
Structuring asynchronous requests in
AngularJS 1.3

Blurring the line between asynchronous and synchronous code

Peter Crona
IceColdCode.com

November 16, 2014

Abstract

This paper presents a new tool for structuring asynchronous re-
quests in AngularJS 1.3. The tool is called StateDataStream. Today
it is common that developers mix data loading and data processing in
a way that reduces readability and flexibility. This papers evalulates
different ways of structuring asynchronous requests, starting with call-
backs, then promises and finally the StateDataStream. Both callbacks
and promises have drawbacks, some of which StateDataStream solves.
StateDataStream achieve a clarity close to that of synchronous data
loading code.

1

2

Contents

1 Background 5
1.1 Callbacks . 6
1.2 Using promises . 7

2 The StateDataStream way 11
2.1 Specifying the stream . 11

2.1.1 Writing to the stream 12
2.1.2 Error handling . 12

2.2 Executing the stream . 13

3 Conclusion and future considerations 13
3.1 Specifying dependencies between writes 14
3.2 Running state dependent writes in parallel 15
3.3 Execute handlers with limited state 15

3

4

1 Background

Two very common techniques for structuring asynchronous requests are call-
backs and promises. We will define these in short. Let us first look at some
differences between traditional websites and single page web applications.
This will help us to understand why data loading has become more complex
as well as more important. The figures below show how the architecture of
traditional websites and single page web applications typically look.

Figure 1: Traditionally the web server has contained logic and then delivered
a rendered page to the user. The rendered page contained most, if not all
data that the user requested.

Figure 2: Today it is common to develop single page web applications. Sin-
gle page web applications can be considered being standalone applications
delivered by a web server. The web server is only responsible for delivering
files and does not contain application logic, the logic resides in the frontend
and the APIs used by the frontend.

5

This report focuses on single page web applications. A single page web
application typically contains complex data loading logic. For every view
data needs to be loaded, where a view corresponds to a page in a traditional
website. The data is sometimes dependent on other data, for instance we
might want to load information about a user and then load additional data
based on the user’s information. The data might also be independent, in
which case we want to load it in parallel so that we get all data as quickly
as possible. Serverside, when using languages such as PHP or Python, data
loading is handled synchronously. It might look like:

1 user = loadUserInfo ();

2 repos = loadUserRepos(user.githubName);

3 // We have both user and repos here

Listing 1: Code showing how data loading might look like when done
synchronously

Note how clear the code is. We can read it from top to bottom and at each
line we now exactly what data we have.

In JavaScript data is loaded asynchronously. This makes it easier to create
rapid user interfaces and to load data in parallel. However, it comes at the
price of increased complexity. The code becomes more difficult to follow, we
cannot follow the execution by reading it from top to bottom anymore. A
solution which harness the benefits of asynchronous data loading as well as
the readability of synchronous data loading is definitely desirable. Let us
have a look at the two main approaches used today, namely callbacks and
promises.

1.1 Callbacks

The basic idea behind using callbacks is to call a method with another method
as argument. When the first method has finished it will call the method you
provided in the argument. It is very simple to use, but it has some drawbacks
when used for more advanced data loading. Consider this trivial example
where we just send one request to get some data.

1 Api.getUserInfoById (43,

2 userInfoResponseHandler ,

3 errorHandler);

4
5 function userInfoResponseHandler(response) { ... }

Listing 2: Code showing how we can load data using callbacks

6

Now imagine that we have two dependent pieces of data that we want. Con-
sider the case where part of a user’s information is his or hers Github user-
name. After loading the user’s info we want to load the user’s repos on
Github.

1 Api.getUserInfoById (43,

2 userInfoResponseHandler ,

3 errorHandler);

4
5 function userInfoResponseHandler(response) {

6 var githubName = response.githubName;

7
8 // Possibly do more stuff with userInfo response here.

