
Vector Tiles from OpenStreetMap

Lukas Martinelli, Manuel Roth

Free Vector Tiles from OpenStreetMap data
Student Research Project Thesis, Fall 2015.

Lukas Martinelli, Manuel Roth: Vector Tiles from OpenStreetMap c© Fall 2015

supervisors:
Prof. Stefan Keller

university:
HSR University of Applied Science Rapperswil

department:
Department of Computer Science

institute:
Geometa Lab

location:
Rapperswil

time frame:
Fall 2015

license:
CC BY-SA 3.0 Unported

A B S T R A C T

Creating a custom styled OSM map is one of the most common use cases among cartogra-
phers, yet it is very difficult to do so. With the provided free and open source vector tiles it is
possible to allow anyone to create their custom OSM maps without having a deep knowledge
of vector tiles.

In this thesis a workflow to create vector tiles from OpenStreetMap data has been defined
and publicly documented, allowing other developers to adapt the workflow and use it for
their own vector tiles. The vector tiles are compatible with Mapbox products and therefore
provide an easy migration path for companies that want to use free vector tiles but still use
existing tools and technologies.

The vector tiles are provided as public download on the project website (http://osm2vector
tiles.org) allowing anyone to download the data and build custom maps and solutions on top
of it without being bound to an external service.

keywords :
OpenStreetMap, Mapbox, Vector Tiles, PostGIS

iii

M A N A G E M E N T S U M M A RY

Situation

Web mapping has gone through different technological changes in recent years. After serving
static images for an extract of the map, Google introduced raster tile based maps with Google
Maps and it soon became the standard for web maps.
Now the major players have shifted to using vector tiles. Vector tiles allow map designers to
individually design their own map. The system administrator does not need to manage large
infrastructure anymore, as the tile rendering process can be offloaded to the client side. This
results in faster maps with a better user experience.

Figure 1: Custom styling of maps in Mapbox Studio

A few existing providers opened the process of creating vector tiles, but still own the data to
promote their services. Producing vector tiles requires a good understanding of map technolo-
gies and sufficient computing power. This is the reason why vector tiles aren’t adopted by the
main stream yet.

iv

Approach

The main objective of this project is to create free and open-source vector tiles of Open Street
Map data. So that every developer, cartographer or designer can create their custom maps.
An entire workflow for producing vector tiles was defined and a vector tile server to serve the
produced vector tiles was implemented. The vector tiles are compatible with the vector tiles
of Mapbox Streets, therefore the same visual style provided by Mapbox can be used with our
vector tiles. The figure below shows the Mapbox Artistic Woodcut visual style, which can be
used with our vector tiles as data source.

Figure 2: Mapbox’s Artistic Woodcut visual style

Result

The result of this thesis are vector tiles of Switzerland. They are available for download from
the project website (http://osm2vectortiles.org). These vector tiles can be served together
with a custom or Mapbox visual style in our vector tile server.
As the entire workflow of creating vector tiles is documented and open-source available, other
organizations could now use this project to produce vector tiles of their own datasets.

v

http://osm2vectortiles.org

A C K N O W L E D G E M E N T S

We want to thank the following people for their support and contributions to the thesis.

Prof Stefan Keller, IFS Institute for Software, for his strong support with regular meetings,
contacts in the OSM community and time and effort in checking this thesis.

Dr Petr Pridal, Klokan Technologies GmbH, for his strong support with intermediate tech-
nical decisions, project management, regular meetings, donating cloud infrastructure and the
CDN infrastructure for hosting the final tiles.

http://www.klokantech.com/

vi

http://www.klokantech.com/

C O N T E N T S

i technical report 1

1 introduction 2

1.1 Vision . 2

1.2 Goals . 2

2 state of technology 3

2.1 Current Vector Data Providers . 3

2.2 Characteristics . 3

2.3 Shortcomings . 4

3 implementation concept 5

3.1 Vector Tile Rendering . 5

3.2 Tile Server . 5

3.2.1 Raster Tile Server . 6

3.2.2 Vector Tile Server . 6

4 results and future 7

4.1 Results . 7

4.2 Future . 8

ii project documentation 9

5 vision 10

5.1 History of Webmaps . 10

6 requirements specification 11

6.1 User Characteristics . 11

6.2 User Stories . 11

6.3 Non Functional Requirements . 11

7 design 13

7.1 Architecture . 13

7.1.1 Import . 14

7.1.2 Export . 15

7.1.3 Tooling . 15

7.2 Deployment . 16

7.2.1 Import . 16

7.2.2 Export and Development Tools . 17

7.3 Workflow . 18

7.3.1 Import . 18

7.3.2 Export . 19

7.4 Database Schema . 20

7.4.1 OpenStreetMap Planet . 20

7.4.2 Custom Curated Labels . 21

7.4.3 OpenStreetMapData . 21

7.4.4 Natural Earth . 22

7.5 Layer Schema . 23

7.5.1 Aeroways, Barriers and Landusages . 24

7.5.2 Administrative Borders . 25

vii

contents viii

7.5.3 Roads, Bridges and Tunnels . 26

7.5.4 Points of Interest . 27

7.5.5 Water . 28

7.5.6 Places . 29

8 technology evaluation 30

8.1 Spatial Database . 30

8.2 OSM Import Tool . 30

8.2.1 Criterias . 30

8.2.2 Evaluation Matrix . 31

8.2.3 osm2pgsql . 31

8.3 Vector Tile Format . 31

8.4 Vector Tile Server . 32

8.4.1 Tessera . 32

8.4.2 OpenStreetMap "Standard" Tile Server . 34

9 implementation 35

9.1 Mapping . 35

9.2 Database Schema . 37

9.2.1 OSM id . 37

9.2.2 Translations . 37

9.2.3 Type and Class . 37

9.3 Classification . 38

9.3.1 Classification Format . 38

9.3.2 Code Generation . 39

9.4 Relative Importance . 40

9.4.1 Calculating Rank . 40

9.5 PostgreSQL Performance . 41

9.5.1 Tuning . 41

9.5.2 Indizes . 41

9.6 Data Style . 42

9.6.1 Layer Definition . 43

9.7 Zoom Level Reference . 45

9.8 Reverse Engineering Process . 45

9.8.1 Vector Tile Format . 46

9.9 Quality Assurance Tools . 47

9.9.1 Vector Tile Compare . 47

9.9.2 Visual Compare . 48

9.10 Improvement Process . 49

9.11 Limitations . 49

10 results and future 50

10.1 Results . 50

10.2 Future Development . 50

10.2.1 Small improvements . 50

10.2.2 New Features . 51

11 project management 52

11.1 Software Development Process . 52

11.1.1 GitHub . 52

11.2 Schedule . 52

11.3 Milestones . 53

contents ix

11.4 Project Stages . 53

11.5 Roles and Responsibilities . 54

11.6 Risks . 54

12 quality measures 56

12.1 Testing . 56

12.2 Debug Viewer . 56

12.3 Visual Test . 58

12.4 Structural Test . 58

12.5 Integration Test . 58

12.6 Guidelines . 58

12.6.1 Releases . 58

12.6.2 Git . 59

12.6.3 Workflow . 59

12.6.4 Coding Standards . 59

13 project monitoring 60

13.1 Code Statistics . 60

13.2 Estimated Time vs Actual Time . 60

13.3 Time per Person . 61

iii appendix 62

a user documentation 63

b developer documentation 67

bibliography 74

L I S T O F F I G U R E S

Figure 1 Custom styling of maps in Mapbox Studio iv
Figure 2 Mapbox’s Artistic Woodcut visual style v
Figure 3 Vector Tile Rendering Process . 5

Figure 4 Raster tile server . 6

Figure 5 Vector tile server . 6

Figure 6 Unmodified OSM Bright visual style using osm2vectortiles 7

Figure 7 High level package diagram . 13

Figure 8 Import package . 14

Figure 9 Tooling package . 15

Figure 10 Import deployment diagram . 16

Figure 11 Export and development tools deployment diagram 17

Figure 12 Import workflow from various data sources into PostGIS 18

Figure 13 Export data from PostGIS to MBTiles . 19

Figure 14 Layers for aeroways, barriers and landusages 24

Figure 15 Layers for administrative areas . 25

Figure 16 Layers for roads, tunnels and bridges . 26

Figure 17 Point of interest label layer . 27

Figure 18 Water bodies and river layers . 28

Figure 19 Place label layer . 29

Figure 20 Architecture Diagramm Tessera . 32

Figure 21 Architecture Diagramm OSM Standard tile server 34

Figure 22 Mapping of tags to tables . 36

Figure 23 General graphic definition . 43

Figure 24 Example for buffer values . 44

Figure 25 Compare of Mapbox Streets v6 and Open Streets on 31.10.2015 47

Figure 26 Visual Compare of Mapbox Streets and Open Streets 48

Figure 27 Phases during project . 53

Figure 28 Mapbox Studio Classic Debug Viewer . 56

Figure 29 Klokantech Debug Viewer . 57

Figure 30 Klokantech Tile Inspector . 57

Figure 31 Commit frequency . 60

Figure 32 Search Container . 64

x

L I S T O F TA B L E S

Table 1 Tables from OpenStreetMap planet file . 20

Table 2 Tables with custom label data . 21

Table 3 Table imported from OpenStreetMapData 21

Table 4 Tables imported from Natural Earth . 22

Table 5 Layer descriptions of the data style . 23

Table 6 Evaluation matrix of imposm vs osm2pgsql 31

Table 7 Translations of name field . 37

Table 8 Classification of landuse feature class . 38

Table 9 Feature classes on different zoom levels 45

Table 10 Milestones . 53

Table 11 Project stages . 53

Table 12 Thesis contributors and their roles . 54

Table 13 Risks and measurements . 54

Table 14 Estimated vs actual time for different sprints 60

Table 15 Time for each contributor for sprints . 61

xi

A C R O N Y M S

OSM OpenStreetMap, free map

ETL Extract, Transform and Load

RUP Rational Unified Process

GIS Geographic Information System

GDAL Geospatial Data Abstraction Library

WMS Web Map Service

DRY Don’t Repeat Yourself

CI Continuous Integration

CDN Content Delivery Network

xii

G L O S S A RY

Vector Tiles Packets of geographic data, packaged into pre-defined roughly-square shaped
"tiles" for transfer over the web

Data Style Description of feature classes such as landuse, water or roads

Visual Style Definition of style rules for a specific schema, which is defined in the data style

Feature Class Group of features with the same geometry type and attributes

Layer Mapbox definition of a feature class

Mapbox Streets Name of Mapbox’s vector tile source

MBTiles File format for storing map tiles in a single file

GeoJSON File format for encoding a variety of geographic data structures

Mapnik XML Stylesheet for the mapnik rendering engine

CartoCSS Mapbox propritary cartographic styling language

Mapbox GL Clientside rendering engine

Web GL Javascript API for the graphics library in browsers

Mapbox Studio Classic Client application to design custom maps

OSM Bright Mapbox visual style

Docker Operation system level virtualization on Linux

Kitematic Client application for controlling docker containers

Natural Earth Public map dataset

OSM Planet All OpenStreetMap data in one file

xiii

Part I

T E C H N I C A L R E P O RT

1
I N T R O D U C T I O N

Creating a custom styled OSM map is one of the most common use cases among cartographers
yet it is very difficult to do so. With the new emerging technology of vector tiles it is possible to
allow anyone to create their custom OSM maps without setting up a database and managing
complex infrastructure.

1.1 vision

Michal Migurski published on March 15, 2013 a blog post[46], in which he described his first
attempts to use vector tiles as a source for the Mapnik tile renderer and his vision for vector
tiles.
Vector tiles only contain geometries and metadata. The visual style is applied on the fly when
the tile is requested, it is separated from the actual vector data. Vector tiles are smaller than
raster tiles, this enables high resolution maps, fast map loads and efficient caching.[38]
Our mission is to bring the power of vector tiles to anyone and provide the data free and as
Open Source project.

