
Preprint

Permazen: Language-Driven Persistence for Java

Archie L. Cobbs
Techt, LLC

archie@techtllc.com

Abstract
Most software applications require durable persistence of
data. From a programmer’s point of view, persistence has
its own set of inherent issues, e.g., how to manage schema
changes, yet such issues are rarely addressed in the program-
ming language itself. Instead, how we program for persis-
tence has traditionally been driven from the storage technol-
ogy side, resulting in incomplete and/or technology-specific
support for managing those issues.

In Java, the mainstream solution for basic persistence is
the Java Persistence API (JPA)[1]. While popular, it also
measures poorly on how well it addresses many of these
inherent issues. We identify several examples, and gener-
alize them into criteria for evaluating how well any solu-
tion serves the programmer’s persistence needs, in any lan-
guage. We introduce Permazen[3], a persistence layer for or-
dered key/value stores that, by integrating the data encod-
ing, query, and indexing functions, provides a more com-
plete, type-safe, and language-driven framework for manag-
ing persistence in Java, and addresses all of the issues we
identify.

Keywords Permazen, Java, Persistence, JPA

1. INTRODUCTION
Almost every non-trivial software application has the need
to store data persistently, that is, on stable storage that lasts
beyond the lifetime of a single execution, or even version,
of the application. Since any piece of software, regardless of
its complexity, is ultimately just a state machine, managing
persistence is not a mere accessory to software development;
it is truly fundamental, as nothing is more basic to a state
machine than the management of its state.

Therefore it may seem surprising that in most program-
ming languages, support for even basic durable persistence
is an afterthought. By “basic” persistence, we mean the abil-

[Copyright notice will appear here once ’preprint’ option is removed.]

ity to store and retrieve structures and data types of the lan-
guage across application restarts and upgrades. While virtu-
ally all programming languages provide the ability to read
and write at the raw byte level, and to serialize and dese-
rialize individual objects and values, few define a coherent
framework for addressing the concerns particular to persis-
tence programming: these include how queries are defined,
indexing of data, schema version management, etc.

This is understandable. In general, programming lan-
guages provide support for data with “memory model” se-
mantics, where all data lives in directly addressable memory
and every access is atomic, instantaneous, and cannot fail.
Persistence complicates this simple model with notions of
non-determinism, transactions that can conflict or fail, com-
munication delays and failures, and the requirement that
all data be serializable into raw bytes from which it may
be reconstituted later, possibly by a different version of the
application having new and/or changed types and data struc-
tures. Moreover, there are so many different storage tech-
nologies with different features and trade-offs, it’s unlikely
there could ever be a single persistence framework at the
language level that satisfied all needs.

As a result, persistence programming has been driven
mainly from the storage technology side, resulting in a va-
riety of special purpose API’s and design patterns. Many
persistence “solutions” are simply wrappers around what-
ever native API already exists for a particular storage tech-
nology. An example of this is Java Database Connectiv-
ity (JDBC)[4], which allows Java applications to interact
with relational databases using Structured Query Language
(SQL) statements and a straightforward API. Although easy
to understand, JDBC leaves to the programmer the work
of bridging the object-oriented and relational worlds, i.e.,
managing the “impedance mismatch”[2] caused by object-
relational mapping (ORM). Hibernate[5], and its follow-
on JPA, provide a more object-oriented API for relational
database persistence, and are generally considered the cur-
rent state of the art for basic Java persistence, at least when
using relational databases.

As mature and widespread as JPA has become, bridging
the object-relational divide still presents challenges in Java,
a strongly-typed and relatively inflexible language. Simply
put, JPA does not fit very naturally into it. This is not sur-

Copyright c©2017 Archie L. Cobbs. All rights reserved. 1 2017/9/14



prising, because JPA’s evolution was motivated primarily
by the question: How can we most easily access the rela-
tional database functionality that already exists from Java?
It was not attempting to address the reverse question: What
is the best way to manage persistence in the Java language,
and how might we implement that concretely using a rela-
tional database? JPA’s design was constrained by the need
for compatibility with the large variety of pre-existing rela-
tional database conventions, schemas and usage patterns. As
a result, the simplicity and elegance of the Java program-
ming language was compromised, at least with respect to
persistence programming.

At the time JPA was developed, relational databases were
ubiquitous, and so the assumption of their use represented a
practical approach to persistence in Java. However, the past
decade has seen an explosion of interest in non-relational
(“NoSQL”) database technology, and relational databases
are now just one of many available options. Yet although
“old” by modern standards, the Java programming language
is still popular and widely used[6]. So the question of how
to best manage persistence in the Java programming lan-
guage is worth asking anew. More specifically: if we reject
the requirement that we must expose functionality specific
to relational databases and instead take a “language-first”
approach, how could handling basic persistence in Java be
improved?

In this paper we explore that question and provide some
answers. We argue that from the programmer’s point of view,
JPA and similar solutions are not answering the right ques-
tion: the real problem programmers have is how to man-
age persistence in a Java application, whereas the question
they are answering is how to give programmatic access to
a database. In this paper we show that the former question
is broader and includes several additional issues that are
non-trivial and inescapable, yet today remain largely unad-
dressed.

We start by taking a critical look at JPA. In the process we
uncover several issues that are inherent to persistence pro-
gramming in any language, and define criteria for evaluat-
ing how well a persistence solution addresses them. Finally
we describe Permazen[3], a new persistence layer for Java
having the primary design goal of providing more complete,
“Java-centric” answers to these inherent problems.

2. PROBLEMS WITH JPA
We examine problems with JPA as a way to motivate this
exploration, but first, it’s important to point out that JPA
successfully achieves its goal, which is to provide a way
for Java programmers to access the rich functionality of
relational databases. Unfortunately, because exposing this
functionality was of primary importance, preserving Java
language elegance and simplicity, and providing a complete
and coherent solution to all of the problems inherent in
persistence, became unmet goals. Below we identify some

of the resulting problems and consider how each problem
might be better addressed in Java.

2.1 Configuration Complexity
Any persistence solution is going to require at least some
configuration. JPA allows configuration via Java annota-
tions, which gets high marks for natural language integra-
tion, but it requires 108 distinct Java annotations and Enum

classes to do so. From this statistic alone, it is clear there
is a huge amount of configuration complexity with JPA. Al-
most all of it derives from JPA’s need to support the many
different ways of storing data in relational tables.

How objects and fields are mapped onto the underlying
database is technically not a programming language issue.
However, JPA requires the programmer to understand and
configure this mapping at the language level, because JPA
must be flexible enough to support all the different ways
of doing so. JPA adds additional configuration complexity
when the Criteria API is used; it requires a compiler
preprocessing step to generate the “meta-model” interfaces.

We define configuration complexity as the simple notion
of how much work is involved in understanding and per-
forming the configuration of persistence. In an ideal sce-
nario, a persistence layer would manage how values and data
structures in the language are mapped onto the underlying
storage technology automatically, and not require the pro-
grammer to configure anything.