9
10 Api.getGithubRepos(githubName ,

11 githubResponseHandler ,

12 errorHandler);

13 }

14
15 function githubResponseHandler(response) { ... }

Listing 3: Code, using callbacks, showing how we can load two pieces of data,
where the second is dependent on the first

This code is a quite unclear. Getting an overview of what data is loaded
is difficult. If we want to do more things with the user information we will
either have to mix data loading and data processing (do stuff in userInfoRe-
sponseHandler) or we have to send all data to the githubResponseHandler
and process it there. Both ways result in a quite unclear structure. It is
not intuitive that the response handler for loading Github repos shall be re-
sponsible for handling user data. The structure is not a result of what we
want to express, it is a result of how callbacks work. Clearly it has worse
readability than if we would have loaded data synchronously. Furthermore,
it is difficult to extend so that it loads more data, for example if we would
want the number of contributors for the Github repos. Now let us have a
look at how we could accomplish the same with promises.

1.2 Using promises

First a brief description of what promises are. When doing an asynchronous
request, instead of you sending a callback as an argument, a so called promise
is returned. The promise is an object with methods where you can register
callbacks. In AngularJS one of the most important methods of promises is
‘then‘.

then(successHandler, errorHandler)

7

Note that a promise is not just another way of specifying callbacks. For
example the successHandler or errorHandler will always be called with the
data as argument after it has loaded. Even if you already called ‘then‘ before
(and got the results) or if the data was loaded before you called ‘then‘. Now
that you know a little about promises, consider the case where we just want
to load one piece of data, information about a user.

1 Api.getUserInfoById (43)

2 .then(userInfoResponseHandler)

3 .catch(errorHandler);

4
5 function userInfoResponseHandler(response) { ... }

Listing 4: Code showing how we can load a user’s info with promises

If we have two dependent pieces of data it might look like this:

1 Api.getUserInfoById (43)

2 .then(userInfoResponseHandler)

3 .catch(errorHandler);

4
5 function userInfoResponseHandler(response) {

6 var githubName = response.githubName;

7
8 // Possibly do more stuff with userInfo response here.

9
10 Api.getGithubRepos(githubName)

11 .then(githubResponseHandler),

12 .catch(errorHandler);

13 }

14
15 function githubResponseHandler(response) {

16 ...

17 }

Listing 5: Code showing an approach using promises where we are loading
two pieces of data, where the second is dependent on the first

This is very similar to the callback method. However, there are more ways
of solving the same problem with promises. Another example where we use
the possibility to chain promises is:

1 Api.getUserInfoById (43)

2 .then(loadGithubRepos)

3 .then(githubResponseHandler)

4 .catch(errorHandler);

5
6 function loadGithubRepos(response) {

7 var githubName = response.githubName;

8

8

9 // Possibly do more stuff with userInfo response here.

10
11 return Api.getGithubRepos(githubName);

12 }

13
14 function githubResponseHandler(response) {

15 ...

16 }

Listing 6: Code where we use promises and the possibility to chain promises
to load two pieces of data, where the second is dependent on the first

Note that we have a much clearer code. By just looking at the first block of
code we can see that we are getting user info, loading github repos and then
handling the response of them. But we still lack a separation of data loading
and processing. One possible way of accomplishing this is:

1 var userInfo = null; var gitRepos = null;

2
3 Api.getUserInfoById (43)

4 .then(loadGithubRepos)

5 .then(githubResponseHandler)

6 .then(processData)

7 .catch(errorHandler);

8
9 function loadGithubRepos(response) {

10 userInfo = response;

11 return Api.getGithubRepos(response.githubName);

12 }

13
14 function githubResponseHandler(response) {

15 gitRepos = response;

16 }

17
18 function processData () { Do stuff with userInfo and gitRepos

}

Listing 7: Code where we chain promises together and separate data loading
from data processing. However, note that we use variables in the scope
outside where we load our data.

But this approach have two drawbacks. Firstly, we use variables in an outside
scope as storage, which can damage readability and makes it more difficult
to reason about the code since the functions are less pure (rely on data
not given in the parameters and have side effects). Secondly, we treat the
loading of user info differently, despite that it is just loading data just as
loadGithubRepos. Another approach without these drawbacks (I’m using
Angular’s $q in this pseudo code) is:

9

1 $q.when ({})

2 .then(loadUserInfo)

3 .then(loadGithubRepos)

4 .then(processData)

5 .catch(errorHandler);

6
7 function loadUserInfo(state) {

8 return Api.getUserInfoById (43).then(function(res) {

9 state.userInfo = res;

10 return state;

11 });