1.2 goals

The main goal of this thesis is to allow anyone to create their custom OSM map without
managing complex infrastructure. In order to complete this goal several deliverables were
defined in the project proposal.

• Create workflow to create vector tiles from OpenStreetMap data

• Provide vector tiles for Switzerland

• Provide method to serve the vector tiles together with custom styles as raster tiles

• Optional: Vector tiles for the entire world

differentiation The resulting vector tiles allow creating an alternative base map, which
is customizable. The vector tiles are not meant to be queried and do not support custom
overlays. Additional map features need to be implemented with the help of other libraries.

2

2
S TAT E O F T E C H N O L O G Y

As of today most web maps are based on raster tiles except a few big providers like Google,
Mapbox and Apple. The rest of the industry is now in the transition from raster based maps
into vector based maps. For vector based maps the Mapbox Vector Tile Specification[18] is the
most dominant Open Source specification of vector tiles.

2.1 current vector data providers

While the deployment setup for vector based maps is much simpler than the traditional raster
tile setup the most complex part is still the creation of vector data which takes a lot of time
and care.

mapbox Mapbox provides vector tiles of the entire world as part of its map hosting tech-
nologies since 2012 branded as Mapbox Streets[4]. Mapbox also provides the vector data for
buyers of their Mapbox Atlas Server[33] starting at $49,000 and distributes quarterly updates
for $10,000 per year .

mapzen Mapzen provides API access to their public vector tiles[43]. Mapzen states that
access and the platform should remain free and Open Source[44]. Mapzen however does not
give access to the entire raw data and one is bound to the limitations of the service.

kartotherian The Kartotherian[45] project from the Wikimedia Foundation[64] is very
similar to this project. The goal is to provide a free Map service that everyone can use for
free. The process is documented but the data is still bound to the service and not available
as download. The quality of the vector tiles is continuously improved but still lacking very
important features. Kartotherian is a great project which the findings of this thesis could be
contributed in the future.

google and apple Apple started using vector tiles in their Apple Maps product in
2012[80] and Google is using vector tiles since 2013[81] but they are both not accessible for the
general public and use a proprietary format.

2.2 characteristics

While the providers open the process they still own the data in order to keep their strategic
advantages and promote the use of their products using this data. The open process is a
wonderful step in the right direction, yet it requires great understanding of the technology
and sufficient computing power to actually execute the workflow of producing vector tiles
with worldwide coverage.

3

2.3 shortcomings 4

2.3 shortcomings

The providers already solve the problem of producing the vector tiles and making it accessible.
The data however can only be used via their services.
Being able to download world data and use it in a custom server infrastructure, offline and
without strings attached is a big advantage and a problem this thesis wants to solve.

3
I M P L E M E N TAT I O N C O N C E P T

The implementation is divided into the vector tile rendering process and the tile server. The
following two sections describe the high level concept of both implementations.

3.1 vector tile rendering

import In the import phase data sources are imported into a spatial database and mapped
to a database schema.

export In the export phase a data style is applied to the database to produce vector tiles.

data style The data style is a description of the vector tile structure and the SQL queries
to fetch the data.

Figure 3: Vector Tile Rendering Process

3.2 tile server

To display the vector tiles a tile server and a visual style is needed. There are two possibilities,
which are described in the following two sections.

visual style The visual style defines how a feature class such as landuse actually gets
displayed. In the case of landuse on could define the texture or the color of the border and
area.

5

3.2 tile server 6

3.2.1 Raster Tile Server

The raster tile server makes it possible to display the vector tiles. It takes a visual style like
CartoCSS[13] and the vector tiles as input. The renderer generates raster tiles of these inputs.
When a raster tile is rendered, it is served by the webserver. Any GIS Software which supports
raster tiles can consume the raster tiles served by the server.

Figure 4: Raster tile server

3.2.2 Vector Tile Server

The vector tile server in contrast to the raster tile variant directly serves the vector tiles to the
client. The raster tiles are rendered on the client side using visual style. The advantage of this
approach is more control over the user experience and that less server computing power is
needed.

Figure 5: Vector tile server

4
R E S U LT S A N D F U T U R E

All objectives which we defined in section Goals have been achieved. The optional goal to
provide vector tiles for the entire world has been moved to the bachelor thesis.

4.1 results

• Docker containers and documentation for the entire workflow of creating vector tiles has
been created.

• The raster tile server for serving the vector tiles together with a visual style has been
realized.

• The project website with information about how to use the vector tiles is online.

The vector tiles for Switzerland can be downloaded from the project website1. These vector
tiles can be served together with a visual style in our vector tile server.
A custom visual style can be created with Mapbox Studio Classic[41]. All existing visual styles
based of Mapbox Streets are compatible with the produced vector tiles. This allows very easy
migration to osm2vectortiles.

Figure 6: Unmodified OSM Bright visual style using osm2vectortiles

1 http://osm2vectortiles.org

7

http://osm2vectortiles.org

4.2 future 8

4.2 future

In a first step the project should be expanded to provide vector tiles for the entire world. The
vector tile rendering workflow needs to be scaled out for the entire world. Regular updates
for the vector tiles have been requested by the members of the Swiss OSM community and
will require identifying and rerendering updated tiles.
The long-term vision of this project is to provide a complete offline map experience, including
basic geographic name search. These suggestions will be the project goals for the bachelor
thesis. More detailed listing of future features can be found in Chapter 10.

Part II

P R O J E C T D O C U M E N TAT I O N

5
V I S I O N

The vision of our project is described in part 1, section 1.1. This chapter should give a bit of
background on where the idea of vector tiles came from.

5.1 history of webmaps

Web mapping has gone through different technological changes in recent years. It is impor-
tant to understand the evolution of web maps to understand why vector tiles are quite a
fundamental change in how maps work.

phase 1 : untiled static maps In the beginning WMS servers generated static images
for the viewport of the map.

phase 2 : raster tiles In 2005 Google introduced Google Maps and XYZ tiles[78] which
delivered a idempotent raster image for coordinates specified by a tile index.

phase 2 .5 : raster tiles with vector overlays To provide a level of interactivity,
tools like Leaflet[32] support rendering vector data like SVG on top of a raster based maps.

phase 2 .75 : raster tiles from vector tiles For backwards compatibility and faster
serving of raster tiles vector tiles where introduced to avoid querying a database.

phase 3 : vector tiles Vector tiles are delivered directly to the browser and rendered by
Web GL based clients.
Improving the use of vector data in web mapping is often shown as the next challenge of web
mapping [11, p. 88]

10

6
R E Q U I R E M E N T S S P E C I F I C AT I O N

This chapter describes the requirements for the vector tiles and the vector tile server.

6.1 user characteristics

There are three user groups interested in this project:

• Map Designer: A technically versed person using Windows or OSX with knowledge of
GIS software but not necessarily of it’s inner technical workings.

• System Administrator: The person which needs to host the published maps.

• Geographic Institutes or other companies: Institutions which would like to provide
their own geospatial data in vector tile format.

6.2 user stories

serverside rendering The map designer brings his new map design to the system
administrator and tells him to host the map. The system administrator can download the
vector tiles of the osm2vectortiles website and serve the map with the help of a vector tile
server.

clientside rendering The map designer brings his new map design to the system
administrator and tells him to host the map. The system administrator does not want to
provide a big server that can handle the heavy rendering work. So he decides to use Mapbox
GL[42] which offloads the rendering work to the client. In order to use Mapbox GL he needs
to statically serve the vector tiles.

own vector tiles Institutions which provide geospatial data would like to follow the
trend of vector tiles and provide their data in vector tile format. These institutions can use this
project for this matter. They can easily modify this project to use it with their data.

6.3 non functional requirements

The non functional requirements are the key to success of this project. If the following require-
ments can be fulfilled, the specified users will be able to benefit form our project.

usability The vector tile server must be usable with Kitematic[30]. Kitematic is an easy to
use user interface for docker.

learnability Map designers should not have to learn how to use the command line in
order to use Docker.

11

6.3 non functional requirements 12

repeatable Generating OSM vector tiles must be possible in a weekly interval because
OSM updates regularly.

performance The tileserver must handle 10 concurrent users per second.

compatibility The vector tiles must contain all feature sets Mapbox Streets contains. If
full compatibility with Mapbox Streets[36] can be guaranteed all Mapbox visual styles can be
used with our vector tiles.

vector tile size The size of a single vector tile should not be greater than 500 KB.

7
D E S I G N

7.1 architecture

The project is divided into the import phase where the ETL process happens and an export

phase where the PostGIS data is transformed into vector tiles using the open-streets data
style. The data style depends on the database schema defined by the import.

Along the way many additional development tooling was needed for the reverse engineering
process and for improving developer productivity. Everything that is not needed during the
workflow but only for development or verification is in this package.

The infrastructure package contains specially configured programs as Docker images. It con-
tains a PostGIS database, a connection pooler (pgbouncer) and a tessera based raster tile
server.

Figure 7: High level package diagram

13

7.1 architecture 14

7.1.1 Import

The import consists of several imports of different data sources.

import-osm Import of the OSM planet file with a custom mapping configuration.

import-sql Custom SQL functions to keep SQL queries in the open-streets data style
DRY and generated SQL code for classifications.

update-scaleranks Custom scalerank updates from Natural Earth data for better scaler-
anks in places.

import-natural-earth Import of Natural Earth data.

import-water Water polygons from OpenStreetMapData.

import-labels Custom curated labels for marine, countries and states.

Figure 8: Import package

7.1 architecture 15

7.1.2 Export

Export can either be done locally which will process one bounding box or in parallel on several
remote machines. This thesis was focused on the local export only.

open-streets The data style project is the most essential component which pulls together
all the data of different datasources to create vector tiles.

export-local A process which is using the open-streets.tm2source project to create vector
tiles for a given bounding box.

7.1.3 Tooling

This chapter describes the various tools that were created to support the development process.

verify Verify size and correctness of MBTiles files.

compare Compare different vector tiles for their differences.

visual-compare Compare different raster tiles in an interactive map.

generate-diagrams Generate mapping and layer diagrams from source code.

test-performance Load testing with Gatling for tileserver implementation.

mapbox-studio Mapbox studio in a Docker container for working on a server.

Figure 9: Tooling package

7.2 deployment 16

7.2 deployment

All workflow processes are deployed as Docker containers. The software package is usually
one single process.

7.2.1 Import

The different import containers are attached to the postgis container and are part of the ETL
process to import data into the database.

• import-osm imports data from OSM planet file.

• The import-external container contains the import scripts for external data sources.

• import-sql only imports custom SQL functions into the database and no data.

• update-scaleranks depends on already imported data from Natural Earth and OSM to
be able to update OSM places with scaleranks from Natural Earth.

The data container pattern[5] is used in cache and pgdata. The data only containers are
mounted from import-osm for storing cache data while importing and in postgis for stor-
ing the database files.

Figure 10: Import deployment diagram

7.2 deployment 17

7.2.2 Export and Development Tools

• The export container is responsible for rendering the vector tiles from the database and
stores it in the export volume. For performance reason a connection pooler is in front of
the actual postgis container.

• The raster tile server can serve directly from the export directory where the generated
MBTiles are put.

• The mapbox-studio container allows editing the open-streets project and connects di-
rectly to the postgis container.

• compare-visual is tunneling the requests for the tiles coming from port 4001 back to the
serve container on port 8080.

Figure 11: Export and development tools deployment diagram

7.3 workflow 18

7.3 workflow

7.3.1 Import

The import workflow is a view under the hood of the different components.

• Using the GDAL tool ogr2org[12] the Natural Earth SQLite file and custom GeoJSON
files are imported into PostGIS and transformed into the right projection.

• imposm3[18] imports the planet file according to the mapping configuration into Post-
GIS.

• A custom python script transforms the classifications in the file into SQL functions and
appends them to the existing function.sql file which is loaded into PostGIS as well.

• The update scaleranks script operates on the database only using both tables from Nat-
ural Earth and OSM to update the scalerank of places.