2.2 Query Language Concordance
Persistent data is not directly addressable in a programming
language like normal, in-memory objects and data struc-
tures; some kind of query operation is required in order
to retrieve it. A special language used to perform this op-
eration is known as a “query language”. Aside from plain
SQL, JPA defines two additional query languages, the Java
Persistence Query Language (JPQL)[12] and Criteria

queries. JPQL parallels SQL at the Java class/field level,
using class and field names instead of table and column
names, and it allows stepping through reference fields and
collections using joins. JPQL is transformed more or less di-
rectly into SQL. The Criteria API provides compile-time
type safety, but requires additional preprocessing and is ver-
bose and cumbersome to use; ultimately, it has roughly the
same expressibility as JPQL. Even though written in Java,
Criteria queries require the use of SQL-based specialized
types and operations such as From<Z, X>, MapJoin<Z, K,

V>, Subquery<T>, etc.
The first question here is: why do we need a “query lan-

guage”? Java is a perfectly adequate language for expressing
a wide variety of query-related concepts, including search,
selection, projection, etc. Although SQL joins have no direct
Java counterpart, joins are conceptually rooted in set theory,
so it’s reasonable to expect they too could be expressed as
regular Java operations: an inner join as an intersection of
two Sets; an outer join as a union of two Sets; etc.

Copyright c©2017 Archie L. Cobbs. All rights reserved. 2 2017/9/14



Unfortunately JPA does not have the luxury to innovate
here, as it must provide programmers complete query flexi-
bility, with the ability to perform joins, sub-selects, and even
query directly using SQL. However when those constraints
are removed, many opportunities for simplification appear
possible.

We define query language concordance as the degree
with which the language used to perform persistence queries
is consistent with the norms and conventions of the overall
programming language. In this measure, more is better, and
in the ideal case persistence queries would require no special
knowledge from the programmer beyond a language’s exist-
ing syntax, types, and data structures. Unfortunately, JPA is
far from this ideal.

2.3 Query Performance Transparency
Java programmers are familiar with evaluating the per-
formance of their own code. This often involves nothing
more than a visual inspection backed by the knowledge of
the performance of individual classes. For example, most
Java programmers know that Set.contains() is “fast” but
List.contains() is “slow”.

Persistence query performance is a key part of overall ap-
plication performance, but when persistence programming
involves a special language for performing queries, that cre-
ates new challenges for understanding that performance. In
fact, with JPA it’s often completely impossible, when look-
ing only at Java code that performs a query, to understand
how well that query performs.

A simple example shows this. Consider the query select
Person as p where p.lastName = ’Smith’ that re-
turns one row from a database containing one million rows.
The database will either read one row (if the lastName col-
umn is indexed) or one million rows (if the lastName col-
umn is not indexed). Yet it’s impossible to tell which will
occur from looking at the query, which is identical in either
case. This issue is inherited from SQL itself: query per-
formance cannot be understood without understanding not
only which columns are indexed, but also how the database
builds query plans for each query. Programmers must in
effect become relational database administrators (DBA’s),
well versed in interpreting the output of EXPLAIN SELECT,
or else risk writing poorly performing software.

On top of the SQL and query plan layers, JPA adds an
additional layer of obfuscation, namely the conversion from
JPQL or Criteria queries into SQL. Compilation of JQPL
queries often results in longer, more complex, and difficult to
read machine-generated SQL queries, exacerbating the prob-
lem. By supporting JPQL and Criteria queries, JPA pro-
vides the programmer a more natural way to query than SQL
than JDBC, but it also creates further distance between the
programmer and the actual execution and therefore perfor-
mance of the query.

We define query performance transparency as the level to
which the performance implications of a query are obvious

to a programmer inspecting it. Programmers already know
how to evaluate the performance of normal code. Ideally,
this knowledge would apply equally well when looking at
persistence query code.

2.4 Schema Management
Software allows for unbounded experimentation and im-
provement because it is so easy to change. Continual updates
and new releases are common. This has a downside when
persistence is involved, because it creates a situation where
data can be written by one version of an application but
read by another. Since changes to software imply changes
to the schema (i.e., structure and layout) of the associated
persistent data, incompatibilities can occur. Unfortunately,
if programming languages have treated persistence as an
afterthought, persistence technologies have treated schema
management as an afterthought’s afterthought.

Relational databases are “schemaful” and therefore re-
quire explicit management of the database schema so that
it agrees with what the application expects. “Schemaless”
databases don’t have this requirement; instead, they make
the problem entirely the programmer’s responsibility, which,
if the goal is to simplify persistence programming, is going
in exactly the wrong direction. Some JPA implementations
provide basic tools to generate an initial schema (CREATE
TABLE, etc), but not to automatically track, update, or verify
it.

Ad hoc solutions are common in this space and over time
schema tracking tools have evolved ([7], [8], [9]). This can
be a tricky area, and mistakes can be disastrous, so any level
of automation is welcome.

Several distinct issues arise with schema evolution. These
are worth separate consideration.

2.4.1 Incremental Schema Evolution
A relational database can have only one schema at a time.
Therefore, relational database schema migration tools typi-
cally verify and apply updates at application startup (or when
the database is first accessed) in a “stop the world” operation
during which no other data access is possible. Unfortunately,
as storage has gotten cheaper and databases larger, the length
of time the “world” must be stopped has also grown, pro-
hibitively so for very large databases[10].

Clustered solutions are especially impacted. Not only
must the entire cluster wait for the schema migration pro-
cess to complete, but downtime is also required for the time
it takes to upgrade every machine in the cluster. In other
words, it’s not possible to perform a rolling software up-
grade in which one machine is upgraded at a time while the
overall cluster is kept functional, because this would cre-
ate conflicting schema expectations between the upgraded
machines and the yet-to-be-upgraded machines.

Like most relational database persistence solutions, JPA
provides no help here. Rolling upgrades are in fact pos-
sible, but they require manual development of a careful,

Copyright c©2017 Archie L. Cobbs. All rights reserved. 3 2017/9/14



choreographed multi-phase upgrade and schema migration
process, with intermediate schemas representing the union
of the old and new[10]. This falls into the same unhelpful
bucket as “schemaless” databases: the programmer is left
to manually design and implement a solution to a delicate
database management problem unrelated to the original pur-
pose of the software.

Ideally, a persistence solution should support incremental
schema evolution, where no “whole database” operations
are ever required. It should allow schema information to be
updated incrementally over time, it should make applying
those incremental updates straightforward, and the process
should be as automatic as possible.

Incremental schema evolution implies that the database
can store some data under the old schema and some under
the new, at least while an upgrade is in progress. Rolling up-
grades with no downtime are then possible, for example by
upgrading machines one at a time to a version of the software
that can read both schema versions, and then “flipping the
switch” to start writing data using the new schema version.
Optionally, a background process can follow up by iterating
through the database, migrating any remaining old schema
data.

2.4.2 Structural vs. Semantic Schema Updates
JPA schema update instructions are typically written manu-
ally by the programmer, and are written at the SQL level, not
the Java level. This creates obvious tedium and opportuni-
ties for errors. A fully automated schema migration solution
would be ideal.

However, manual “fix-ups” will always be required in
some situations. For example, consider a scenario where
lastName and firstName fields are replaced by a consoli-
dated fullName field. This change requires not only adding
and removing columns (a structural update), but also copy-
ing the name information from the old columns to the new
column (a semantic update). These are two distinct types of
updates, and it’s helpful to consider them separately.

Structural updates can easily be automated: it’s not dif-
ficult to compare old and new schemas, and generate the
corresponding changes in an automated way. Not so for se-
mantic updates, which in general require information known
only to the programmer. So, the best we can hope for is that
it be easy and convenient for programmers to define those
semantic updates–preferably using standard programming
language conventions. This presents a challenge because, in
general, semantic updates need access to data from both the
old and new schemas, and data in the old schema may no
longer be easily accessible in the normal way; in the pre-
vious example, the getLastName() and getFirstName()

Java methods will no longer exist in the newer version of the
code.

Summarizing the above discussion, an ideal persistence
solution would provide automated structural schema up-
dates, but also allow the programmer to define associated

semantic schema updates in a convenient and natural way at
the language level. The semantic updates would have access
to all of the data in the old schema, even when that data is
being removed by a structural update.