12 }

13
14
15 function loadGithubRepos(state) {

16 return Api.getGithubRepos(state.userInfo.githubName)

17 .then(function(res) {

18 state.githubRepos = res;

19 return state;

20 });

21 }

22
23 function processData(state) {

24 console.log(state.userInfo);

25 console.log(state.githubRepos);

26 }

Listing 8: Code where we are using promises and have separated data loading
from data processing as well as made it very clear what data we are loading

By just looking at the chain of promises we can directly see that we are
loading user info, then github repos and finally we process the data. All data
loading is treated the same. We can easily add more ‘loaders‘ if we need to
load more data. The clarity that we have is not that far from the clarity of
synchronous data loading. However, this solution is not perfect. It is unclear
what loadUserInfo does, we need to look at the actual function to know
that it writes to ‘userInfo‘ in the state. When loading data synchronously
we easily see which variable we assign the value to. Another issue is that
it is unclear that loadGithubRepos must be after loadUserInfo. We need
to look at both loadUserInfo and loadGithubRepos to know that there is a
dependency between them. Furthermore, if we would like to load independent
data this would not be done in parallel. StateDataStream currently attacks
that it is unclear where in the state functions are writing (to which property)
and that data is not loaded in parallel even if independent. The problem with
the unclear dependencies in the chain of promises is discussed in section 3.

10

2 The StateDataStream way

StateDataStream is solving the problem that it is unclear where the result
of a promise is written when multiple promises are chained together. It also
makes it easy to run independent AJAX-requests in parallel. Since the syntax
is quite clear let us start with an example:

1 StateDataSteam.init ({})

2 .write(’userInfo ’, Api.getUserInfoById (43))

3 .write(’githubRepos ’, function(state) {

4 return loadGithubRepos(state.userInfo.githubName);

5 })

6 .error(errorHandler)

7 .execute(proceessData);

8
9 function processData(state) {

10 console.log(state.userInfo);

11 console.log(state.githubRepos);

12 }

Listing 9: Code showing how two pieces of data, where the second is
dependent on the first, can be loaded using StateDataStream.

We have achieved a clear separation between data loading and data process-
ing. Furthermore, it is clear where we are writing the results of promises.
‘userInfo‘ and other promises directly added to the stream (i.e. not wrapped
in a function) will be sent in parallel as soon as we add them to the stream.
Hence loading independent data in parallel is easy and does not damage the
readability of the code. The clarity of the code is compareable with syn-
chronous data loading. The code can be read from top to bottom and we
can easily see to which ‘variables‘ results are assigned.

Now let us have a look at the details of StateDataStream, how we specify
what data to load and how to handle errors. And finally also how to execute
the stream, making it possible for us to use all the data we have written into
the state.

2.1 Specifying the stream

Initially we just specify the stream. The idea is that nothing we do should
have side effects. However, as you may have noted, promises directly written
to the stream will be sent immediately, since the parameters of functions are
evaluated directly. Fortunately, due to how promises work, we can disregard
from this. The following sub sections will describe the operations available
for specifying the stream.

11

2.1.1 Writing to the stream

As you have seen we can write different things to the stream. A semi-formal
description of the write operation is:

write(key, val)

where

val := value | promise | function
key := objectRef | listRef

objectRef and listRef use dot notation to specify where to put the key. Both
use the same syntax except that listRef always end with []. An example will
suffice to describe their syntax:

1 StateDataSteam.init ({})

2 .write(’userInfo ’, val) // objectRef

3 .write(’user.info’, val) // objectRef

4 .write(’user.says.hello ’, val) // objectRef

5 .write(’users []’, val) // listRef

6 .write(’data.users []’, val); // listRef

7
8 // Let ? symbolise any data , then the state will look like:

9 {

10 userInfo: ?,

11 user: {

12 info: ?,

13 says: {

14 hello: ?

15 }

16 },

17 users: [?],

18 data: {

19 users: [?]

20 }

21 }

Listing 10: Examples of listRef and objectRef keys

We also need to define function a little more. A function is just an ordinary
function, but it may return a promise, in which case the promise will be re-
solved and written to the stream. And if a value (anything except a promise)
is returned, the value will be written to the stream.

2.1.2 Error handling

A stream is associated with one error handler. The error handler will im-
mediately be called if some HTTP-request returns another status than 200.