Figure 12: Import workflow from various data sources into PostGIS

7.3 workflow 19

7.3.2 Export

For generating the vector tiles the tilelive tool tl[19] is used which wraps around Mapnik. The
data style defines all feature classes (layers) and is transformed into a Mapnik XML stylesheet
by the tilelive-tm2source provider.
tilelive-bridge calls Mapnik with the generated stylesheets and hands the generated data
over to node-mbtiles which stores the vector tiles in a MBTiles container.

Figure 13: Export data from PostGIS to MBTiles

7.4 database schema 20

7.4 database schema

The schema is flat and has no relations. Each table contains information about its entity and
geometry.

7.4.1 OpenStreetMap Planet

The cornerstone of the entire map is OpenStreetMap data from published snapshots from OSM
Planet[71].

• Smaller extracts for single countries and continents are available from Geofabrik[8]

• For single cities or regions the Metro extracts from Mapzen[44] can be used

The data is available in the PBF[77] and OSM XML format [65]. Data in PBF format is 30%
smaller and 5-6 times faster to read and write than the bzipped OSM XML version.

Imposm3 was used to import the OSM data into the PostGIS database. Selected tags[66] and
their geometries are defined in an import mapping explicitly. Because imposm3 cannot match
two types of polygons (e.g. polygon and point) a table was created for each geometry type.

Table Name Geometry Type Description

admin linestring Administrative boundaries

buildings polygon Building shapes

landusages polygon Human use of land

places point Populated settlements

roads linestring Roads, tracks and paths

aero_lines linestring Airports and aviation-related items

aero_polygons polygon see aero_lines

barrier_lines linestring Movement blocking structures

barrier_polygons polygon see barrier_lines

housenumbers_points point Address information about houses

housenumbers_polygons polygon see housenumbers_points

poi_points point Point of interest

poi_polygons polygon see poi_points

water_lines linestring Lakes and rivers

water_polygons polygon see water_lines

Table 1: Tables from OpenStreetMap planet file

7.4 database schema 21

7.4.2 Custom Curated Labels

The placement and importance of labels of countries, states and seas matters[1] and is impor-
tant to get right. Data from the overpass API [67] is converted into GeoJSON and manually
edited and enhanced with a label rank. For sea labels custom lines have been drawn to place
the label along this line.

Table Name Geometry Type Description

custom_seas point Marine names

custom_countries point Country names

custom_states point State names

Table 2: Tables with custom label data

7.4.3 OpenStreetMapData

Certain OpenStreetMap data like borders and land polygons is very sensitive for change. The
OpenStreetMapData[54] project takes care of a lot of issues that happen with coastlines and
provide it in a convenient format. The data is checked by the OSM community and released
separately.
Water polygons[55] from OpenStreetMapData were used for the ocean parts of the world. This
data set ensures that the water polygons work well together with other OpenStreetMap data
and splits big water polygons into multiple pieces for performance.

Table Name Geometry Type Description

osm_ocean_polygons polygon Ocean, seas, large lakes

Table 3: Table imported from OpenStreetMapData

7.4 database schema 22

7.4.4 Natural Earth

The Natural Earth [47] data set provides manually curated data of cultural and physical fea-
tures of the world. Natural Earth data is especially useful at higher zoom levels.
The imported Natural Earth data results in more than 100 tables, but only a few are relevant
for our use case. Country, state borders and large lakes are taken from Natural Earth data for
the lower zoom levels.
The following data sets are used from Natural Earth:

• Label ranks of big cities[48]

• Major lakes[49]

• Country[50] and administrative[51] borders including disputed borders[52]

Table Name Geometry Type

ne_110m_admin_0_boundary_lines_land linestring

ne_50m_admin_0_boundary_lines_land linestring

ne_10m_admin_0_boundary_lines_land linestring

ne_50m_admin_1_states_provinces_lines linestring

ne_10m_admin_1_states_provinces_lines_shp linestring

ne_10m_admin_0_boundary_lines_disputed_areas linestring

ne_110m_lakes polygon

ne_50m_lakes polygon

ne_10m_lakes polygon

Table 4: Tables imported from Natural Earth

7.5 layer schema 23

7.5 layer schema

The layer schema tries to stay compliant to the Mapbox Streets v6 layer reference [36] and
Mapbox Streets v5 layer reference[37]. The detailed documentation on which database tables
are mapped to which feature classes, can be found in the following sections.

Layer Description

#landuse Both land-use and land-cover.

#waterway Rivers

#water Oceans and seas

#aeroway Aero related lines and polygons

#barrier_line Barrier lines and polygons

#building Building polygons

#landuse_overlay Transparent overlays for water

#tunnel Tunnels

#road Roads

#bridge Bridges

#admin Administrative borders

#country_label Labels of countries

#marine_label Labels of oceans and seas

#place_label Labels of places

#water_label Labels of lakes

#poi_label Labels of point of interest

#road_label Labels of roads

#waterway_label Labels of rivers

#housenum_label Labels of housenumbers

Table 5: Layer descriptions of the data style

7.5 layer schema 24

7.5.1 Aeroways, Barriers and Landusages

For some layers linestring and polygon data needs to be mapped into tables. The different
geometries are then both rendered as vector linestrings. The landing strips of airports for
example might be a linestring or polygon.

Figure 14: Layers for aeroways, barriers and landusages

7.5 layer schema 25

7.5.2 Administrative Borders

The administrative area on lower zoom levels is entirely from Natural Earth data. Only at
higher zoom levels where details are more important the OSM borders are rendered.
Natural Earth provides data in several generalization levels. The table with highest gener-
alization is used on the lowest zoom levels and on higher zoom levels the less generalized
tables.

Figure 15: Layers for administrative areas

7.5 layer schema 26

7.5.3 Roads, Bridges and Tunnels

Roads are split up into normal roads, tunnels and bridges after a certain zoom level. z_order
and layer attributes are used to order the geometries on the right z axis. Road labels however
will always contain data for tunnels, bridges and normal roads therefore one table that is
filtered into different views at higher zoom levels is the best approach.

Figure 16: Layers for roads, tunnels and bridges

7.5 layer schema 27

7.5.4 Points of Interest

Most POIs are in fact points, but buildings tagged with POI attributes are often polygons,
which is why tables for both points and polygons are created.
The localrank and scalerank of the #poi_label layer are calculated from the type and area

attributes. The address field is pulled together from the various address attributes on the
tables (street, housenumber, place, city, postcode and country).

Figure 17: Point of interest label layer

7.5 layer schema 28

7.5.5 Water

Water bodies for lower zoom levels are taken from Natural Earth data while lakes and rivers
are from OpenStreetMap. Big rivers often consist out of a water polygons while smaller rivers
are only water ways.

Figure 18: Water bodies and river layers

7.5 layer schema 29

7.5.6 Places

Places are names of cities and villages. To calculate the importance of a city the scalerank
of the most important cities from Natural Earth data is merged into the OpenStreetMap data
set. For places that do not have a scalerank value a dynamic value is calculated based on the
population.

Figure 19: Place label layer

8
T E C H N O L O G Y E VA L U AT I O N

8.1 spatial database

The OSM wiki[69] recommends PostgreSQL with the PostGIS extension for processing the
data. There also exists a method[17] that circumvents using a database and directly transform
OSM data into vector tiles but this does not scale for global vector tile coverage and does not
support mixing additional data into the vector tiles.

Decision

PostGIS was the only viable choice due to superb tooling support for OSM data and
advanced spatial query capabilities.

8.2 osm import tool

As import tool the OSM community recommends imposm[27] or osm2pgsql[70]. In this sec-
tion the two tools are compared with each other.

8.2.1 Criterias

speed In order to iterate fast and be able to change the data style frequently it is important
that the import tool is reasonably fast and is able to import the OSM planet file in one single
day.

customized schema A custom import schema can be used to define the database schema
and to map the OSM key/value pairs to a database table. The ability to customize the schema
makes querying simpler and more performant.

diff updates It must be possible to apply the Planet diffs [71] to continuously update the
database with newer data.

existing data style projects In order to get started it is helpful to have a lot of query
examples from other data style projects available.

30

8.3 vector tile format 31

8.2.2 Evaluation Matrix

Criteria Weight imposm osm2pgsql

Speed 0,3 8 5

Customized Schema 0,4 7 4

Diff Updates 0,2 6 8

Existing Material 0,1 6 10

Weighted Score 1 7 5,7

Table 6: Evaluation matrix of imposm vs osm2pgsql

8.2.3 osm2pgsql

osm2pgsql[70] is the most commonly used import tool for processing raw OpenStreetMap
data into PostGIS. The import schema is also called osm2pgsql and defines a very simple
schema(line, point, polygon and roads)[72]. This results in very large tables, so it is recom-
mended to create good indices. Osm2pgsql supports updating of the database, if the values
have been stored as hstore. The schema can be adapted via the import style [73] but most
projects use the default style[20] provided by osm2pgsql.

8.2.3.1 imposm3

Imposm is an import tool for OSM data, it is not a schema. But it defines a default schema[29],
which could possibly be changed by provinding a custom mapping file. An advantage of the
default schema is that it groups data thematically into tables. Which results in smaller tables
and simpler queries. Imposm 3 supports updating the database from OSM diff files[26]

Decision

For the use case of this thesis it is important, that the import is efficent and that the im-
port tool supports updating based on OSM diff files. Imposm3 is faster than osm2pgsql
and supports updatability and therefore it was decided to use imposm3 for importing.

8.3 vector tile format

Vector tiles are a broad term. In this thesis vector tiles correspond to Mapbox vector tiles which
is a custom open specification how vector tiles should be structured.

mapbox vector tiles When Mapbox introduced it’s geography tool Mapbox Studio in
2013 they created the Mapbox Vector Tiles Specification [18] which is implemented by a variety
of tools and clients [14] including Mapbox GL JS, Open Layers 3, Leaflet, Mapzen Tangram and
Esri [61] in the future.

geopackage The GeoPackage Encoding Standard is the OGC counterpart to the Mapbox Vec-
tor Tiles Specification which was introduced later and is supported by QGIS, ESRI and GDAL.

8.4 vector tile server 32

google maps Google Maps is using vector tiles since 2010 under the hood and was the
first provider implementing this. Styling is limited and the format proprietary.

Decision

Because one of the main requirements of this project was to provide Mapbox Streets
compatible vector tiles and Mapbox provides very good tools to handle vector tiles,
there was no other choice than going with Mapbox’s implementation of vector tiles.

8.4 vector tile server

Next to the vector tiles for Switzerland, the second deliverable is a basic vector tile server. The
goal is that a non technical person can get started quickly with the custom vector tiles.

Unlike the choice for a spatial database or OSM import tool there is no typical setup method
of a raster tile server using vector tiles under the hood. Most people in the Open Source
community build their own specific tile server setup.

8.4.1 Tessera

Tessera[15] is a Node.js[10] webserver, which is using Mapbox tilelive[16] modules to read
vector tiles and generates raster tiles.

Figure 20: Architecture Diagramm Tessera

8.4 vector tile server 33

Load tests were performed to measure server performance with tessera.
Infrastructure: AWS EC2 t2.micro instance(1 GB Memory / 1 Core)
Task: Zooming in from zoom level 10 to 22

Conditions: 50 concurrent users

The results of the load test is shown below.

---- Global Information --

> request count 10350 (OK=10348 KO=2)

> min response time 50 (OK=50 KO=60010)

> max response time 60335 (OK=56103 KO=60335)

> mean response time 2138 (OK=2127 KO=60172)

> std deviation 3023 (OK=2914 KO=162)

> response time 50th percentile 1115 (OK=1114 KO=60172)

> response time 75th percentile 3127 (OK=3125 KO=60253)

> mean requests/sec 75.919 (OK=75.904 KO=0.015)

---- Response Time Distribution --

> t < 800 ms 4545 (44%)

> 800 ms < t < 1200 ms 756 (7%)

> t > 1200 ms 5047 (49%)

> failed 2 (0%)

---- Errors --

> java.util.concurrent.TimeoutException: Request timed out to ec 2 (100.0%)

2-52-30-184-45.eu-west-1.compute.amazonaws.com/52.30.184.45:80...