2.4.3 Schema Update Type Safety
Since JPA schema changes must be written manually, type
safety violations can easily occur by accident. Part of the
danger with such violations is that they are not always de-
tected immediately. For example, many SQL databases per-
form implicit casting of integral columns to string values
when evaluating expressions, meaning a forgotten schema
update could go unnoticed in normal testing.

In the context of schema changes, one can consider
schema update type safety as a property that guarantees,
for example, that after an update an integer won’t be misin-
terpreted as a string, or worse, a Car as a Truck, or cause
instantiation of an abstract class. All of those examples
can occur with JPA, the latter two when type discriminators
are not carefully managed.

This problem can occur even when there are no structural
schema changes. For example, suppose a Java Enum type is
stored in an SQL column by ordinal, and then later a new
value is added to the Enum’s identifier list. All subsequent
values in the list will have their ordinal values incremented,
and so every row containing any of those values has just been
silently corrupted, even though no structural schema change
has occurred and all data values remain valid. Since Enum

type information is lost when converted into an SQL schema
definition, JPA has no way to detect this scenario even if it
wanted to.

If, after a schema change has occurred, a persistence
solution makes it impossible to interpret a database value as
the wrong type, or a different value for its type than before
the update, then it guarantees schema update type safety.
Obviously this is a highly desirable feature, especially in
strongly typed languages like Java.

2.4.4 Schema Verification
Database schemas can change even when there are no
schema changes in the software. When opening any transac-
tion, it’s theoretically possible that the database schema was
changed incompatibly since the last access, perhaps by a dif-
ferent machine in the same cluster that was just upgraded.
With JPA it is entirely up to the programmer to ensure that
whatever data exists in the database is compatible with how
the current revision of the software interprets it.

A closely related concept to schema update type safety is
schema verification, which is the explicit verification that the
schema in use by the database matches the schema in use by
the software. Ideally, a persistence solution always performs
schema verification. If so, then together with schema update
type safety, this guarantees that type safety violations due to
an incompatible schema can never occur in any situation.

Copyright c©2017 Archie L. Cobbs. All rights reserved. 4 2017/9/14



2.5 Data Type Congruence
The Java language defines eight primitive types, each with
precisely defined semantics. SQL supports a wide variety
of different types, so obviously many SQL types cannot be
cleanly mapped to Java types. The reverse is also true: there
are Java values that are simply not representable in many
relational databases.

This creates many odd and subtle corner cases. For ex-
ample, SQL’s DECIMAL type has bounds which are powers
of ten, not two as in Java. MySQL’s DATETIME type ranges
from 1000-01-01 00:00:00 to 9999-12-31 23:59:59,
while Java’s java.util.Date ranges from before the uni-
verse was created to over 200 billion years into the future, so
attempting to persist the date of the fall of the Roman Empire
(476 AD) will silently fail.

Many relational databases don’t support the floating point
values NaN, -Infinity, and +Infinity; these are often
silently converted to zero, a very different value.

Java’s Enum types have no straightforward representation
in SQL. A Java Enum class is its own unique type, defined
by an ordered list of distinct identifiers. With JPA, either
the identifier or the list index (i.e., ordinal) is persisted,
but all other type information is lost. The means the SQL
column can store many other, invalid values; trying to read
one results in a RuntimeException of course.

Regarding array types, JPA only supports one-dimensional
byte[] and char[] arrays. JPA does not directly support
the other primitive array types or multi-dimensional arrays.

In short, due to its SQL basis, JPA suffers from a lack of
data type congruence. Even worse, values that don’t trans-
late often get silently coerced instead of triggering an error,
requiring extra diligence on the part of the programmer to
know and avoid all such “corner case” bugs.

A Java persistence solution should support Java types,
and support them exactly, i.e., all of their possible values and
nothing more. It certainly should not be possible to persist a
value that is read back as a different value.

2.6 Transactional Constraint Validation
The ability to enforce data integrity constraints is fundamen-
tal with persistence programming. The persisted data is a
data structure, and like any data structure it must be well-
formed and satisfy certain invariants to make sense. Trans-
actions are isolated (the “I” in ACID) so that these invari-
ants remain satisfied from the outside world’s point of view,
while allowing them to be violated transiently within a trans-
action.

JPA supports enforcing integrity constraints via two types
of validation: JSR 303[19] object/property constraints such
as @NotNull, and SQL database constraints such as foreign
key constraints and uniqueness constraints. Both are useful
to ensure properly structured data and verify required invari-
ants are preserved before a transaction can be committed.

However, these constraints are applied on JPA cache
flush, or when the SQL statement corresponding to a change
executes (such as DELETE), not necessarily at the end of
the transaction. Therefore, the software may be prevented
from moving the transaction through an invalid state, even
if this is necessary and temporary (i.e., it was going to end
up in a valid state at commit time). For JSR 303 constraints
scoped to a single object this is typically not a problem,
but for cascading JSR 303 constraints, foreign key con-
straints, and uniqueness constraints, all of which involve
multiple objects, it is not uncommon. JPA’s design, which
is based on caching writes and sequentially flushing row-
level updates to the database some time later, possibly in
a different order, exacerbates this problem. Programmers
are sometimes required to specially order their changes and
intersperse strategic flush() statements to avoid transient
foreign key constraint violations. This process requires ei-
ther tedious trial and error, or a deep understanding of JPA’s
cache management behavior.

Validation constraints serve to guarantee that required in-
variants are preserved at the beginning and end of each trans-
action; what happens in the middle of the transaction is ir-
relevant to this goal. Therefore it makes sense for validation
constraints to be verified only when a transaction commits,
or when explicitly requested by the application. We call this
desirable behavior transactional constraint validation.

There is another annoying issue with JPA uniqueness
constraints in particular, which is their inflexibility with re-
spect to special values. For example, different databases
have conflicting–and unchangeable–rules regarding whether
a unique column may contain multiple null values[11].
Similarly, a Java programmer may very reasonably want
to exclude NaN, -Infinity, and/or +Infinity from the
uniqueness constraint on a floating point column (assuming
such values are supported). JPA provides no way to config-
ure excluded values for uniqueness constraints.

2.7 First Class Offline Data Support
Open transactions are a relatively expensive resource: muta-
tion state must be maintained, conflicts with other transac-
tions must be evaluated and handled, a network connection
may be allocated, etc. As a result software is typically opti-
mized for relatively short transactions, and data is frequently
copied out of the transaction for use later as needed. For ex-
ample, a user interface may display results based on data that
was copied out of a recent database query transaction, and
then provide a “Refresh” button to trigger another query, an-
other copy of data out of the new transaction, and another UI
update showing that newly copied data. We might call such
copied data offline data.

In JPA support for offline data is somewhat of an inadver-
tent side-effect of the fact that all transactional data access
goes through the JPA cache: after closing a transaction, your
available offline data is whatever objects you previously read
into the cache and are still strongly referencing. JPA cache

Copyright c©2017 Archie L. Cobbs. All rights reserved. 5 2017/9/14



granularity is (usually) per-object: all of an object’s simple
properties are brought into the cache when any object prop-
erty is dereferenced because JPA reads the object’s entire
row. Collection properties may or may not be loaded, de-
pending on how the object was queried and accessed.

Because it was designed for caching, not offline access,
JPA’s cache provides relatively crude control of what offline
data is made available. In other words, the data you want
to access (and therefore bring into the cache) during the
transaction, and the data you want to keep a copy of offline
after the transaction, are not necessarily the same, though
obviously the latter is a subset of the former.