12

Meaning that any subsequent operations will not be carried out. The error
handler is called with the error and the state at the time of the error as
arguments.

errorHandler(error, state)

The error handler is associated with the stream in the following way:

1 StateDataSteam.init ({})

2 .write(’userInfo ’, val)

3 .error(errorHandler);

Listing 11: Attaching an error handler to the stream

Now let us move on to actually doing something with the stream, i.e. exe-
cuting it.

2.2 Executing the stream

Once the stream is specified it can be stored in a variable or you might
create a function which returns the stream parameterised by some arguments.
Regardless of which, the way to execute the stream is simply to call execute:

1 StateDataSteam.init ({})

2 .write(’userInfo ’, val)

3 .error(errorHandler)

4 .execute(initController);

Listing 12: Executing the stream

The function initController will be called with the resulting state of running
the stream, assuming that an error is not detected, in which case the error
handler will be called instead. The handler initController shall have the
following signature:

initController(state)

and in this case state will just be an object containing the property userInfo.
Note that the state is completely defined by the inital state and what we
write to the state. By just looking at the stream specification we get a good
image of what will be available in initController.

3 Conclusion and future considerations

StateDataStream provides a new way of structuring asynchronous requests.
It separates data loading from data processing and it has a very clear syntax,
which makes it easy to see what data is loaded and how to access it in
the data processing step. The data loading code’s clarity is compareable

13

with synchronous data loading. Furthermore, it is easy to load independent
data in parallel and it is easy to specify one error handler for the whole
stream. It solves some of the drawbacks with callbacks and promises, which
are commonly used today. However, it does not yet support making it easy
to indentify dependencies between write operations nor loading dependent
data in parallel in an easy way.

3.1 Specifying dependencies between writes

Consider the following piece of code:

1 StateDataSteam.init ({})

2 .write(’users []’, Api.getUsers ())

3 .write(’githubRepos []’, function(state) {

4 // Load github repos for all users

5 })

6 .error(errorHandler)

7 .execute(initController);

Listing 13: Executing the stream

It is not obvious that gitHubRepos depends on the data in state.users. We
need to look at the code. If the function for loading data is not specified inline
(with an anonymous function) this will significantly damage readability.

One possible way to make dependencies more clear is to introduce a third
parameter for the write method. In that case we might get something like:

1 StateDataSteam.init ({})

2 .write(’users []’, Api.getUsers ())

3 .write(’githubRepos []’, loadGithubRepos , [’users ’]);

Listing 14: Executing the stream

In the code above it is clear that githubRepos depend on users. Furthermore,
loadGithubRepos does not need to be called with the full state, it can be
called with only the specified dependencies.

14

3.2 Running state dependent writes in parallel

Consider the following code:

1 StateDataSteam.init ({})

2 .write(’users []’, Api.getUsers ())

3 .write(’githubRepos []’, function(state) {

4 // Load github repos for all users

5 })

6 .error(errorHandler)

7 .execute(initController);

Listing 15: Executing the stream

Currently there is no easy way of loading github repos for all users in parallel.
It might be doable using $q.all in the write. But it might be worth investing
some time into investigating the best approach for this. One possible way to
simplify this might be:

1 StateDataSteam.init ({})

2 .write(’users []’, Api.getUsers ())

3 .writeAll(’githubRepos []’, loadGithubRepos , ’users ’)

4 .error(errorHandler)

5 .execute(initController);

Listing 16: Executing the stream

Where writeAll would cause loadGithubRepos to be called once for every el-
ement in users, and the results would be pushed into githubRepos, in parallel
of course.

3.3 Execute handlers with limited state

It might not always be desireable to have one handler for the whole state.
For instance, if we are loading user info and github repos we might want one
handler to handle the user info and another the github repos. One idea of
how this might look is:

1 StateDataSteam.init ({})

2 .write(’users []’, Api.getUsers ())

3 .write(’githubRepos []’, loadGithubRepos , [’users ’])

4 .execute(userHandler , [’users ’])

5 .execute(githubHandler , [’users ’, ’githubRepos ’]);

Listing 17: Executing the stream

Where userHandler would be called as userHandler(users) and github-
Handler would be called as githubHandler(users, githubRepos).

15

