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A B S T R A C T

The OSM2VectorTiles project provides free, global and regularly updated vector tiles that can
be used by anyone offline or on their own server to create state of the art maps. The vector
tiles are prerendered and can be used completely offline providing new possibilities for web
and mobile developers.

This bachelor thesis improves upon OSM2VectorTiles and adds support for prerendering the
entire world, keeping the vector tiles up to date and improve quality significantly to become
the best possible vector tile source from OpenStreetMap.

An open workflow keeping the vector tiles up to date with the millions of changes Open-
StreetMap contributors add every day has been created and can be scaled across multiple
hosts to produce vector tiles with global coverage. Due to the compatibility with Mapbox
Streets it is possible for developers to switch their vector tile source to their own tile server
avoiding vendor lock in and bringing down costs.

Since the vector tiles are available as download it is possible to create an offline version of
OpenStreetMap for Desktop and Mobile. This will provide new possibilities for mobile devel-
opers that want to create applications that need a local map.

More information can be found on the project website http://osm2vectortiles.org.
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M A N A G E M E N T S U M M A RY

Situation

Digital mapping is moving towards vector tiles to create more interactive and resolution in-
dependent cartography. Instead of delivering the image of the map to the client, the vector
representation of the data is sent to the map client.

Several vector tile providers such as Mapbox open the process to create vector tiles but still
own the vector tile data. Developers and cartographers who want to be independent from
3rd party services or have limited internet access in their applications require free and global
vector tiles to create the next generation of map applications.

Map rendered from OSM2VectorTiles vector tiles

Approach

The OSM2VectorTiles project strives to push mapping forward by providing free and high qual-
ity vector tiles with no strings attached. To make developers independent from the providers
the vector tiles can be downloaded and hosted using a tileserver of their choice. This approach
differs from all other vector tile providers and will enable new possibilities for desktop and
mobile developers creating offline map applications.

The process to improve OSM2VectorTiles is completely open and the feedback and require-
ments of the community have been the cornerstone for improving the project with most fea-
ture requests and bug reports coming from actual users.
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Result

The result of this thesis are downloadable vector tiles for the entire world and extracts for over
200 countries and 600 cities provided on the project website http://osm2vectortiles.org.
The vector tiles are compatible with the newest Mapbox Streets v7 vector tiles which allows
people to use their visual styles created with Mapbox Studio together with OSM2VectorTiles.

The workflow to create the vector tiles is available for everyone to use and is meant to be
adapted by other projects. The workflow can be scaled linearly by adding more worker ma-
chines and is a unique approach to rendering offline vector tiles with global coverage.

The vector tiles can be kept up to data by continuously applying the latest OpenStreetMap
changes and rerendering only the parts of the planet that are affected by those changes. This
enables to provide downloadable vector tiles but still keep the data up to date.

The OSM2VectorTiles project is already used in several real world projects and by pushing
the project further the result of this thesis is a living open source project that hopefully will
survive this bachelor thesis.

Project website OSM2VectorTiles providing docs, downloads and examples
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Part I

T E C H N I C A L R E P O RT



1
I N T R O D U C T I O N

1.1 vision

Vector tiles are the future of web and mobile mapping. The next generation of maps is only
possible with free and open vector tile sources. The goal of OSM2VectorTiles is to push map-
ping forward by providing vector tiles that are produced using an open process, completely
free of charge and can be used offline. Encouraged by the existing real users of the project
further improvements need to be done to meet the requirements of developers and cartogra-
phers using the project to create custom OSM maps without building up their own rendering
pipeline.

1.2 problems

The focus of this bachelor thesis lies on three major problems that need to be solved.

Defining Mapbox Vector Tiles (Chapter 3)

The vector tiles need to meet certain cartographic standards to enable cartographers to create
high quality maps. Creating a global base map from scratch is a huge undertaking with several
interesting problems like label placement, importance ranking and fitting the right data into
less space. Focusing on quality and compatibility with Mapbox Streets v7 makes the project
truly usable for the end users which expect a high quality map and lets existing users switch
over to OSM2VectorTiles more easily.

Scalable rendering process (Chapter 4)

The global vector tiles should be rendered within a reasonable time-frame to meet project
deadlines and enable developers to iterate quickly on the vector tiles. The sheer amount of
tiles makes it impossible for a single process to render the entire planet. By distributing the
process on multiple machines the time for rendering the planet can be significantly reduced
only limited by the amount of infrastructure available. The solution to this problem will serve
as example how to distribute a tile rendering pipeline and enabling vector tiles with global
coverage.