Perhaps more importantly, once the transaction closes, all
of JPA’s query capabilities are no longer available to query
the offline data. You may have successfully copied all of the
relevant User objects into the cache, but you can no longer
query them by username–or in any other manner you haven’t
provisioned manually.

Because the use of offline data is so common, persis-
tence solutions should provide first class support for it. This
includes (a) precise control, separate from any caching, of
which objects are copied out for offline access, and (b) the
ability to query offline data using the same language and
conventions as for querying “online” data, including index
queries, joins, or whatever.

2.8 Data Maintainability
Databases are meant to be accessed by software applications,
but sometimes it’s necessary for humans to access them,
either directly using a command line interface (CLI), or
through simple scripting, etc. We can describe the ease of
doing this as data maintainability.

JPA relies on the underlying SQL database to provide
this functionality, and all relational databases provide com-
prehensive tools for doing so. However, these tools pro-
vide an SQL view of the data; all Java semantics have been
stripped. A column storing Enum values by ordinal is just
meaningless integers; it’s impossible to query an object by
its hashCode(); etc. Instead, the human must handle the re-
verse mapping of the data being manipulated back into the
Java domain. An ideal Java persistence solution would pro-
vide tools for data maintenance that allow a human to access
the data as Java data using regular Java types, methods, and
expressions.

3. PERMAZEN
The issues described above motivated the design and im-
plementation of Permazen[3], a persistence solution for
Java that takes a comprehensive, language-drive approach
to managing persistence. Permazen is a persistence layer
that is compatible with any underlying database technology
that can look like a simple sorted key/value store. Although
started as a research project, Permazen has since matured
enough to become usable in a handful of small production

commercial deployments. Permazen is written in Java and
available on GitHub[3] under the Apache license.

In this section we discuss how Permazen addresses the
specific issues described above to make persistence simpler
and more natural for Java programmers.

3.1 Overview
Permazen sits on top of a key/value store that is capable
of storing arbitrary byte[] keys and values. The key/value
store must be sorted, using an unsigned lexicographic or-
dering, so that it’s possible to search for keys using (inclu-
sive) lower or (exclusive) upper bounds, and to iterate over a
range of keys in order. This API was chosen because it rep-
resents the lowest common denominator for many databases
used for basic persistence today. This includes relational
databases: any relational database can serve as a key/value
store using a single table having KEY and VALUE columns of
binary type with the KEY column indexed. Permazen inherits
whatever ACID semantics the key/value store provides.

Permazen includes wrappers for several third party key/value
databases, including relational databases (via JDBC), Or-
acle’s BerkeleyDB[13], LevelDB[14], RocksDB[15], and
FoundationDB[16]. Permazen also includes several of its
own key/value store implementations, including a novel dis-
tributed key/value database[17] based on the Raft[18] algo-
rithm that inherits its linearizable semantics and fault toler-
ance. In theory, a balanced tree wrapper layer would allow
Permazen to function on top of unsorted key/value stores as
well.

Permazen performs no caching of keys and values; any
caching needs are assumed to already be handled at the
key/value store layer, or, a simple key/value cache wrap-
per layer can be added if desired. Contrast with JPA, where
queried data is cached in memory twice: once by the rela-
tional database, and again by the JPA session.

3.1.1 Persistent Classes
Persistent model types (classes or interfaces) are anno-
tated with @PermazenType. Persistent fields are defined by
abstract Java bean property getter/setter methods; Per-
mazen generates concrete subclasses at runtime. For exam-
ple:

@PermazenType

public abstract class User {

public abstract String getEmail();

public abstract void getEmail(String email);

@JField(indexed = true, unique = true)

public abstract String getUsername();

public abstract void getUsername(String username);

}

The @JField annotation is used to override defaults.
Since they are defined by abstract methods, fields can also
be inherited into model classes from Java interfaces.

Copyright c©2017 Archie L. Cobbs. All rights reserved. 6 2017/9/14



3.1.2 Storage and Object IDs
Each persistent Java model class and field has a unique
internal integer ID called a storage ID, which (by default) is
auto-generated by hashing the class or field name. Permazen
makes pervasive use of a compressed encoding for these and
all other integral values, where values close to zero (-118
through 119) are encoded in a single byte, larger values
are encoded in two bytes, etc. This encoding is both self-
delimiting and order preserving. The auto-generated storage
IDs encode into three bytes, but users can manually assign
storage IDs values closer to zero to save a couple of bytes.

Each persistent object has a unique 64-bit object ID con-
sisting of the object’s model class’ encoded storage ID as
prefix, followed by a unique suffix. To avoid highly con-
tended auto-increment counters that would limit scalability,
new object IDs are created by choosing the suffix randomly.
The likelihood of two transactions choosing the same suffix
is very small, so conflicts are rare, until the number of in-
stances of a type approaches the size of the suffix bit space.
Therefore, when large numbers of objects of the same model
class are expected (billions or more), storage IDs must be
manually assigned values close to zero, leaving seven suffix
bytes and allowing for up to 256 instances.

3.1.3 Persistent Fields
Permazen supports three categories of fields: simple, com-
plex (i.e., collection), and a lock-free 64-bit counter type.
Simple fields are those with simple types: simple types are
“atomic” and have a self-delimiting byte[] encoding, by
which they are totally ordered. This ordering is (usually)
consistent with the type’s Comparable implementation. All
simple fields are indexable. Composite indexes on multiple
simple fields are supported, and these support prefix views.
All indexes are implemented within Permazen itself.

The supported collection types are List (which performs
like ArrayList), NavigableSet, and NavigableMap. Any
simple type may serve as the element, key, or value type
for a collection type. Collection fields may be indexed, in
which case they may be queried by element, key, or value,
and return all matching objects; for lists and map values,
the corresponding list index and key (respectively) is also
available.

The simple types include the Java primitive types, prim-
itive wrapper types, String, Enum types, and other pre-
defined types for Date, UUID, etc. References to persistent
model classes are also simple types. User-defined simple
types are supported, and are “first class” in the sense that
they have the same capabilities as any other simple type: they
can serve as a collection element type, be indexed, etc. Sin-
gle and multidimensional arrays of any simple type (except
reference) are also simple types; arrays are passed by value
and sort lexicographically based on the element ordering.

3.1.4 Data Mapping
The mapping of object and field data into the key/value
store is straightforward. Object meta-data, such as an ob-
ject’s schema version, is stored under the object ID key. Let-
ting “+” represent concatenation, simple fields are stored as
object ID + field ID ⇒ value. Fields equal to their default
values are not stored. Lists are stored as object ID + field ID
+ index ⇒ value; sets are stored as object ID + field ID +
element⇒ (empty); maps are stored as object ID + field ID
+ key⇒ value.

3.1.5 Index Mapping
Indexes are represented by inverted keys and empty values:
for simple fields, field ID + value + object ID; for lists, field
ID + value + object ID + index; for sets, field ID + value +
object ID; for map keys, field ID + key + object ID; and for
map values, field ID + value + object ID + key. Therefore
indexing a field exactly doubles that field’s storage cost.
Permazen keeps index information up-to-date automatically
and atomically as fields are mutated.

3.1.6 Reference Fields
Reference fields are always indexed (SQL equivalent: for-
eign keys require indexes). Among other benefits, this allows
Permazen to support configurable behavior with respect to
references and deletion. Reference fields can be configured
so that when a referring object is deleted, the referred-to ob-
ject is also deleted (“delete cascade” in JPA terminology).
Conversely, the behavior when a referred-to object is deleted
is configurable (analogous to SQL’s ON DELETE), one of:
delete the referring object (inverse delete cascade), disallow
(throw exception), nullify the reference, or do nothing.