With 50 concurrent users tessera was still able to respond to all requests in less than 1200 ms.

8.4 vector tile server 34

8.4.2 OpenStreetMap "Standard" Tile Server

A proven set up for generating raster tiles directly from PostgreSQL with Mapnik consists of
an Apache webserver and a custom Apache module mod_tile[68]. This approach was around
before vector tiles were proposed.

Figure 21: Architecture Diagramm OSM Standard tile server

It is theoretically possible to implement a raster tile server on top of Mapnik and renderd using
C++. Instead of using a spatial database as source for the rendered raster tiles a datasource
binding would need to be implemented to read the vector tiles and hand them over to the
Mapnik renderer.

Decision

The plan was to perform the load test on each version of the vector tile server and then
make the decision based on the results. Due to the fact, that the test results of tessera
where good enough for the thesis use case and it didn’t take much time to implement, it
was decided to use tessera as raster tile server. If somebody needs a high-performance
tile server, one should probably think about the second variant.

9
I M P L E M E N TAT I O N

The implementation chapter explains the aspects of the different solutions in greater detail.

9.1 mapping

Imposm3 requires a custom mapping file to decide which tags and geometries are mapped
into which table.
The example data mapping[28] below defines that geometries of the type polygon with the
key value pairs natural=wood, natural=land and tourism=zoo should be mappend into the
landusages table.

tables:

landusages:

type: polygon

mapping:

natural: [wood, land]

tourism: [zoo]

Instead of mapping all values of a certain key an explicit mapping strategy has been chosen.
Each tag was explicitly defined in the mapping. This brings the benefit of knowing exactly
what tags are in the database which makes querying and filtering easier.

35

9.1 mapping 36

Figure 22: Mapping of tags to tables

9.2 database schema 37

9.2 database schema

This section describes the implementation details of the database schema.

9.2.1 OSM id

All tables and views that are derived from OpenStreetMap data have the original id[74] to trace
back the data and be able to query a distinct OpenStreetMap feature in a visual style.

9.2.2 Translations

All label features contain several translations. The translations are directly mapped from the
suffixed language code [75]. If a field is not available in the language, the local name is used.

Field Description

name Local name

name_en English

name_es Spanish

name_fr French

name_de German

name_ru Russian

name_zh Chinese

Table 7: Translations of name field

9.2.3 Type and Class

The class field is equivalent to the feature class while the type field is the OSM value of the
feature.

9.3 classification 38

9.3 classification

The OpenStreetMap tagging schema has developed into a complex taxonomy of real-world
feature classes and objects. [25, p. 15]. Map designers don’t want to design for each tag specif-
ically which is why Mapbox and other providers abstract distinct tags into feature classes.
For example a map designer that wants to style agricultural areas does not care what type of
field it is. Mapping tags into categories cannot be automated and there is no standard defined:
therefore the mapping is handmade.

Key Value Class Type

landuse farm agriculture orchard

building farm agriculture farm

landuse farmland agriculture farmland

landuse farmyard agriculture farmyard

landuse allotments agriculture allotments

landuse vineyard agriculture vineyard

landuse vineyard agriculture plant_nursery

Table 8: Classification of landuse feature class

9.3.1 Classification Format

The classicifcations are written in a YAML based format where each key in classifications

denotes the classification name. The keys within each classification (e.g. driveway, main) con-
tain the class name. The values in each class name (e.g. primary, primary_link represent the
OSM values that need to be matched. Only the value of a OSM tag is taken into account for
deciding the feature class. The key of the tag is not matched.

classifications:

road:

highway:

- motorway

- motorway_link

- driveway

main:

- primary

- primary_link

- trunk

- trunk_link

- secondary

- secondary_link

- tertiary

- tertiary_link

9.3 classification 39

9.3.2 Code Generation

The generate_sql.py script reads the classification format and generates immutable SQL func-
tions from the YAML source. These functions can then be used in the layer queries.
The example in the above listing will result in the following function.

CREATE OR REPLACE FUNCTION classify_road(type VARCHAR)

RETURNS VARCHAR AS $$

BEGIN

RETURN CASE

WHEN type IN (’motorway’,’motorway_link’,’driveway’) THEN ’highway’

WHEN type IN (’primary’,’primary_link’,

’trunk’,’trunk_link’,

’secondary’,’secondary_link’,

’tertiary’,’tertiary_link’) THEN ’main’

END;

END;

$$ LANGUAGE plpgsql IMMUTABLE;

Classifications are then baked into vector tile attributes of geometries.

SELECT

geometry,

classify_road(type) AS class,

type AS type

FROM osm_roads

9.4 relative importance 40

9.4 relative importance

To reduce label density on lower zoom levels, but still contain all data in e.g. zoom level
14, the localrank attribute indiciates how important a label is compared to the labels in its
neighbourhood.

9.4.1 Calculating Rank

9.4.1.1 Order Features by their Types

In the best case scenario a function would rank each point of interest class. Due to the limited
time only the most important features were explicitly ranked.

CREATE OR REPLACE FUNCTION localrank_poi(type VARCHAR) RETURNS INTEGER

AS $$

BEGIN

RETURN CASE

WHEN type IN (’station’, ’subway_entrance’, ’park’,

’cemetery’, ’bank’, ’supermarket’, ’car’,

’library’, ’university’, ’college’, ’police’,

’townhall’, ’courthouse’) THEN 2

WHEN type IN (’nature_reserve’, ’garden’, ’public_building’) THEN 3

WHEN type IN (’stadium’) THEN 90

WHEN type IN (’hospital’) THEN 100

WHEN type IN (’zoo’) THEN 200

WHEN type IN (’university’, ’school’, ’college’, ’kindergarten’) THEN 300

WHEN type IN (’supermarket’, ’department_store’) THEN 400

WHEN type IN (’nature_reserve’, ’swimming_area’) THEN 500

WHEN type IN (’attraction’) THEN 600

ELSE 1000

END;

END;

$$ LANGUAGE plpgsql IMMUTABLE;

9.4.1.2 Calculate Rank across Grid

The rank is calculated across a grid of 128 pixels. The most important features from the
localrank_poi function will also be the most relevant POIs.

SELECT

geometry,

rank() OVER (PARTITION BY LabelGrid(geometry, 128 * !pixel_width!)

ORDER BY localrank_poi(type) ASC) AS localrank,

FROM osm_poi

9.5 postgresql performance 41

9.5 postgresql performance

Most of the heavywork is done on the database side to respond to all SQL queries made by
Mapnik in the fastest way possible.

9.5.1 Tuning

The PostgreSQL default parameters do not deliver good performance for stronger machines.[82]
For the different database machines the PgTune[56] calculator has been used to determine
good cache and buffer sizes for data warehouse style computing.

Example configuration for a host with 50 GB of memory.

max_connections = 20

shared_buffers = 12800MB

effective_cache_size = 38400MB

work_mem = 320MB

maintenance_work_mem = 2GB

checkpoint_segments = 128

checkpoint_completion_target = 0.9

wal_buffers = 16MB

default_statistics_target = 500

For speed up the import, the transactional features of PostgreSQL have been disabled. [2].

bgwriter_lru_maxpages = 0

wal_level = minimal

fsync = off

synchronous_commit = off

full_page_writes = off

wal_log_hints = off

9.5.2 Indizes

For each table a GiST[57] index on the geometry and a clustered geohashed index was created.
This helped to make lookups that check if a geometry is in a certain tile faster. Especially the
clustered index hash helped in speeding up the queries.

"osm_places_geom" gist (geometry)

"osm_places_geom_geohash btree" (

st_geohash(st_transform(st_setsrid(box2d(geometry)::geometry, 3857), 4326))

) CLUSTER

9.6 data style 42

9.6 data style

The data style is a description of all the feature classes such as landuse, water or roads. This
description was invented by Mapbox.

The format of a data style looks like this:

_prefs:

disabled: []

inspector: false

mapid: ’’

rev: ’’

saveCenter: true

attribution: ’’

center:

- 21.7969

- 34.6694

- 3

description: Open Streets

Layer:

Layer definitions come here

maxzoom: 14

minzoom: 0

name: Open Streets

The center attribute defines the default position of the map when the data style is opened
with Mapbox Studio Classic. In this case the default position is set to the coordinates 21.7969,
34.6694 on zoom level 3. The layer attribute defines all the layers that are present in a vector
tile. A detailed description follows in the next section. The max- and minzoom attributes
define the range in which vector data is available.

9.6 data style 43

9.6.1 Layer Definition

A layer definition describes a view on the data. It can consist of multiple data sources. In the
figure below the layer is a view and the definition of this view is a graphic definition.

Figure 23: General graphic definition

A layer definition looks like this:

- id: landuse

Datasource:

extent: -20037508.34,-20037508.34,20037508.34,20037508.34

host: db

port: 5432

user: osm

password: osm

dbname: osm

key_field: osm_id

table: |-

(

SELECT osm_id, class, type, geometry

FROM osm_landusages

WHERE geometry && !bbox!

AND z(!scale_denominator!) > 5

) as data

type: postgis

fields:

osm_id: Number

class: String

type: String

properties:

"buffer-size": 4

The layer definition consist of the id (layername), datasource, fields and the properties. The
data source in this case defines how the PostGIS database can be accessed and which SQL
query needs to be executed. An alternative data source could also be a simple file (GeoJson,
Shapefile, SQLite database, GeoTIFF, KML, GPX or CSV).

9.6 data style 44

9.6.1.1 Buffers

The buffer value on a layer defines how many pixels around each tile will be included. It is
necessary to ensure correct rendering across tile boundaries. This value is individual for each
layer and depends on the type of data. Buffers for layers containing labels should have a large
buffer size such as 128 pixels, whereas a layer like landuse does only need a buffers size of 4

pixels. In general, the buffer size should be set to the minimum to keep the size of the vector
tiles as low as possible.[39]

Figure 24: Example for buffer values

The figure above is a good example to see the result of the buffer value. Apart from the rivers
there is no other data, therefore the rivers must have a larger buffer value than the other layers.

9.6.1.2 Overzooming

The min- and maxzoom values define on which zoom levels data is available. This does not
mean that it is not possible to zoom deeper than the maxzoom value. Overzooming defines to
term of displaying data at higher zoom levels[40]. This allows to show data on higher zoom
levels, without generating vector tiles for these zoom levels. Mapbox has defined a rule of
thumb for vector tiles: vector tiles are useful for about 4-6 levels of overzooming. A vector tile
on zoom level 10, can be stretched out up to zoom level 14 or 16.

9.6.1.3 Layer Ordering

The order in which the layer are defined in the data style is equal to the order they are stored
in the vector tiles. The layer at the top of the layer definition will be drawn first next the second
layer and so on. The layer at the bottom is drawn on top of all the other layers.

9.7 zoom level reference 45

9.7 zoom level reference

The zoom level reference helps to see which feature class is included on which zoom level.
The zoom levels are in the same order as they get drawn. The feature class landuse is at the
bottom and housenum_label is on top of all the others.

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

landuse x x x x x x x x x x

waterway x x x x x x x

water x x x x x x x x x x x x x x x

aeroway x x x

barrier_line x

building x x

landuse_overlay x x x x x x x x

tunnel x x x x

road x x x x x x x x x x

bridge x x x

admin x x x x x x x x x x x x x x x

country_label x x x x x x x x x x x x x x

marine_label x x x x x x x x x x x x x x

state_label x x x x x x x x x x x

place_label x x x x x x x x x x x

water_label x x x x x

poi_label x

road_label x x x x x x x

waterway_label x x x x x x x

housenum_label x

Table 9: Feature classes on different zoom levels

9.8 reverse engineering process

One of the main requirements of the project was to make the vector tiles compatible with the
Mapbox Streets vector tiles[36].
This requirement has not been defined since the beginning, it evolved during the construction
of the first prototype. Therefore a lot of time has been spent making the vector tiles as similar
as possible to the ones of Mapbox.
The sections below describe the tools and methods that were used to achieve the goal of
Mapbox Streets compatibility.