Updatable vector tiles (Chapter 5)

OpenStreetMap contributors add up to three million nodes every day[7]. Keeping a map up to
date is of significant relevance to the users of the vector tiles and the contributors. The vector
tiles should be released in a regular interval. However rerendering the entire planet using the
scalable rendering process is not feasible due to the infrastructure costs. By calculating the
tiles that will change in advance and only render those tiles a single machine can keep the
vector tiles up to date making the project sustainable for long term.
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1.3 preceding study thesis 3

1.3 preceding study thesis

The OSM2VectorTiles project originated from the preceding study thesis in the fall semester
of 2015 with the same vision as the bachelor thesis to allow anyone to create custom Open-
StreetMap maps without managing complex infrastructure.

results of study thesis

• Workflow for generating vector tiles (not meant to scale for rendering entire planet)

• Mapbox Streets v5 compatible vector tiles of Switzerland

The scope of the study thesis was to create a repeatable workflow for generating vector tiles
based on OpenStreetMap data. The study thesis focus lied on solving the problem of creating
a basemap and implementing Mapbox Streets v5 at small scale (Chapter 3) and delivered
prerendered vector tile data for Switzerland as result.
This workflow was intended to run on a single machine and was not meant to scale for
rendering the entire planet (Chapter 4) or keeping the vector tiles up to date (Chapter 4).

1.4 real world usage examples

OSM2VectorTiles is already used in real projects which confirms the demand for such a project.
The examples show the potential use cases and customers of prerendered vector tiles.

• MapHub.net allows you to create interactive customizable maps to organize your own
geo-data. It is using OSM2VectorTiles based basemaps to provide a variety of basemaps
to choose from for it’s users.

• The GeoPortal of Mecklenburg County GIS is using OSM2VectorTiles in combination
with custom data as a basemap to present important information to citizens.

• The Helsinki Regional Transport Authority (HSL) is using OSM2VectorTiles as source
with a custom style to provide map services to other developers as part of the Digitransit
platform.



2
T H E O RY

This chapter describes the underlying concepts which are used throughout the thesis.

2.1 openstreetmap data model

The data model of OpenStreetMap consists of objects of type node, way and relation. Nodes
define points in space, ways define linear features and relations define how objects relate to
each other[6].

Figure 1: Example of object tagged natural=wood

Every object can have one or more tags associated with it. Tags define the meaning of a certain
object. A tag consists of a key/value pair for example the tag natural=wood is used to define
areas which are covered in trees. OpenStreetMap tags are not strictly defined and users can
add their own tags but there are many conventions which should be followed.

The semi-structured OpenStreetMap data model is transformed a structured database schema
as explained in Section 3.2.1. Nodes, ways and relations are converted into real geometries. A
way for example is turned into a polygon because it is a closed way where the first and last
node are shared[4].
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2.2 vector tiles 5

2.2 vector tiles

Instead of delivering a image of the map to a client like a browser or mobile phone, only
the vector representation of the data is sent to the client which is using less data and allows
more interactive, dynamic and resolution independent cartography. This is only possible since
clients have more powerful hardware and are able to render maps themselves.

Figure 2: Vector and client representation of a map section

Google introduced the XYZ tiling scheme
[8] back in 2005 because it is not scalable
to deliver an image of the map tailored to
the viewport of the client. The idea is to
divide the map image into a grid as shown
in Figure 3 where clients request idempotent
raster images by using tile indizes instead
of coordinates. This allows caching on the
browser and server side and results in a
smoother map experience. The same ap-
proach can be applied to vector data. Instead
of delivering the vector data for the entire
viewport the vector data is sliced into tiles.

Vector tiles contain all the geometry and
metadata needed for a specific tile. This
makes them more flexible than serving
raster tiles, because a different style can
be applied on the fly. For example based
on the language preference of the browser
language-specific city labels can be shown.

Figure 3: Tiled raster map



2.3 mapbox vector tile specification 6

2.3 mapbox vector tile specification

The Mapbox Vector Tile Specification defines how to encode tiled vector data using Protocol
Buffers[14]. More details about the encoding and internal structure of vector tiles can be found
in the specification[18].

The data inside of vector tiles is structured into layers and features. A vector tile can have
multiple layers such as roads, landuse or water (elaborated in Section 8.2). Each layer consists
of one or multiple features and must have a unique name. A feature contains a geometry field
(either of type point, linestring or polygon) and metadata (tags) such as label translations. The
metadata key-value pairs are stored in the layer as arrays of keys and values. The tags on the
feature only reference the key and value by their index. This helps to keep the file size small
since only the unique values and keys need to be stored and can be referenced by multiple
features. Keys can only be strings while values can have different types such as string, double
or integer.

Figure 4: Vector Tile Structure

The extent field defines the width and height of the tile coordinates (the vector tile resolu-
tion) which is relevant for encoding the geometry of a feature as shown in Figure 5. For
OSM2VectorTiles the resolution of 4096 coordinate units has been chosen.



2.4 xyz coordinate schema 7

The geographic coordinates of the geometries
are converted into relative coordinates inside
the vector tile. Vector tiles are encoded as
commands for a virtual pen (the rendering
client). Drawing the polygon from Figure 5

results in the commands from Listing 1.

1. Move to the starting point (3, 1) relative
to the top left corner

2. Draw line from current pen position to
(3, 3). Since the target position is en-
coded relative to the current position
the encoded geometries take up less
space.