One subtle difference between JPA and Permazen in-
volves nullifying a reference from a collection: in JPA the
reference is simply set to null, whereas in Permazen the el-
ement is removed from the collection; in particular, this is
impossible using ON DELETE SET NULL with a List.

Permazen also provides lifecycle annotations @OnCreate
and @OnDelete. The annotations, and forward and reverse
delete cascades, may result in loops and reentrancy; Per-
mazen properly handles them.

3.1.7 API Layering
Permazen is built in three well-defined, independent layers.
At the bottom layer is the key/value store API. On top of that
is the core layer, which handles most of the work relating to
data encoding/decoding, query views, indexing, and schema
management, but makes no assumptions about how the data
is modeled, and is not explicitly object-oriented. At the top
layer, concrete subclasses of the user-supplied Java model
classes are generated and connected to the core API layer,
including the automated derivation of core API schema in-
formation, and core API object IDs are wrapped by actual
model class instances. All Java model class instances are

Copyright c©2017 Archie L. Cobbs. All rights reserved. 7 2017/9/14



scoped to a specific transaction. Permazen provides conve-
nience methods for copying an arbitrary graph of objects be-
tween transactions if needed.

Having described the basic mechanics, in the following
sections we describe how Permazen addresses the issues and
criteria described in Section 2 to provide a more complete
and language-driven framework for managing persistence in
Java.

3.2 Configuration Complexity
Whereas JPA defines 108 annotations and Enums for con-
figuration, Permazen defines 14, including those related
to features not supported in JPA; only one is required
(@PermazenType). The mapping from objects and fields to
key/value entries is fixed and therefore requires no config-
uration. As a result, Permazen has low configuration com-
plexity. Even so, Permazen provides some new flexibility.
For example, an index can be defined on a field declared in
a Java interface, and the resulting index query will return
instances of any implementing Java class, regardless of its
place in the class hierarchy.

Permazen does support some new configuration related to
its unique features (described below). For example, valida-
tion can be set to automatic, manual, or disabled; because it
proactively tracks schema versions, the current schema ver-
sion number must be specified; and transactions may be con-
figured whether or not to allow recording new schema ver-
sions.

3.3 Query Language Concordance
Permazen does not have a query language. Instead, it pro-
vides three operations to initiate a search: query for a spe-
cific object by object ID, query for all objects of a given
Java type, or query an index. After that, the query proceeds
using conventional logic on Java collection types and model
objects. The net effect is a high degree of query language
concordance.

A query for objects of type T returns a NavigableSet<T>;
T can be any Java type. The objects in the set are ordered by
object ID. An index query on a field of type F in T returns
a NavigableMap<F, NavigableSet<T>>, i.e., a mapping
from each field value to the set of objects containing that
value in the field. The map is sorted by field value, and each
set is sorted by object ID. Referring back to Section 3.1.5,
one can see that these collections are direct views of the un-
derlying key/value store: all returned collections are “live”
and stay up-to-date with respect to changes.

Here are two examples of User methods that perform
index queries. This assumes the lastName and regDate

fields are indexed:

// Find users by last name

public static NavigableSet<User>

getByLastName(String lastName) {

// Get a view of the User.lastName index

NavigableMap<Date, NavigableSet<User>> lastNameMap

= JTransaction.getCurrent()

.queryIndex(User.class, "lastName", String.class)

.asMap();

// Get users with the specified last name

return lastNameMap.get(lastName);

}

// Get users registered in the past day, sorted

// in reverse order of their registration time

public static Stream<User> getRegisteredToday() {

// Get a view of the User.regDate index

NavigableMap<Date, NavigableSet<User>> byRegDate

= JTransaction.getCurrent()

.queryIndex(User.class, "regDate", Date.class)

.asMap();

// Get all users registered in the past 24 hrs

Date cutoff = new Date(

System.currentTimeMillis() - 86400000);

return byRegDate

.tailMap(cutoff)

.descendingMap()

.stream()

.flatMap(NavigableSet::stream);

}

Set operations such as intersection and union are used to
effect the equivalent of database joins. Permazen provides
efficient implementations of set union, intersection, and dif-
ference that preserve element ordering and the NavigableSet
interface when the orderings are the same. Here’s an exam-
ple of a query by first and last name, using individual indexes
on the firstName and lastName fields:

// Find users by first and last name

public static NavigableSet<User> getByNames(

String firstName, String lastName) {

// Query the User.firstName index

NavigableSet<User> firsts

= JTransaction.getCurrent()

.queryIndex(User.class, "firstName", String.class)

.asMap()

.get(firstName);

if (firsts == null)

return Collections.<User>emptyNavigableSet();

// Query the User.lastName index

NavigableSet<User> lasts

= JTransaction.getCurrent()

.queryIndex(User.class, "lastName", String.class)

.asMap()

.get(lastName);

if (lasts == null)

return Collections.<User>emptyNavigableSet();

Copyright c©2017 Archie L. Cobbs. All rights reserved. 8 2017/9/14



// Return intersection of the two sets

return NavigableSets.intersection(firsts, lasts);

}

NavigableSets.intersection() iterates efficiently:
a complete iteration requires O(N ∗M) key/value iteration
steps, where N is the number of sets being intersected, and
M is the size of the smallest set.

3.4 Query Performance Transparency
Because queries are written in normal Java, Permazen pro-
vides high query performance transparency. All of the
NavigableSets and NavigableMaps returned by Per-
mazen are based on the underlying sorted key/value store
and provide the efficient performance expected of their type.
Therefore, understanding the performance of a query is
straightforward from looking at the code.

Considering the previous JPQL example select Person

as p where p.lastName = ’Smith’, where the perfor-
mance was not obvious from the query, because it depended
on whether lastName was indexed. In Permazen the code to
perform this search will necessarily look very different de-
pending on whether the lastName field is indexed: if so, it’s
linear code; if not, there will inevitably be some scanning of
every Person in the database, making the inefficiency of the
query obvious.

However, there is a cost for this transparency. Permazen
effectively shifts the responsibility for creating the “query
plan”, albeit one written in Java, onto the programmer. This
is not a trivial change: all of SQL’s conveniences, includ-
ing aggregate functions like AVG(), GROUP BY, etc., must be
implemented by the programmer in Java. Fortunately, this
requirement dovetails nicely with Java’s new lambda syntax
and StreamAPI, with methods like IntStream.average(),
Collectors.groupingBy(), etc., to make this job rela-
tively straightforward.

In exchange for this new responsibility, query logic and
performance implications are no longer hidden. Moreover,
once the “query plan” is written in Java, it naturally leads
the programmer to reason about it and optimize further if
appropriate, for example, by deciding to index a field, or
adding a new field to incrementally maintain derived data
such as an average, in effect creating a custom “index” (see
@OnChange below for how Permazen facilitates this).

In some cases, it is the inability to write an efficient query
in Permazen that reveals mistaken assumptions underlying
performance problems. For example, developers sometimes
assume that if the lastName and firstName columns are
both indexed, then an ordered query like select Person

as p order by lastName, firstName will be efficient.
In actuality, that’s only true when there is a composite index
on both the lastName and firstName fields (in that order);
otherwise, the sorting on firstName has to be performed in
memory or temporary tables. Permazen forces this reality to
the surface.

3.5 Schema Evolution Support
Permazen provides explicit schema evolution support and
guarantees Java type safety at all times.

