how often to check for convergence.

Argument type: pass by value
Value type: Natural
Default value 10000

burninMethod
Which type of burnin method to use.

Argument type: pass by value
Value type: String

Options
ESS
SEM

Default value "ESS"

Methods

methods >> << Show less

Name

methods

Usage

methods()


srGeweke

Show more... >> << Show less

Name

srGeweke

Description

Constructors


Name

Usage

srGeweke(Probability prob, Probability frac1, Probability frac2, String filename, Natural frequency, String burninMethod {valid options: "ESS"|"SEM"} )

Arguments

prob
The significance level.

Argument type: pass by value
Value type: Probability
Default value 0.05

frac1
The fraction of samples used for the first window.

Argument type: pass by value
Value type: Probability
Default value 0.1

frac2
The fraction of samples used for the second window.

Argument type: pass by value
Value type: Probability
Default value 0.5

filename
The name of the file containing the samples.

Argument type: pass by value
Value type: String

frequency
The frequency how often to check for convergence.

Argument type: pass by value
Value type: Natural
Default value 10000

burninMethod
Which type of burnin method to use.

Argument type: pass by value
Value type: String

Options
ESS
SEM

Default value "ESS"

Methods

methods >> << Show less

Name

methods

Usage

methods()


srMaxIteration

Show more... >> << Show less

Name

srMaxIteration

Description

Constructors


Name

Usage

srMaxIteration(Natural maxIteration)

Arguments

maxIteration
The maximum number of iterations to run.

Argument type: pass by value
Value type: Natural

Methods

methods >> << Show less

Name

methods

Usage

methods()


srMaxTime

Show more... >> << Show less

Name

srMaxTime

Description

Constructors


Name

Usage

srMaxTime(RealPos maxTime, String unit {valid options: "seconds"|"minutes"|"hours"} )

Arguments

maxTime
The maximum time to run.

Argument type: pass by value
Value type: RealPos

unit
The unit in which we measure the maximum time.

Argument type: pass by value
Value type: String

Options
seconds
minutes
hours

Default value "seconds"

Methods

methods >> << Show less

Name

methods

Usage

methods()


srMinESS

Show more... >> << Show less

Name

srMinESS

Description

Constructors


Name

Usage

srMinESS(RealPos minEss, String filename, Natural frequency, String burninMethod {valid options: "ESS"|"SEM"} )

Arguments

minEss
The minimum ESS threshold when stopping is allowed.

Argument type: pass by value
Value type: RealPos

filename
The name of the file containing the samples.

Argument type: pass by value
Value type: String

frequency
The frequency how often to check for convergence.

Argument type: pass by value
Value type: Natural
Default value 10000

burninMethod
Which type of burnin method to use.

Argument type: pass by value
Value type: String

Options
ESS
SEM

Default value "ESS"

Methods

methods >> << Show less

Name

methods

Usage

methods()


srStationarity

Show more... >> << Show less

Name

srStationarity

Description

Constructors


Name

Usage

srStationarity(Probability prob, String filename, Natural frequency, String burninMethod {valid options: "ESS"|"SEM"} )

Arguments

prob
The significance level.

Argument type: pass by value
Value type: Probability

filename
The name of the file containing the samples.

Argument type: pass by value
Value type: String

frequency
The frequency how often to check for convergence.

Argument type: pass by value
Value type: Natural
Default value 10000

burninMethod
Which type of burnin method to use.

Argument type: pass by value
Value type: String

Options
ESS
SEM

Default value "ESS"

Methods

methods >> << Show less

Name

methods

Usage

methods()


steppingStoneSampler

Show more... >> << Show less

Name

steppingStoneSampler

Description

Constructors


Name

Usage

steppingStoneSampler(String filename, String powerColumnName, String likelihoodColumnName, String delimiter)

Arguments

filename
The name of the file where the likelhood samples are stored.

Argument type: pass by value
Value type: String

powerColumnName
The name of the column of the powers.

Argument type: pass by value
Value type: String

likelihoodColumnName
The name of the column of the likelihood samples.

Argument type: pass by value
Value type: String

delimiter
The column delimiter.

Argument type: pass by value
Value type: String
Default value " "

Methods

marginal >> << Show less

Name

marginal

Usage

marginal()


methods >> << Show less

Name

methods

Usage

methods()


taxon

Show more... >> << Show less

Name

taxon

Description

Constructors


Name

Usage

taxon(String taxonName, String speciesName, Real age)

Arguments

taxonName
The name of the taxon.

Argument type: pass by value
Value type: String

speciesName
The name of the species it belongs to.

Argument type: pass by value
Value type: String

age
The age before the present when this taxon was sampled.

Argument type: pass by value
Value type: Real
Default value 0

Methods

getAge >> << Show less

Name

getAge

Usage

getAge()


getSpeciesName >> << Show less

Name

getSpeciesName

Usage

getSpeciesName()


methods >> << Show less

Name

methods

Usage

methods()


validationAnalysis

Show more... >> << Show less

Name

validationAnalysis

Description

Constructors


Name

Usage

validationAnalysis(MonteCarloAnalysis sampler, Natural simulations)

Arguments

sampler
The template Monte Carlo sampler instance.

Argument type: pass by value
Value type: MonteCarloAnalysis

simulations
How many replicate simulations to run.

Argument type: pass by value
Value type: Natural

Methods

burnin >> << Show less

Name

burnin

Usage

burnin(Natural generations, Natural tuningInterval)

Arguments

generations
The number of generations to run.

Argument type: value
Value type: Natural

tuningInterval
The number of iterations after which we tune the parameters of the moves.

Argument type: value
Value type: Natural


methods >> << Show less

Name

methods

Usage

methods()


run >> << Show less

Name

run

Usage

run(Natural generations)

Arguments

generations
The number of generation to run.

Argument type: value
Value type: Natural


summarize >> << Show less

Name

summarize

Usage

summarize()