9.8 reverse engineering process 46

9.8.1 Vector Tile Format

To better understand what the vector tile compare tool does, a high level introduction to the
vector tiles format will be given below.

A vector tile can consist of one or more named layers which contain one or more features[18].
A feature consists of attributes and a geometry (point, linestring or polygon). Attributes are
represented as a dictionary of key-value pairs.

Below is an example of a vector tile with two layers water and admin. The water layer has
the attribute key "osm_id" and value 0. If somebody would compare this example with the
specification[18], one could think this is not a specification conform vector tile. The example
below is a compressed vector tile. More information on what compression methods are ap-
plied can be found in the specification.

Mapbox Streets v6 vector tile for 0/0/0.

{

"layers": {

"water": {

"version": 1,

"name": "water",

"extent": 4096,

"length": 18,

"_pbf": {

"buf": [26,143,32,10,5,119,97,1],

"pos": 51410,

"length": 51410

},

"_keys": ["osm_id"],

"_values": [0],

"_features": [11,3474,3499,3530,3561,3584]

},

"admin": {

"version": 1,

"name": "admin",

"extent": 4096,

"length": 1447,

"_pbf": {

"buf": [26,143,32,10,5,1],

"pos":51410,

"length":51410

},

"_keys": ["admin_level","disputed","iso_3166_1","maritime"],

"_values": [2,0,"FR",1],

"_features": [4126,4152,4377,4403,4429,4455,4481,4507,4533]

}

}

}

9.9 quality assurance tools 47

9.9 quality assurance tools

During the prototyping phase a number of quality assurance tools were built to help the
contributors track the progress of Mapbox Streets compatibility.

9.9.1 Vector Tile Compare

The Vector Tile Compare tool analyzes vector tiles and outputs interesting information like
layers and attributes. The output was generated for the same vector tiles of Mapbox Streets
and the resulting vector tiles from osm2vectortiles (Open Streets). The results where then
uploaded to a GitHub repository and the branch compare feature was used to compare them.

Figure 25: Compare of Mapbox Streets v6 and Open Streets on 31.10.2015

This resulted in a indicator of which layers are shown on which zoom level and what attributes
are contained in a layer.

9.9 quality assurance tools 48

9.9.2 Visual Compare

The vector tile comparison was good to ensure that exactly the same data is present on the
same zoom level as Mapbox Streets. But when the contributors started to visually compare
the map with the map of Mapbox Streets, big differences appeared. The decision was made
to build a compare tool that works visually to cover up bugs like these.

Figure 26: Visual Compare of Mapbox Streets and Open Streets

The figure above shows a screenshot of the Visual Compare tool. On the left side is Mapbox
Streets and on the right side our Open Streets map. They both use the same visual style (OSM
Bright 2[21]). When you zoom in on the right side of the map, it will automatically zoom in
on the left side. This tool was very helpful to find all the differences.

9.10 improvement process 49

9.10 improvement process

This section describes the improvement process used to eliminate visual differences.

1. When a visual difference was identified with the Vector Compare or Visual Compare
tool, the contributors checked if the missing data is included in the import mapping.

2. If this was not the case, the TagFinder tool[76] was used to find the right OSM key-value
pair of the missing item.

3. Next the key-value pair was included into the import mapping and the OSM data was
reimported again.

4. To see the item on the map, the SQL query in the data style needs to be altered to fetch
the added item.

5. Now the missing item should appear on the map.

This workflow was executed within Mapbox Studio Classic[41] where the map can be reren-
dered on the fly after a query has been altered.

9.11 limitations

tileserver The tessera based tileserver does not support more than 50 concurrent users
and is not meant for production use without a caching reverse proxy in front.

rendering workflow The rendering process is scalable by deploying multiple databases
and vector rendering processes on very powerful hosts. For adequate rendering performance
at least 16GB (or better 50GB) of memory is required to provide fast database access. Support-
ing an additional zoom level 15 would require a significant additional effort in computing
capacity for rendering the additional tiles.

updatable vector tiles The vector tiles are based of an OSM planet file at a specific
point in time. It is essentially a snapshot of the OSM data. Therefore the Swiss OSM commu-
nity requested updatable vector tiles based on the diff files.

base map The resulting vector tiles allow creating an alternative base map, which is cus-
tomizable. The vector tiles are not meant to be queried and do not support custom overlays.
Additional map features need to be implemented with the help of other libraries.

osm data The vector tiles contain only a subset of all OSM data. The standard OSM
basemap could not easily be replaced with our vector tiles as data source because of this
limitation.

10
R E S U LT S A N D F U T U R E

10.1 results

The result of this study thesis are described in Part 1, section 4.1.

10.2 future development

The first version of the rendered vector tiles has shown, that it is possible to get very close
to compatibility with Mapbox Streets in a reasonable amount of time. There are still some
quirks, which need to be ironed out, but we created a good foundation for future develop-
ment. The two sections below describe small improvements and new features, which will be
implemented in the bachelor thesis.

10.2.1 Small improvements

labels The scalerank of the place, marine, state and road labels should be improved. Th
current implementation is good for the moment, but still not equal to Mapbox Streets.

state labels State labels are used to display states of big countries like USA, Russia or
China. More state labels could be added.

country boundaries A mix of Natural Earth and OSM data is used for the adminis-
trative boundaries. This layer is using both data sources, because OSM has some issues with
marine borders and simplified borders on lower zoom levels. Using Natural Earth data alone
is not suitable, because the data is generalized. Therefore it does not look good on higher
zoom levels. For the next release a better data source should be chosen for administrative
boundaries.

country name translation rule Mapbox has defined a fallback rule[36] for the coun-
try names. Due to time limits this behavior could not be implemented and should be imple-
mented in a future release.

special maki icons for us road labels Mapbox uses different maki icons[34] for the
road labels in the US.

possiblity of mapbox terrain visual style Check if all the data required for a
Mapbox style like Mapbox Terrain[35] is included in the vector tiles

exclude water in rendering process When the vector tile rendering process was
implemented, it was realized that a lot of rendering time could be saved when the water (no
data) is excluded. It turned out, that deciding if a vector tiles will have no data, is not an easy
problem. At the current stage of the project everything is rendered and the "empty" vector
tiles are removed afterwards.

50

10.2 future development 51

10.2.2 New Features

vector tiles of entire world One of the main targets of the bachelor thesis is to
render the vector tiles of the entire world. This brings new challenges like scaling the rendering
infrastructure.

update vector tiles A big request of the Swiss OSM community was to provide up-
dated vector tiles based on the diff[71] files. This also requires detecting dirty tiles in the al-
ready rendered vector tiles because one update can affect multiple tiles across multiple zoom
levels.

faster tile server There is no robust and scalable raster tile server based on vector tiles
available yet. This may even be a separate project.

geographic name search To fulfill the long term goal of this project to provide an
offline map a basic geographic name search could be implemented.

11
P R O J E C T M A N A G E M E N T

11.1 software development process

An agile approach based on RUP has been used as the process model of this project. At the
kickoff meeting the schedule with the milestones was defined and the first tasks were assigned
to the alpha milestone. In frequent meetings the progress of these tasks were tracked and new
tasks were created. The work was divided into two to three week iterations with a deliverable
version at the end of each iteration.
Constant evolution has been favored over long term planning and this approach has proven
itself for this type of work, where unexpected problems are the rule not the exception.

11.1.1 GitHub

GitHub was used for planning and tracking of the tasks and milestones. It has a big advantage
over other project management tools, as the revision control and the issue tracking is at the
same place. Non project members can understand the thoughts behind certain decisions and
communicate their ideas directly to team members.
An organization named osm2vectortiles was created with the following two repositories:

• osm2vectortiles contains the project[22]

• osm2vectortiles-thesis contains the thesis[23]

11.2 schedule

Compared to other software projects a much longer elaboration phase has been chosen. In
the elaboration the most difficult problems have been solved with a prototype which was
then refined in the construction phases. Due to the many risks regarding rendering time and
unknown technology problems the longer elaboration phase really helped to eradicate risks
early on.

52

11.3 milestones 53

Figure 27: Phases during project

11.3 milestones

Each milestones marks a special release version of the vector tiles.

ALPHA Proof of concept tileserver.

BETA Switzerland with upper zoom levels.

PREFINAL Switzerland with lower zoom levels.

FINAL Improved and polished final release.

Table 10: Project milestones

11.4 project stages

Inception 1 Kickoff meeting and definition of project proposal.

Inception 2 Getting familiar with the entire Mapbox stack and create a
very basic prototype of every deliverable on a small scale.

Elaboration 1 Evaluation of different parts of the stack like import tools
and vector tile server and project structure.

Elaboration 2 Prototype of import and export components and configu-
ration of continuous integration.

Construction 1 Custom data style up from zoom level 8 to 14 and a good
mapping configuration.

Construction 2 Custom data style up from zoom level 0 to 8 and importing
external data sources.

Transition Rendering and preparing the vector tiles and time for doc-
umentation and project website.

Table 11: Project stages

11.5 roles and responsibilities 54

11.5 roles and responsibilities

Prof Stefan Keller Thesis advisor responsible for supervising work and as-
sess the thesis.

Dr Petr Pridal Technical partner responsible for providing infrastruc-
ture and guidance in technical and map related ques-
tions.

Manuel Roth Contributor responsible for data style and JavaScript
tooling.

Lukas Martinelli Contributor responsible for rendering infrastructure
and Python scripts.

Table 12: Thesis contributors and their roles

11.6 risks

In general this project was hazardous, as not a lot of cartographic knowledge was present at
the beginning. The risk was reduced by contacting the advisors early, when ever problems ap-
peared. The knowledge gap was filled very fast, due to the availability of superb information
sources online. The figure below shows only project specific risks, which have been assessed
and dealt with accordingly.

Risk Measurement Probability
(1-6)

Low cartographic knowledge Start earlier for additional training
time

6

Rendering takes too long Increase infrastructure 5

Infrastructure not sufficient Switch to non school infrastructure
and rely on external sponsors

3

No community acceptance Meet early with OSM community 3

Quality not sufficient Invest sufficient time in perfecting the
quality

3

High technical complexity Prototype early 6

Insufficient tracking of project
progress

More frequent meetings 2

Table 13: Risks and measurements

high technical complexity The project involved a lot of different technologies, as the
workflow to produce vector tiles was built up. As a measurement the elaboration phase was
used to create a first working prototype, which should prove the implementation concept.

insufficient tracking of project progress The project progress was tracked on
Github, so the progress was at any time publicly visible. Regular meetings with the advisors
helped to stay focused on the project goals.

11.6 risks 55

infrastructure not sufficient The rendering process of vector tiles is a very ressource
intense task. The school infrastructure was not enough to fulfill the project goals in time. There-
fore an alternative platform with more processing power was used to complete the rendering
task in time.

As this project brought up new challenges every day, not all of the risks could be eliminated
during the elaboration phase. Measurements had to be found, whenever new risks appeared.

12
Q U A L I T Y M E A S U R E S

12.1 testing

The osm2vectortiles ecosystem is quite diverse with a big collection of small tools that all work
together.

12.2 debug viewer

During development the tiles were continuously examined with the Mapbox Studio Classic
debug viewer. This tool makes it possible to verify the different attributes of features and
ensure the queries deliver the right results.

Figure 28: Mapbox Studio Classic Debug Viewer

The Open Source partner Klokan Technologies [24] also provided a OpenLayers 3[53] based
debug viewer, which supports the same features but allows looking at arbitrary TileJSON urls.