Each object has a schema version number stored in its
meta-data. In addition, for each schema version in use by
any object in the database, the associated schema is itself
stored in a special meta-data region of the key/value store.
This recorded schema contains sufficient information for
Permazen to decode the fields and values of any object of
that version, even if the original Java model classes are no
longer available. Although schema versions are identified by
numeric values, Permazen imposes no constraints on how
schema versions are numbered.

3.5.1 Incremental Schema Evolution
Permazen provides incremental schema evolution: objects
are migrated “on demand” when the schema version in use
by the transaction does not match the object’s schema ver-
sion. This happens when the object is first accessed af-
ter an upgrade, or when explicitly requested. No whole
database operations are ever required. The migration in-
cludes (de)indexing if necessary: a field may be indexed in
one schema version but not another, so when an object tran-
sitions between the two schema versions, it gets automat-
ically added to or removed from any indexes accordingly.
Indexes never need be built from scratch.

Permazen poses one primary restriction on how schemas
may evolve: the same field (i.e., using the same storage ID)
must have the same type in all schema versions in which
that field is indexed. This requirement is necessary because
an index may refer to objects with different schema versions,
yet the values in the index must have a consistent encoding.

As a consequence, since field storage IDs are (by default)
derived from the field’s name, in cases where an indexed
field’s type, but not its name, has changed, the @JField an-
notation must be used to change either the (internal) name
or the storage ID. This is an uncommon situation; the most
likely cause in our experience is when an Enum field’s iden-
tifier list changes (effectively changing the field’s type) and
that field is also indexed.

Any non-indexed field can change types across schema
versions, and Permazen will attempt to automatically con-
vert values from the old to the new type if enabled (this
is configured in the @JField annotation). Primitive types
are converted as if by typecast; otherwise conversion is at-
tempted by converting to a String and back.

3.5.2 Schema Verification
Permazen performs schema verification at the start of ev-
ery transaction. Each transaction has an associated schema
derived from the Java model classes being used to access
it. When a transaction is opened, Permazen verifies that the
transaction’s schema is compatible with the schema previ-
ously recorded in the database under that same version num-

Copyright c©2017 Archie L. Cobbs. All rights reserved. 9 2017/9/14



ber. If a transaction’s schema version is not yet recorded
in the database, and the transaction is so configured, it will
be added automatically. Through this mechanism Permazen
tracks and verifies the schema in use.

Schema information is stored in a range of the key space
reserved for meta-data. A recorded schema version occupies
a single key/value pair. Because this key/value pair will be
read at the start of every transaction, scalability is a con-
cern. In order for a Permazen to be scalable, the underlying
key/value store must not degrade when the same key is read
by every transaction.

3.5.3 Structural vs. Semantic Schema Updates
Structural schema updates are entirely automated by Per-
mazen. This is possible thanks to the explicit recording of
schema information in the database. As described above, this
happens in an incremental fashion as objects are encountered
after an upgrade.

Semantic schema updates are implemented using instance
methods annotated with @OnVersionChange. Immediately
after an object is structurally updated, @OnVersionChange
method(s) are invoked. The values of all fields, including any
removed fields, from the previous version of the object are
provided to each method.

Considering the previous example where lastName and
firstName fields are consolidated into a single fullName

field, here’s how the original model class might look:

// Schema version #1

@PermazenType

public abstract class User {

public abstract String getLastName();

public abstract void setLastName(String lastName);

public abstract String getFirstName();

public abstract void setFirstName(String firstName);

}

and here’s how the new model class, including the semantic
schema update, might look:

// Schema version #2

@PermazenType

public abstract class User {

public abstract String getFullName();

public abstract void setFullName(String fullName);

// Semantic update for version 1 -> 2

@OnVersionChange(oldVersion = 1, newVersion = 2)

private void update(Map<String, Object> prev) {

String lastName = (String)prev.get("lastName");

String firstName = (String)prev.get("firstName");

this.setFullName(lastName + ", " + firstName);

}

}

A nice artifact of this design is that semantic update
code remains private to the affected Java class. Other classes
always see a fully upgraded object.

3.5.4 Schema Update Type Safety
Permazen guarantees schema update type safety. This cre-
ates some interesting corner cases when old schema classes
or field values have Java types that simply don’t exist in the
new schema version.

For example, any change to the identifier list of an Enum

effectively changes its type, and therefore Permazen requires
a schema change. No @OnVersionChange method is re-
quired if the default automated conversion, which keeps the
existing value if the identifier is still valid, or else reverts to
null if not, is acceptable.

Otherwise, there is a slight problem with providing the
old field’s value, because the old Enum value cannot neces-
sarily be represented as an instance of the new, incompatible
Enum type. Instead, Permazen supplies the old Enum field
value as an EnumValue object, which is just an int, String
pair. Here’s an example showing an old model class:

// Schema version #1

@PermazenType

public abstract class Vehicle {

public enum Color {

RED,

LIGHT_GREEN,

DARK_GREEN,

BLUE

}

public abstract Color getColor();

public abstract void setColor(Color color);

}

and a new model class with a semantic schema update that
handles the one case that automatic type conversion doesn’t:

// Schema version #2

@PermazenType

public abstract class Vehicle {

public enum Color {

RED,

GREEN, // was LIGHT_GREEN or DARK_GREEN

BLUE

}

public abstract Color getColor();

public abstract void setColor(Color color);

// Semantic update for version 1 -> 2

@OnVersionChange(oldVersion = 1, newVersion = 2)

private void update(Map<String, Object> prev) {

EnumValue oldColor = (EnumValue)prev.get("color");

if (oldColor.getName().endsWith("_GREEN"))

this.setColor(Color.GREEN);

}

}

Copyright c©2017 Archie L. Cobbs. All rights reserved. 10 2017/9/14



The other case of an old schema field value that can-
not be represented happens with references to a Java model
class that has been removed. These references appear to
@OnVersionChange methods as instances of an opaque
type UntypedJObject. The old object’s fields can then be
accessed using Permazen introspection methods.

3.6 Data Type Congruence
Permazen persists Java types, not SQL types, and therefore
has high data type congruence. Permazen supports values
like NaN and +Infinity, and Date has its full range. Prim-
itive types are different from primitive wrapper types: only
the latter can be null. As a side-benefit, since primitive types
are simple, they can be used for collection types; wrapper
types are still used for generic type parameters, so the net
effect is that null values are disallowed.

One interesting issue occurs with nullable Comparable

types. Comparable types are not required to sort null,
but all simple type values, including null, are ordered by
Permazen. By convention, null values sort last.

3.7 Transactional Constraint Validation
Permazen supports JSR 303 validation, but it also gives the
programmer control over when validation occurs. Internally
Permazen transactions maintain a set of IDs of objects with
pending validation. Normally this set is processed only at the
end of a transaction, thereby providing transactional con-
straint validation. Validation can also be manually triggered
at any time, or disabled altogether on a per-transaction basis.

Permazen automatically registers an object for validation
whenever any JSR 303 annotated field is modified. Objects
can be registered manually as well. This is useful in combi-
nation with the @OnValidate annotation, which denotes an
instance method to be invoked during validation.

@OnValidate is useful for checking constraints that ap-
ply across multiple fields and/or objects. For these con-
straints, a common problem with JPA is determining where
to put the code that detects any change that could inval-
idate the constraint (and therefore should trigger revalida-
tion). Permazen adds support for this and related use cases
with the @OnChange annotation, which denotes a method
that should be invoked whenever any of the fields named
in the annotation change. A novel feature is that these fields
may exist in the same object, or in any other objects reach-
able through an arbitrary path of references.