56

12.2 debug viewer 57

Figure 29: Klokantech Debug Viewer

The tile inspector is another tool by Klokan Technologies which supports inspecting vector tile
PBFs for their size and features and visually explore the structural features of the Vector Tile
Compare.

Figure 30: Klokantech Tile Inspector

12.3 visual test 58

12.3 visual test

The Visual Compare tool allowed to preview the map visually and compare the rendered
raster tiles directly with Mapbox Streets.

12.4 structural test

With the Vector Tile Compare tool the differences between Mapbox Streets and the Open
Streets vector tiles were regularly compared by hand. This tool was used as guidance for
reverse engineering and ensuring the same feature classes appear at the same zoom levels.

12.5 integration test

In Travis CI[62] the entire workflow was completed for a small data sample on each commit.
Because the entire workflow is configured with Docker Compose [7] the CI server had to
execute all import steps in serial order. This is a straightforward way to check if all components
work together correctly and although it is a simple setup it has helped tremendously during
project development, catching bugs like missing tables or SQL typos.

script:

- docker-compose up -d postgis

- docker-compose up -d pgbouncer

- docker-compose run import-osm

- docker-compose run import-natural-earth

- docker-compose run import-water

- docker-compose run import-labels

- docker-compose run import-sql

- docker-compose run update-scaleranks

- docker-compose run export-local

- docker-compose up -d serve

- curl "http://localhost:8080/index.json"

12.6 guidelines

To have homogeneous software the contributors have settled on common guidelines in the
beginning of the project.

12.6.1 Releases

Semantic versioning [58] should be used for releases. At the end of each milestone a new
release will be created.

12.6 guidelines 59

12.6.2 Git

commit messages The seven rules of great git commit messages[3] should be used.

rewriting Git history should be kept clean and therefore local branches should be squashed
meaningfully.

pulling To avoid unnecessary merge messages one should always use the --rebase pa-
rameter.

12.6.3 Workflow

The Feature Branch Workflow[63] should be used. Every project member has a local repository
with a copy of the remote repository. For each feature ticket in GitHub a separate branch will
be created. Once a ticket has been completed a pull request will be created and needs to be
merged into the master branch by an other

12.6.4 Coding Standards

bash Bash was used for the Docker image entrypoints and follow the rules of Defensive
Bash Programming [31].

python Python code should stay PEP-8[59] compliant and write idiomatic Python code
according to PEP-20[60].

javascript The JavaScript code is checked using ESLint[9]

sql The PostgreSQL code is using upper case for the key words. Apart from nice formatted
SQL code and functions should be used to keep the queries DRY[79].

dockerfile Dockerfiles follow the best practices[6] defined by Docker.

13
P R O J E C T M O N I T O R I N G

13.1 code statistics

The actual Project Stages are recognizable on the GitHub code frequency chart as well. In
Elaboration and Construction most commits have been done while in the Transition phase the
graph flattens out.

Figure 31: Commit frequency

13.2 estimated time vs actual time

Our estimations were too optimistic. Due to the extensive training period required to get
started in a GIS environment the actual time was more than originally estimated.

Sprint Actual Estimated

Inception 1 20 16

Inception 2 42 55

Elaboration 1 48 50

Elaboration 2 121 102

Construction 1 152 106

Construction 2 48 53

Transition 61 98

Total 493 480

Table 14: Estimated vs actual time for different sprints

60

13.3 time per person 61

13.3 time per person

Both contributors invested about the same amount of time.

Sprint Lukas Martinelli Manuel Roth Total

Inception 1 11 9 20

Inception 2 22 21 43

Elaboration 1 25 23 48

Elaboration 2 56 65 121

Construction 1 77 75 152

Construction 2 27 21 48

Transition 28 33 61

Total 245 248 493

Table 15: Time for each contributor for sprints

Part III

A P P E N D I X

A
U S E R D O C U M E N TAT I O N

display raster map

This tutorial describes how to display a raster tile map with the rendered vector tiles as data
source.

Preparation

1. Download1 the appropriate extract you want to serve.

2. Download2 a suitable visual style.

3. Add both to the same directory and make sure that the have the same name.

Install Kitematic

1. Download and install Kitematic3.

2. Start a new container by searching for osm2vectortiles and click create on the container
called serve.

1 http://osm2vectortiles.org/data/download.html

2 https://github.com/mapbox/mapbox-studio-osm-bright.tm2.git

3 https://www.docker.com/docker-toolbox

63

http://osm2vectortiles.org/data/download.html
https://github.com/mapbox/mapbox-studio-osm-bright.tm2.git
https://www.docker.com/docker-toolbox

user documentation 64

Figure 32: Search Container

Kitematic Usage

When you start the container it will complain about missing tm2 style projects.

Figure 33: Container started unsucessfully

Mount your the directory containing the mbtiles files and tm2 style projects into the /data

volume.

user documentation 65

Figure 34: Configured volumes for container

Now restart the container. You should be up and running serving generated raster tiles.

Figure 35: Container running and serving tiles

display map with mapboxgl

To display a custom MapboxGL based map you need to create a HTML file and reference the
public vector tile server of osm2vectortiles. You are free to download and host the vector tiles
yourself but a fast and distributed CDN service for serving the PBFs is provided for you.
The easiest way to get started is using the mapbox-gl-js-exmaple repository. Clone the repos-
itory and change into the directory.

user documentation 66

git clone https://github.com/osm2vectortiles/mapbox-gl-js-example.git

Configure Source, Fonts and Sprites

In order for Mapbox GL JS to work you also need to provide the font4 and sprites5. These
resources are contained in the folder assets.
The Mapbox GL Style JSON6 of OSM Bright is located at bright-v8.json. You can create your
own styles with Mapbox Studio.
If you want to serve the Mapbox GL Style JSON without Mapbox you need to configure three
URLs.

1. Change the sources URL to the free osm2vectortile serve or use your own server.

2. Change the sprite URL to the location of your sprites.

3. Change the glyphs URL to the location of your fonts.

"sources": {

"mapbox": {

"url": "http://vectortiles.osm2vectortiles.org/world.json",

"type": "vector"

}

},

"sprite": "/assets/sprite",

"glyphs": "/assets/font/{fontstack}/{range}.pbf"

Initialize the Map

In order to serve a MapboxGL based map you need a Mapbox GL style JSON created with
Mapbox Studio7

4 https://www.mapbox.com/mapbox-gl-style-spec/#glyphs

5 https://www.mapbox.com/mapbox-gl-style-spec/#sprite

6 https://www.mapbox.com/mapbox-gl-style-spec/

https://www.mapbox.com/mapbox-gl-style-spec/#glyphs
https://www.mapbox.com/mapbox-gl-style-spec/#sprite
https://www.mapbox.com/mapbox-gl-style-spec/

B
D E V E L O P E R D O C U M E N TAT I O N

create your own vector tiles

Docker is used extensively for development and deployment. The easiest way to get started is
using Docker Compose1.

1. Step: Clone the osm2vectortiles project.

git clone https://github.com/osm2vectortiles/osm2vectortiles.git

2. Step: Start up your PostGIS container with the data container attached.

docker-compose up -d postgis

3. Step: Download a PBF and put it into the local import directory.

wget https://s3.amazonaws.com/metro-extracts.mapzen.com/zurich_switzerland.osm.pbf

4. Step: Now you need to import the PBF files into PostGIS.

docker-compose up import-osm

5. Step: Now you need to import several external data sources.
Import water polygons from OpenStreetMapData.

docker-compose up import-water

6. Step: Import Natural Earth data for lower zoom levels.

docker-compose up import-natural-earth

7. Step: Import custom country, sea and state labels.

docker-compose up import-labels

8. Step: Now import custom SQL functions.

1 https://www.docker.com/docker-compose

67

https://www.docker.com/docker-compose

developer documentation 68

docker-compose up import-sql

9. Step: Update the scaleranks of OSM places.

docker-compose up update-scaleranks

10. Step: Export the data as MBTiles file to the export directory.

docker-compose up export

11. Step: Serve the tiles as raster tiles from export directory.

docker-compose up serve

create own extract

If you need an extract which is not included on the downloads page2, you can download the
planet file and make your own extract.

Preparation

1. Download3 the planet file.

2. Get the bounding box of your desired extract.4

3. Install tilelive utility.

npm install -g tilelive

Create Extract

To create an extract the tilelive-copy utility is used. It takes a bounding box and a MBTiles
file as input and ouputs the extract.
Replace the bounding box in the following command with your bounding box.

tilelive-copy --minzoom=0 --maxzoom=14 --bounds="60.403889,29.288333,74.989862,38.5899217"

world.mbtiles switzerland.mbtiles

2 http://osm2vectortiles.org/data/download.html

3 http://osm2vectortiles.org/data/download.html

4 http://tools.geofabrik.de/calc/#type=geofabrik_standard&bbox=5.538062,47.236312,15.371071,54.

954937&tab=1&proj=EPSG:4326&places=2

http://osm2vectortiles.org/data/download.html
http://osm2vectortiles.org/data/download.html
http://tools.geofabrik.de/calc/#type=geofabrik_standard&bbox=5.538062,47.236312,15.371071,54.954937&tab=1&proj=EPSG:4326&places=2
http://tools.geofabrik.de/calc/#type=geofabrik_standard&bbox=5.538062,47.236312,15.371071,54.954937&tab=1&proj=EPSG:4326&places=2

developer documentation 69

layer reference

This is a guide to the data inside the OSM Vector Tiles to help you with styling.
Available layers:

• landuse

• waterway

• water

• aeroway

• barrier_line

• building

• landuse_overlay

• tunnel

• road

• bridge

• admin

• country_label

• marine_label

• place_label

• water_label

• poi_label

• road_label

• waterway_label

• housenum_label

landuse

This layer includes polygons representing both land-use and land-cover.
It’s common for many different types of landuse/landcover to be overlapping, so the polygons
in this layer are ordered by the area of their geometries to ensure smaller objects will not be
obscured by larger ones. Pay attention to use of transparency when styling - the overlapping
shapes can cause muddied or unexpected colors.

water

This is a simple polygon layer with no differentiating types or classes. Water bodies are filtered
and simplified according to scale - only oceans and very large lakes are shown at the lowest
zoom levels, while smaller and smaller lakes and ponds appear as you zoom in.

developer documentation 70

waterway

The waterway layer contains rivers, streams, canals, etc represented as lines.

Type

The type column can contain one of the following types:

• ditch

• stream

• stream_intermittent

• river

• canal

• drain

• ditch

aeroway

The aeroway layer contains the types runway, taxiway, apron and helipad.

barrier_line

The barrier_line layer contains the classes fence, cliff, gate.

building

This layer contains buildings. Buildings are shown starting zoom level 13.

landuse_overlay

This layer is for landuse polygons that should be drawn above the #water layer.

tunnel, road, bridge

The layers tunnel and bridge are based of the layer road.

Class

The main field used for styling the tunnel, road, and bridge layers is the class field.

developer documentation 71

Class Aggregated Types

motorway motorway

motorway_link motorway_link

driveway driveway

main primary, primary_link, trunk, trunk_link, sec-
ondary, secondary_link, tertiary, tertiary_link

street residential, unclassified, living_street, road,
raceway

street_limited pedestrian, construction, private

service service, track, alley. spur, siding, crossover

path path, cycleway, ski, steps, bridleway, footway

major_rail rail, monorail, narrow_gauge, subway

aerialway chair_lift, mixed_lift, drag_lift, platter, t-bar,
magic_carpet, gondola, cable_car, rope_tow,
zip_line, j-bar, canopy

golf hole

admin

This layer contains the administrative boundary lines. These are based on Natural Earth data
on lower zoom levels (0-6) and OSM data (7-14) on upper zoom levels.

Administrative Levels

The administrative levels are in the admin field.

Value Aggregated Types

2 countries

4 states, provinces

The disputed field should be used to apply a dashed or otherwise distinct style to disputed
boundaries.

Maritime Boundaries

The maritime field can be used as a filter to downplay or hide maritime boundaries, which
are often not shown on maps.

Localrank

The country_label layer contains the labels of all countries with translated names.

Localrank

The scalerank field is used to hide or show the label based on the importance, size and
available room.

developer documentation 72

marine_label

The marine_label layer contains labels for marine features such as oceans, seas, large lakes
and bays. The labelrank is used to hide or show the label based on the importance, size and
available room.

state_label

The layer state_label contains labels for large provinces in large countries such as China, USA,
Russia, Australia and UK.

place_label

The layer place_label contains labels for cities.

Scalerank

The scalerank is used to hide or show the label based on the importance, size and available
room.

Localrank

The localrank field can be used to adjust the label density by showing fewer labels.

water_label

The layer water_label contains labels for bodies of water such as lakes.

road_label

The layer road_label uses the same classification as the layer road.

waterway_label

The layer waterway_label contains labels for rivers.

housenum_label

This layer contains points used to label the street number parts of specific addresses. Both
housenumber polygons and points were mapped to a single layer. The house_num field coun-
tains house and building numbers.

poi_label

The poi_label layer is used to place icons and labels for various point of interests.

developer documentation 73

Names

Names are available in all languages (name, name_en, name_de, name_fr, name_es, name_ru,
name_zh).

Scalerank

The scalerank of a POI is determined by the area.

Scalerank Description

1 The POI has a very large area >145000

2 The POI has a medium-large area >12780

3 The POI has a small area 2960 or is a station

4 The POI has no known area

Localrank

The localrank field can be used to adjust the label density by showing fewer labels. The local-
rank is a whole number which starts at 1 and groups places in a grid by their importance.
Importance of POIs are weighted in the following order:

1. station, subway_entrance, park, cemetery, bank, supermarket, car, library, university, col-
lege, police, townhall, courthouse

2. nature_reserve, garden, public_building

3. stadium

4. hospital

5. zoo

6. university, school, college, kindergarten

7. supermarket, department_store

8. nature_reserve, swimming_area

9. attraction

Maki Labels and Types

The type field in the poi_label layer is mapped to the appropriate Maki label which can be
queried in maki. Types are stored in a human readable format in the data where chair_lift
becomes Chair lift so you can use the type field for as label.

B I B L I O G R A P H Y

[1] Axismaps.github.io. Labeling and text hierarchy in cartography, 2015. URL
https://axismaps.github.io/thematic-cartography/articles/labeling.html.
Visited on 2015-12-14.

[2] Josh Berkus, Josh Berkus, and View profile. Database soup: Running with scissors mode,
2015. URL
http://www.databasesoup.com/2015/02/running-with-scissors-mode.html. Visited
on 2015-12-14.

[3] Chris.beams.io. How to write a git commit message, 2015. URL
http://chris.beams.io/posts/git-commit/. Visited on 2015-12-14.

[4] Dave Cole. Mapbox streets: A global map with street level detail, 2015. URL
https://www.mapbox.com/blog/announcing-mapbox-streets/. Visited on 2015-12-14.

[5] Container42.com. Persistent volumes with docker - data-only container pattern ·
container42, 2015. URL http://container42.com/2013/12/16/

persistent-volumes-with-docker-container-as-volume-pattern/. Visited on
2015-12-14.

[6] Docs.docker.com. Best practices for writing dockerfiles, 2015. URL
https://docs.docker.com/engine/articles/dockerfile_best-practices/. Visited on
2015-12-14.

[7] Docs.docker.com. Docker compose, 2015. URL https://docs.docker.com/compose/.
Visited on 2015-12-14.

[8] Download.geofabrik.de, 2015. URL http://download.geofabrik.de/. Visited on
2015-12-14.

[9] Eslint.org. Eslint - pluggable javascript linter, 2015. URL http://eslint.org/. Visited
on 2015-12-14.

[10] Node.js Foundation. Node.js, 2015. URL https://nodejs.org/en/. Visited on
2015-12-14.

[11] Julien Gaffuri. Toward web mapping with vector data. In Geographic Information Science,
pages 87–101. Springer, 2012.

[12] Gdal.org. Gdal: ogr2ogr, 2015. URL http://www.gdal.org/ogr2ogr.html. Visited on
2015-12-14.

[13] GitHub. Mapbox carto css, 2014. URL
https://github.com/mapbox/carto/blob/master/docs/latest.md. Visited on
2015-12-14.

[14] GitHub. Awesome vector tiles, 2015. URL
https://github.com/mapbox/awesome-vector-tiles. Visited on 2015-12-14.

74

https://axismaps.github.io/thematic-cartography/articles/labeling.html
http://www.databasesoup.com/2015/02/running-with-scissors-mode.html
http://chris.beams.io/posts/git-commit/
https://www.mapbox.com/blog/announcing-mapbox-streets/
http://container42.com/2013/12/16/persistent-volumes-with-docker-container-as-volume-pattern/
http://container42.com/2013/12/16/persistent-volumes-with-docker-container-as-volume-pattern/
https://docs.docker.com/engine/articles/dockerfile_best-practices/
https://docs.docker.com/compose/
http://download.geofabrik.de/
http://eslint.org/
https://nodejs.org/en/
http://www.gdal.org/ogr2ogr.html
https://github.com/mapbox/carto/blob/master/docs/latest.md
https://github.com/mapbox/awesome-vector-tiles

bibliography 75

[15] GitHub. Tessera vector tile server, 2015. URL https://github.com/mojodna/tessera.
Visited on 2015-12-14.

[16] GitHub. Mapbox tilelive, 2015. URL https://github.com/mapbox/tilelive. Visited on
2015-12-14.

[17] GitHub. Tilemaker, 2015. URL https://github.com/systemed/tilemaker. Visited on
2015-12-14.

[18] GitHub. Vector tile specification, 2015. URL
https://github.com/mapbox/vector-tile-spec/tree/master/1.0.1. Visited on
2015-12-14.

[19] GitHub. A command line alternative to tilelive, 2015. URL
https://github.com/mojodna/tl. Visited on 2015-12-14.

[20] GitHub. Osm2pgsql default schema, 2015. URL
https://github.com/openstreetmap/osm2pgsql/blob/master/default.style. Visited
on 2015-12-14.

[21] GitHub. Mapbox osm bright visual style, 2015. URL
https://github.com/mapbox/mapbox-studio-osm-bright.tm2. Visited on 2015-12-14.

[22] GitHub. Osm2vectortiles project, 2015. URL
https://github.com/osm2vectortiles/osm2vectortiles. Visited on 2015-12-14.

[23] GitHub. Osm2vectortiles project thesis, 2015. URL
https://github.com/osm2vectortiles/osm2vectortiles-thesis. Visited on
2015-12-14.

[24] Klokan GmbH. Klokan technologies, 2015. URL http://www.klokantech.com/. Visited
on 2015-12-14.

[25] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps.
Pervasive Computing, IEEE, 7(4):12–18, 2008.

[26] Imposm.org. Imposm3 diff import, 2015. URL
http://imposm.org/docs/imposm3/latest/tutorial.html#diff. Visited on 2015-12-14.

[27] Imposm.org. Imposm, 2015. URL http://imposm.org/. Visited on 2015-12-14.

[28] Imposm.org. Data mapping — imposm3 3.0.0a documentation, 2015. URL
http://imposm.org/docs/imposm3/latest/mapping.html. Visited on 2015-12-14.

[29] Imposm.org. Database schema, 2015. URL
http://imposm.org/docs/imposm/latest/database_schema.html. Visited on
2015-12-14.

[30] Kitematic. Kitematic, 2015. URL https://kitematic.com/. Visited on 2015-12-14.

[31] Kfir Lavi. Defensive bash programming, 2012. URL
http://www.kfirlavi.com/blog/2012/11/14/defensive-bash-programming/. Visited
on 2015-12-14.

[32] Leafletjs.com. Leaflet, 2015. URL http://leafletjs.com/. Visited on 2015-12-14.

https://github.com/mojodna/tessera
https://github.com/mapbox/tilelive
https://github.com/systemed/tilemaker
https://github.com/mapbox/vector-tile-spec/tree/master/1.0.1
https://github.com/mojodna/tl
https://github.com/openstreetmap/osm2pgsql/blob/master/default.style
https://github.com/mapbox/mapbox-studio-osm-bright.tm2
https://github.com/osm2vectortiles/osm2vectortiles
https://github.com/osm2vectortiles/osm2vectortiles-thesis
http://www.klokantech.com/
http://imposm.org/docs/imposm3/latest/tutorial.html#diff
http://imposm.org/
http://imposm.org/docs/imposm3/latest/mapping.html
http://imposm.org/docs/imposm/latest/database_schema.html
https://kitematic.com/
http://www.kfirlavi.com/blog/2012/11/14/defensive-bash-programming/
http://leafletjs.com/

bibliography 76

[33] Mapbox. Atlas server, 2015. URL https://www.mapbox.com/atlas/. Visited on
2015-12-14.

[34] Mapbox.com. Maki | a clean point of interest icon set from mapbox | mapbox, 2015.
URL https://www.mapbox.com/maki/. Visited on 2015-12-14.

[35] Mapbox.com. Mapbox terrain | mapbox, 2015. URL
https://www.mapbox.com/developers/vector-tiles/mapbox-terrain/. Visited on
2015-12-14.

[36] Mapbox.com. Mapbox streets v6 | mapbox, 2015. URL
https://www.mapbox.com/developers/vector-tiles/mapbox-streets-v6/. Visited on
2015-12-14.

[37] Mapbox.com. Mapbox streets v5 | mapbox, 2015. URL
https://www.mapbox.com/developers/vector-tiles/mapbox-streets-v5/. Visited on
2015-12-14.

[38] Mapbox.com. Vector tiles | mapbox, 2015. URL
https://www.mapbox.com/developers/vector-tiles/. Visited on 2015-12-14.

[39] Mapbox.com. Mapbox studio classic source manual | mapbox, 2015. URL
https://www.mapbox.com/help/source-manual/#buffers. Visited on 2015-12-14.

[40] Mapbox.com. Mapbox studio classic source manual | mapbox, 2015. URL
https://www.mapbox.com/help/source-manual/#overzooming. Visited on 2015-12-14.

[41] Mapbox.com. Mapbox | design and publish beautiful maps, 2015. URL
https://www.mapbox.com/mapbox-studio-classic/. Visited on 2015-12-14.

[42] Mapbox.com. Mapbox gl, 2015. URL https://www.mapbox.com/mapbox-gl-js/api/.
Visited on 2015-12-14.

[43] Mapzen.com. Mapzen vector tile service, 2015. URL
https://mapzen.com/projects/vector-tiles/. Visited on 2015-12-14.

[44] Mapzen.com. Mapzen about, 2015. URL https://mapzen.com/about/. Visited on
2015-12-14.

[45] Mediawiki.org. Wikimedia maps, 2015. URL https://www.mediawiki.org/wiki/Maps.
Visited on 2015-12-14.

[46] Mike.teczno.com. the liberty of postgreslessness: tiled vectors in mapnik (tecznotes),
2013. URL http://mike.teczno.com/notes/postgreslessness-mapnik-vectiles.html.
Visited on 2015-12-14.

[47] Naturalearthdata.com. Natural earth, 2015. URL http://www.naturalearthdata.com/.
Visited on 2015-12-14.

[48] Naturalearthdata.com. Populated places | natural earth, 2015. URL http://www.

naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/.
Visited on 2015-12-14.

https://www.mapbox.com/atlas/
https://www.mapbox.com/maki/
https://www.mapbox.com/developers/vector-tiles/mapbox-terrain/
https://www.mapbox.com/developers/vector-tiles/mapbox-streets-v6/
https://www.mapbox.com/developers/vector-tiles/mapbox-streets-v5/
https://www.mapbox.com/developers/vector-tiles/
https://www.mapbox.com/help/source-manual/#buffers
https://www.mapbox.com/help/source-manual/#overzooming
https://www.mapbox.com/mapbox-studio-classic/
https://www.mapbox.com/mapbox-gl-js/api/
https://mapzen.com/projects/vector-tiles/
https://mapzen.com/about/
https://www.mediawiki.org/wiki/Maps
http://mike.teczno.com/notes/postgreslessness-mapnik-vectiles.html
http://www.naturalearthdata.com/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/

bibliography 77

[49] Naturalearthdata.com. Lakes + reservoirs | natural earth, 2015. URL
http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-lakes/.
Visited on 2015-12-14.