To demonstrate this use, consider a validation constraint
that ensures a manager’s salary exceeds the average of his di-
rect reports. This constraint cannot be automatically checked
in JPA using JSR 303 annotations, and a manual implemen-
tation would be awkward. This is also an example of a con-
straint that could easily be violated transiently during a trans-
action (e.g., bulk salary update), even though it is ultimately

satisfied at commit time, and so transactional validation is
important here as well.

In Permazen such a constraint might look like this:

// My salary

public abstract int getSalary();

public abstract void setSalary(int salary);

// My direct reports

public abstract Set<Employee> getReports();

// Invoked on my or any report’s salary change

@OnChange({ "salary", "reports.element.salary" })

private void onReportSalaryChange() {

this.revalidate(); // enqueue for validation

}

// Validate my salary vs. my direct reports.

// Invoked at end of transaction if my salary,

// or any of my reports’ salaries, has changed

@OnValidate

private void checkSalaryInvariant() {

int avgReportSalary = this.getReports()

.stream()

.mapToInt(Employee::getSalary)

.average()

.orElse(0);

if (avgReportSalary > this.getSalary())

throw new ValidationException("need a raise!");

}

Even though this constraint involves non-local objects,
the implementation is local, automatic and efficient: the
manager object is registered for validation (a fast operation),
but not actually validated, any time the manager’s or any re-
port’s salary changes, and then the actual constraint check is
performed only once, at commit time, after all of the salary
adjustments have been completed. The code to handle (a)
detecting the relevant changes and (b) actually checking the
constraint are together in one logical place in the code.

The implementation of @OnChange involves inverting ob-
ject references, i.e., following a “reference path” of object
references in the reverse direction starting from the object
being modified; this is possible because reference fields are
always indexed. Permazen also makes this reference path in-
version capability, something not available in normal Java
programming, available for general purpose use.

Permazen also includes support for excluded values in
uniqueness constraints, e.g.:

@PermazenType

public abstract class Item {

@JField(unique = true,

uniqueExclude = { "-Infinity", "+Infinity" })

public abstract float getRank();

public abstract void setRank(float rank);

}

Copyright c©2017 Archie L. Cobbs. All rights reserved. 11 2017/9/14



3.8 First Class Offline Data Support
Permazen provides first-class offline data support. The key
mechanism for this is the snapshot transaction. A snapshot
transaction is simply a transaction opened on an initially
empty, in-memory key/value store, and configured to use
the same schema as a regular transaction. Any Java query
that works on normal transactions works on snapshot trans-
actions. This includes index queries.

Permazen provides convenience methods for copying ob-
jects between regular and snapshot transactions (or between
any two compatible transactions). The object copy opera-
tion is performed directly on the key/value store for effi-
ciency. Programmers can precisely control which objects are
copied. For key/values stores that support efficient snapshot
views through multiversion concurrency control (e.g., Lev-
elDB), Permazen also allows creation of snapshot transac-
tions based on read-only snapshots, eliminating the need for
copying entirely.

Snapshot transactions are also useful in their own right.
Persistence necessarily requires serializing and deserializing
state, and snapshot transactions make this capability useful
outside of the persistence context. For example, snapshot
transactions are useful as containers for sending serialized
messages over a network. They are just sets of key/value
pairs, so encoding them is trivial.

Network communication and persistence are surprisingly
similar problem domains. In both cases, (a) application ob-
jects and data types must be (de)serialized; (b) the applica-
tion doing the writing and the application doing the reading
might have different versions (e.g., during a rolling upgrade),
so some form of schema management is needed; and (c) the
recipient needs to query the received data in some way, so
some kind of query support is needed. Snapshot transactions
provide a solution to all three issues.

3.9 Data Maintainability
Permazen includes a CLI for accessing a database via the
command line in order to provide data maintainability.
Three modes are supported: raw key/value, core API mode,
and Java mode. The CLI supports integrating custom com-
mands and functions, and can be embedded into an applica-
tion.

The key/value mode provides direct access to the key/value
store and is normally only used in special circumstances, for
example when backing up or exporting key/value data for
import elsewhere.

The core API mode gives a structural, rather than object-
oriented, view of the data. It does not require the original
Java model classes. All field data is accessible using its
usual Java type, with two exceptions: reference field val-
ues are seen as object IDs, and Enum field values are seen
as EnumValue identifier/ordinal pairs. Data can also be im-
ported/exported as XML at either the key/value layer or the
core API layer.

The Java mode requires the associated Java model classes
and provides a fully object-oriented view of the data. In this
mode, humans view and interact with persistent data on the
same level as the application. The CLI includes a parser for
Java expressions, allowing arbitrary Java-based logic to be
applied on the fly. For example, it allows filtering objects by
x.hashCode() % 23 == 7 or any other Java expression.

4. RELATED WORK
The large majority of libraries for basic persistence in
Java are targeted at relational databases. Several of these
implement JPA, including Hibernate[5], DataNucleus[26],
OpenJPA[23], and EclipseLink[22]. Other object-relational
mapping libraries include Torque[32], Cayenne[34], Jaxor[30],
pBeans[31], SimpleORM[28], and JULP[27]. Many projects
were started before JPA evolved to become the mainstream
ORM solution.

JPA implementations that are not restricted to relational
databases include DataNucleus[26] and ObjectDB[20]. Data-
Nucleus supports a wide variety of back-end databases. Ob-
jectDB has its own non-relational database format and im-
plements automatic structural schema migration; semantic
update support is limited to convertible types and renaming
of classes and fields based on an XML file.

The Java Data Objects[21] (JDO) specification pre-dates
JPA and is more general, being independent of any spe-
cific storage technology. It is broadly similar to JPA and
also includes a query language (JDOQL). JDO implemen-
tations include DataNucleus[26], ObjectDB[20], Castor[33],
TriActive[29], Speedo[25], and XORM[24].

Although JDO is storage agnostic, like JPA it is designed
with the assumption that fundamental tasks like the structur-
ing and encoding of data, the execution of search queries,
and the maintenance of index information are performed by
the back-end database. In other words, the implied job of
the persistence layer is to pass existing database function-
ality through to the Java programmer in the most painless
way possible. Because databases focus on the storage of data
rather than any issues inherent to managing persistence in
a programming language, it’s not surprising that JPA and
JDO don’t address many of these issues, e.g., query perfor-
mance transparency, schema evolution management, and of-
fline data.

5. CONCLUSION
Persistence is a fundamental concern in programming. Un-
fortunately, few programming languages provide a coherent
framework for addressing the many issues inherent to per-
sistence programming. Persistence programming has instead
been driven instead from storage side. As a result, program-
ming languages like Java suffer from solutions that compro-
mise the simplicity, robustness, and type-safety of the lan-
guage, are specific to one type of storage technology, and
for the most part don’t address those inherent issues. Java

Copyright c©2017 Archie L. Cobbs. All rights reserved. 12 2017/9/14



and its mainstream persistence solution JPA provide a vivid
example.

Permazen takes a language-driven approach, instead ask-
ing: What is the most natural way to address persistence in
the Java language, and what is the minimum functionality
required from the storage back-end to get there? Permazen’s
answer, an ordered key/value store, is simple enough to be
supported by many different back-end technologies, but also
sufficiently powerful to allow Permazen to provide data en-
coding, query functionality, and index maintenance itself.
This high level of integration in turn makes it possible for
Permazen to better address the issues inherent to persistence
programming.