[50] Naturalearthdata.com. Admin 0 – countries | natural earth, 2015. URL http://www.

naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/.
Visited on 2015-12-14.

[51] Naturalearthdata.com. Admin 1 – states, provinces | natural earth, 2015. URL
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/

10m-admin-1-states-provinces/. Visited on 2015-12-14.

[52] Naturalearthdata.com. Admin 0 – breakaway, disputed areas | natural earth, 2015. URL
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/

10m-admin-0-breakaway-disputed-areas/. Visited on 2015-12-14.

[53] Openlayers.org. Openlayers 3, 2015. URL http://openlayers.org/. Visited on
2015-12-14.

[54] Openstreetmapdata.com. Openstreetmapdata, 2015. URL
http://openstreetmapdata.com/. Visited on 2015-12-14.

[55] Openstreetmapdata.com. Water polygons | data | openstreetmapdata, 2015. URL
http://openstreetmapdata.com/data/water-polygons. Visited on 2015-12-14.

[56] Pgtune.leopard.in.ua. Pgtune, 2015. URL http://pgtune.leopard.in.ua/. Visited on
2015-12-14.

[57] Postgresql.org. Postgresql: Documentation: 9.3: Introduction, 2015. URL
http://www.postgresql.org/docs/9.3/static/gist-intro.html. Visited on
2015-12-14.

[58] Tom Preston-Werner. Semantic versioning, 2015. URL http://semver.org/. Visited on
2015-12-14.

[59] Python.org. Python pep 8, 2015. URL https://www.python.org/dev/peps/pep-0008/.
Visited on 2015-12-14.

[60] Python.org. Python pep 20, 2015. URL https://www.python.org/dev/peps/pep-0020/.
Visited on 2015-12-14.

[61] Dane Springmeyer. Mapbox vector tile specification adopted by esri, 2015. URL
https://www.mapbox.com/blog/vector-tile-adoption/. Visited on 2015-12-14.

[62] Travis-ci.org. Travis ci, 2015. URL http://travis-ci.org. Visited on 2015-12-14.

[63] Atlassian Git Tutorial. Feature branch workflow, 2015. URL https://www.atlassian.

com/git/tutorials/comparing-workflows/feature-branch-workflow/. Visited on
2015-12-14.

[64] Wikimediafoundation.org. Wikimedia foundation, 2015. URL
https://wikimediafoundation.org/wiki/. Visited on 2015-12-14.

[65] Wiki.openstreetmap.org. Osm xml - openstreetmap wiki, 2015. URL
https://wiki.openstreetmap.org/wiki/OSM_XML. Visited on 2015-12-14.

http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-lakes/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-1-states-provinces/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-1-states-provinces/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-breakaway-disputed-areas/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-breakaway-disputed-areas/
http://openlayers.org/
http://openstreetmapdata.com/
http://openstreetmapdata.com/data/water-polygons
http://pgtune.leopard.in.ua/
http://www.postgresql.org/docs/9.3/static/gist-intro.html
http://semver.org/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
https://www.mapbox.com/blog/vector-tile-adoption/
http://travis-ci.org
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow/
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow/
https://wikimediafoundation.org/wiki/
https://wiki.openstreetmap.org/wiki/OSM_XML

bibliography 78

[66] Wiki.openstreetmap.org. Tags - openstreetmap wiki, 2015. URL
http://wiki.openstreetmap.org/wiki/Tags. Visited on 2015-12-14.

[67] Wiki.openstreetmap.org. Overpass api - openstreetmap wiki, 2015. URL
https://wiki.openstreetmap.org/wiki/Overpass_API. Visited on 2015-12-14.

[68] Wiki.openstreetmap.org. mod_tile, 2015. URL
http://wiki.openstreetmap.org/wiki/Mod_tile. Visited on 2015-12-14.

[69] Wiki.openstreetmap.org. Databases and data access apis - openstreetmap wiki, 2015.
URL http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs#

Database_Schemas. Visited on 2015-12-14.

[70] Wiki.openstreetmap.org. Osm2pgsql - openstreetmap wiki, 2015. URL
http://wiki.openstreetmap.org/wiki/Osm2pgsql. Visited on 2015-12-14.

[71] wiki.openstreetmap.org. Osm planet diffs, 2015. URL
http://wiki.openstreetmap.org/wiki/Planet.osm/diffs. Visited on 2015-12-14.

[72] Wiki.openstreetmap.org. Osm2pgsql schema, 2015. URL
http://wiki.openstreetmap.org/wiki/Osm2pgsql/schema. Visited on 2015-12-14.

[73] Wiki.openstreetmap.org. Osm2pgsql import style, 2015. URL
http://wiki.openstreetmap.org/wiki/Osm2pgsql#Import_style. Visited on
2015-12-14.

[74] Wiki.openstreetmap.org. 64-bit identifiers - openstreetmap wiki, 2015. URL
https://wiki.openstreetmap.org/wiki/64-bit_Identifiers. Visited on 2015-12-14.

[75] Wiki.openstreetmap.org. Key:name - openstreetmap wiki, 2015. URL
https://wiki.openstreetmap.org/wiki/Key:name. Visited on 2015-12-14.

[76] Wiki.openstreetmap.org. Tagfinder - openstreetmap wiki, 2015. URL
https://wiki.openstreetmap.org/wiki/TagFinder. Visited on 2015-12-14.

[77] Wiki.openstreetmap.org. Pbf format - openstreetmap wiki, 2015. URL
http://wiki.openstreetmap.org/wiki/PBF_Format. Visited on 2015-12-14.

[78] Wiki.openstreetmap.org. Slippy map, 2015. URL
http://wiki.openstreetmap.org/wiki/Slippy_Map. Visited on 2015-12-14.

[79] Wikipedia. Don’t repeat yourself, 2015. URL https:

//en.wikipedia.org/w/index.php?title=Don%27t_repeat_yourself&oldid=691047461.
Visited on 2015-12-14.

[80] Wikipedia. Apple maps — wikipedia, the free encyclopedia, 2015. URL
https://en.wikipedia.org/w/index.php?title=Apple_Maps&oldid=691885907. Visited
on 2015-11-25.

[81] Wikipedia. Google maps — wikipedia, the free encyclopedia, 2015. URL
https://en.wikipedia.org/w/index.php?title=Google_Maps&oldid=692381008.
Visited on 2015-11-25.

[82] Wiki.postgresql.org. Tuning your postgresql server - postgresql wiki, 2015. URL
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server. Visited on
2015-12-14.

http://wiki.openstreetmap.org/wiki/Tags
https://wiki.openstreetmap.org/wiki/Overpass_API
http://wiki.openstreetmap.org/wiki/Mod_tile
http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs#Database_Schemas
http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs#Database_Schemas
http://wiki.openstreetmap.org/wiki/Osm2pgsql
http://wiki.openstreetmap.org/wiki/Planet.osm/diffs
http://wiki.openstreetmap.org/wiki/Osm2pgsql/schema
http://wiki.openstreetmap.org/wiki/Osm2pgsql#Import_style
https://wiki.openstreetmap.org/wiki/64-bit_Identifiers
https://wiki.openstreetmap.org/wiki/Key:name
https://wiki.openstreetmap.org/wiki/TagFinder
http://wiki.openstreetmap.org/wiki/PBF_Format
http://wiki.openstreetmap.org/wiki/Slippy_Map
https://en.wikipedia.org/w/index.php?title=Don%27t_repeat_yourself&oldid=691047461
https://en.wikipedia.org/w/index.php?title=Don%27t_repeat_yourself&oldid=691047461
https://en.wikipedia.org/w/index.php?title=Apple_Maps&oldid=691885907
https://en.wikipedia.org/w/index.php?title=Google_Maps&oldid=692381008
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

D E C L A R AT I O N

Hereby we acknowledge,

• that we conducted this thesis by ourselves and without any external help, except with
those, which are explicitly mentioned,

• that all used sources are cited academically correct, and

• that I didn’t use any copyright protected materials (e.g. images) in an unauthorized
manner.

Rapperswil, Fall 2015

Lukas Martinelli, June 16, 2016

Manuel Roth, June 16, 2016

	Abstract
	Acknowledgements
	Contents
	Technical Report
	1 Introduction
	1.1 Vision
	1.2 Goals

	2 State of Technology
	2.1 Current Vector Data Providers
	2.2 Characteristics
	2.3 Shortcomings

	3 Implementation Concept
	3.1 Vector Tile Rendering
	3.2 Tile Server
	3.2.1 Raster Tile Server
	3.2.2 Vector Tile Server

	4 Results and Future
	4.1 Results
	4.2 Future

	Project Documentation
	5 Vision
	5.1 History of Webmaps

	6 Requirements Specification
	6.1 User Characteristics
	6.2 User Stories
	6.3 Non Functional Requirements

	7 Design
	7.1 Architecture
	7.1.1 Import
	7.1.2 Export
	7.1.3 Tooling

	7.2 Deployment
	7.2.1 Import
	7.2.2 Export and Development Tools

	7.3 Workflow
	7.3.1 Import
	7.3.2 Export

	7.4 Database Schema
	7.4.1 OpenStreetMap Planet
	7.4.2 Custom Curated Labels
	7.4.3 OpenStreetMapData
	7.4.4 Natural Earth

	7.5 Layer Schema
	7.5.1 Aeroways, Barriers and Landusages
	7.5.2 Administrative Borders
	7.5.3 Roads, Bridges and Tunnels
	7.5.4 Points of Interest
	7.5.5 Water
	7.5.6 Places

	8 Technology Evaluation
	8.1 Spatial Database
	8.2 OSM Import Tool
	8.2.1 Criterias
	8.2.2 Evaluation Matrix
	8.2.3 osm2pgsql

	8.3 Vector Tile Format
	8.4 Vector Tile Server
	8.4.1 Tessera
	8.4.2 OpenStreetMap "Standard" Tile Server

	9 Implementation
	9.1 Mapping
	9.2 Database Schema
	9.2.1 OSM id
	9.2.2 Translations
	9.2.3 Type and Class

	9.3 Classification
	9.3.1 Classification Format
	9.3.2 Code Generation

	9.4 Relative Importance
	9.4.1 Calculating Rank

	9.5 PostgreSQL Performance
	9.5.1 Tuning
	9.5.2 Indizes

	9.6 Data Style
	9.6.1 Layer Definition

	9.7 Zoom Level Reference
	9.8 Reverse Engineering Process
	9.8.1 Vector Tile Format

	9.9 Quality Assurance Tools
	9.9.1 Vector Tile Compare
	9.9.2 Visual Compare

	9.10 Improvement Process
	9.11 Limitations

	10 Results and Future
	10.1 Results
	10.2 Future Development
	10.2.1 Small improvements
	10.2.2 New Features

	11 Project Management
	11.1 Software Development Process
	11.1.1 GitHub

	11.2 Schedule
	11.3 Milestones
	11.4 Project Stages
	11.5 Roles and Responsibilities
	11.6 Risks

	12 Quality Measures
	12.1 Testing
	12.2 Debug Viewer
	12.3 Visual Test
	12.4 Structural Test
	12.5 Integration Test
	12.6 Guidelines
	12.6.1 Releases
	12.6.2 Git
	12.6.3 Workflow
	12.6.4 Coding Standards

	13 Project Monitoring
	13.1 Code Statistics
	13.2 Estimated Time vs Actual Time
	13.3 Time per Person

	Appendix
	A User Documentation
	B Developer Documentation
	Bibliography
	Declaration