By exploring some of the problems and complications
with JPA, we have identified several of these issues, and
defined corresponding measures of how well any persistence
solution addresses them:

Configuration Complexity
How hard is it to configure? Are we forced to (ab)use
the programming language to address what are really
database configuration issues?

Query Language Concordance
Does the code that performs queries look like normal
code in the language, or do we have to learn a new “query
language”?

Query Performance Transparency
Is the performance of a query obvious from looking at the
code that performs it?

Data Type Congruence
Are all field values supported? Do we always read back
the same values we write?

Transactional Constraint Validation
Does validation only occur at the end of the transac-
tion? Is it easy and convenient to define arbitrary custom
validation constraints, even those that span multiple ob-
jects/records?

First Class Offline Data Support
Can it be precisely defined which data is actually copied
out of a transaction? Does offline data have all the rights
and privileges of “online” (i.e., transactional) data? Does
this include index queries and a framework for handling
schema differences?

Data Maintainability
Can data maintenance tasks be performed using the
normal types and values of the original programming
language? Are there convenient tools for manual and
scripted use?

We define these issues specifically related to schema man-
agement:

Incremental Schema Evolution
Can multiple schemas exist at the same time in the

database, to support rolling upgrades? Can data be mi-
grated incrementally, i.e., without stopping the world?
Are any whole database operations ever required?

Structural Schema Updates
Are structural schema updates performed automatically?

Semantic Schema Updates
Is there a convenient way to specify semantic schema
updates, preferably at the language level, not the database
level? Do semantic updates have access to both the old
and the new values?

Schema Update Type Safety
Is type safety and data type congruence guaranteed across
arbitrary schema migrations?

Schema Verification
Is the schema assumed by the code cross-checked against
the schema actually present in the database?

We show that it’s possible to address these issues in the
Java language in a coherent, natural way, and give affir-
mative answers to all of the above questions. The database
back-end is left to do what it does best–store and retrieve
data–while the programmer is given an improved solution to
the actual problem at hand: managing persistence.

Acknowledgments
Thanks to Marco Chiesa, Mark Thomas, David Templin,
Malcolm Davis, and Seth Hammock for providing helpful
review and comments.

References
[1] The Java Persistence API. https://en.wikipedia.org/

wiki/Java_Persistence_API

[2] Object-relational impedance mismatch. https://en.

wikipedia.org/wiki/Object-relational_impedance_

mismatch

[3] Permazen. https://github.com/permazen/permazen/

[4] Java Database Connectivity. https://en.wikipedia.org/
wiki/Java_Database_Connectivity

[5] Hibernate. http://hibernate.org/

[6] January Headline: Java is TIOBE’s Programming Language
of 2015! http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html

[7] Flyway. http://flywaydb.org/

[8] Liquibase. http://liquibase.org/

[9] MyBatis. https://github.com/mybatis/

[10] Online Schema Change for MySQL (MySQL At Facebook)
http://goo.gl/uUulWX

[11] Does MySQL ignore null values on unique constraints?
http://goo.gl/8W1q12

[12] The Java Persistence Query Language. https://

en.wikipedia.org/wiki/Java_Persistence_Query_

Language

Copyright c©2017 Archie L. Cobbs. All rights reserved. 13 2017/9/14

https://en.wikipedia.org/wiki/Java_Persistence_API
https://en.wikipedia.org/wiki/Java_Persistence_API
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://github.com/permazen/permazen/
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
http://hibernate.org/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://flywaydb.org/
http://liquibase.org/
https://github.com/mybatis/
http://goo.gl/uUulWX
http://goo.gl/8W1q12
https://en.wikipedia.org/wiki/Java_Persistence_Query_Language
https://en.wikipedia.org/wiki/Java_Persistence_Query_Language
https://en.wikipedia.org/wiki/Java_Persistence_Query_Language


[13] Oracle Berkeley DB. http://www.oracle.com/

technetwork/database/database-technologies/

berkeleydb/overview/index.html

[14] LevelDB. http://leveldb.org/

[15] RocksDB. http://rocksdb.org/

[16] FoundationDB. https://en.wikipedia.org/wiki/

FoundationDB

[17] New key/value database based on Raft. https://groups.
google.com/forum/#!topic/raft-dev/uYlZzVCIJTs

[18] The Raft Consensus Algorithm. https://raft.github.
io/

[19] Bean Validation. https://en.wikipedia.org/wiki/
Bean_Validation

[20] ObjectDB. http://www.objectdb.com/

[21] Java Data Objects. https://en.wikipedia.org/wiki/
Java_Data_Objects

[22] EclipseLink. http://www.eclipse.org/eclipselink/

[23] OpenJPA http://openjpa.apache.org/

[24] XORM http://xorm.sourceforge.net/

[25] Speedo. http://speedo.ow2.org/

[26] DataNucleus. http://datanucleus.org/

[27] Java Ultra-Lite Persistence. http://julp.sourceforge.
net/

[28] SimpleORM. http://www.simpleorm.org/

[29] TriActive JDO. http://tjdo.sourceforge.net/

[30] Jaxor. https://sourceforge.net/projects/jaxor/

[31] pBeans Persistence Layer. http://pbeans.sourceforge.
net/

[32] Apache Torque. https://db.apache.org/torque/

torque-4.0/index.html

[33] Castor. http://castor-data-binding.github.io/

castor/

[34] Apache Cayenne. http://cayenne.apache.org/

Copyright c©2017 Archie L. Cobbs. All rights reserved. 14 2017/9/14

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://leveldb.org/
http://rocksdb.org/
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/FoundationDB
https://groups.google.com/forum/#!topic/raft-dev/uYlZzVCIJTs
https://groups.google.com/forum/#!topic/raft-dev/uYlZzVCIJTs
https://raft.github.io/
https://raft.github.io/
https://en.wikipedia.org/wiki/Bean_Validation
https://en.wikipedia.org/wiki/Bean_Validation
http://www.objectdb.com/
https://en.wikipedia.org/wiki/Java_Data_Objects
https://en.wikipedia.org/wiki/Java_Data_Objects
http://www.eclipse.org/eclipselink/
http://openjpa.apache.org/
http://xorm.sourceforge.net/
http://speedo.ow2.org/
http://datanucleus.org/
http://julp.sourceforge.net/
http://julp.sourceforge.net/
http://www.simpleorm.org/
http://tjdo.sourceforge.net/
https://sourceforge.net/projects/jaxor/
http://pbeans.sourceforge.net/
http://pbeans.sourceforge.net/
https://db.apache.org/torque/torque-4.0/index.html
https://db.apache.org/torque/torque-4.0/index.html
http://castor-data-binding.github.io/castor/
http://castor-data-binding.github.io/castor/
http://cayenne.apache.org/

	INTRODUCTION
	PROBLEMS WITH JPA
	Configuration Complexity
	Query Language Concordance
	Query Performance Transparency
	Schema Management
	Incremental Schema Evolution
	Structural vs. Semantic Schema Updates
	Schema Update Type Safety
	Schema Verification

	Data Type Congruence
	Transactional Constraint Validation
	First Class Offline Data Support
	Data Maintainability

	PERMAZEN
	Overview
	Persistent Classes
	Storage and Object IDs
	Persistent Fields
	Data Mapping
	Index Mapping
	Reference Fields
	API Layering

	Configuration Complexity
	Query Language Concordance
	Query Performance Transparency
	Schema Evolution Support
	Incremental Schema Evolution
	Schema Verification
	Structural vs. Semantic Schema Updates
	Schema Update Type Safety

	Data Type Congruence
	Transactional Constraint Validation
	First Class Offline Data Support
	Data Maintainability

	RELATED WORK
	CONCLUSION