3. Draw line from current position (6, 4)
to (-4, 2)

4. Close path of current position (2, 6)
with last used starting point (3, 1)

Figure 5: Vector tile grid with encoded geometry

LineTo(3,1)
LineTo(3,3)
LineTo(-4,2)
ClosePath()

Listing 1: Geometry inside vector tile encoded as
drawing commands

2.4 xyz coordinate schema

For tiling the vector tiles the XYZ numbering
schema has been used. The tiles are orga-
nized in a 3-dimensional coordinate system
(x/y/z) where x and y represent the axes and
z the zoom level. As users zoom into a map
each tile is replaced by four children within
the tile.

The map in mercator projection is di-
vided into the x and y axis. The x axis
reaches from 0 to 2

z (from left to right edge
of map) and the y axis from 0 to 2

z (from top
to bottom edge of map).

Figure 6: XYZ coordinate schema



3
D E F I N I N G M A P B O X V E C T O R T I L E S

The main requirement regarding the content of the vector tiles is to be compatible with the
vector tiles of Mapbox. This allows people to seamlessly switch to OSM2VectorTiles and use
the same visual styles created with Mapbox Studio.

3.1 approach

Mapbox’s tileset is called Mapbox Streets. Mapbox provides detailed documentation on what
data is included in the Mapbox Streets vector tiles. The documentation contains a layer ref-
erence which defines the attributes a layer can have. However the zoom levels at which data
is shown is not documented publicly as well as the OpenStreetMap tags and constraints de-
scribing the data. To be able to reverse engineer Mapbox Streets this information had to be
retrieved by analyzing the official Mapbox Streets vector tiles at different zoom levels.
In an iterative and time consuming process the mapping and queries were continuously im-
proved until the vector tile output matches the data from Mapbox Streets very closely.

3.2 implementation

This section describes the main components which needed to be implemented in order to
generate Mapbox Streets compatible vector tiles.

Figure 7: Simplified process from data import to vector tile rendering

8



3.2 implementation 9

3.2.1 Import Mapping

Imposm3[16] is used to import the OpenStreetMap data into the PostgreSQL database. Im-
posm3 satisfies the two purposes of filtering and mapping the OpenStreetMap data.

filter data The mapping allows to filter explicitly by tags and defines which data is
imported. This is important since only a subset of all OpenStreetMap data is included in the
vector tiles and therefore not all OpenStreetMap data needs to be imported.

mapping data The mapping allows to map OpenStreetMap key/value pairs to a certain
database table creating a structured and organized schema from semi-structured data. It takes
care of constructing actual geometries from the OpenStreetMap data model (Section 2.1).

The example definition in listing 2 maps OpenStreetMap tags with the key building and any
value associated with that key into the table building_polygon. The building_polygon table
has the columns id, geometry, underground, timestamp and type. The underground column
in the database originates from the normalized value associated with the OpenStreetMap key
building:levels:underground.
During the import process Imposm3 transformes the OpenStreetMap nodes, ways and relations
to one of the geometry types point, linestring or polygon. The mapping is one of the most
important aspects of the project and maps more than 400 individual tags.

building_polygon:
type: polygon
fields:
- name: id

type: id
- name: geometry

type: geometry
- name: underground

key: building:levels:underground
type: integer

- name: timestamp
type: pbf_timestamp

mapping:
building:
- __any__

Listing 2: YAML definition of a single table in the import mapping



3.2 implementation 10

3.2.2 Zoom Level Views

After the import process all OpenStreetMap data which is required for the vector tiles is stored
in the database. Since only a subset of the data in the tables is shown on a given zoom level,
SQL views for each zoom level and layer were created. The zoom level views filter the tables
to the rows which are shown on a given zoom level.

Figure 8: Difference of zoom level view 13 and 14 in buildings layer

Figure 8 shows on the left side the building layer on zoom level 13 and on the right side the
same layer on zoom level 14. On zoom level 13 only a subset of the data shown on zoom level
14 is visible. This is a classic example of using zoom level views to provide more details on
higher zoom levels.
Listing 3 shows the definition of the SQL views on both zoom levels. The WHERE clause in
the query of the view building_z13 filters the rows to buildings which have an area greater
than 1700. That is the reason why less buildings are shown on right side of Figure 8.

CREATE OR REPLACE VIEW building_z13 AS
SELECT id AS osm_id, underground, geometry
FROM osm_building_polygon
WHERE ST_Area(geometry) > 1700;

CREATE OR REPLACE VIEW building_z14 AS
SELECT id AS osm_id, underground, geometry
FROM osm_building_polygon;

Listing 3: Definition of zoom level views of building layer

Additionally zoom level views help to decouple the database tables which hold the actual
data and the definition of the layer. This is very helpful for example if new data is added to a
layer, as only the import mapping and the zoom level views need to be modified.
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3.2.3 Layer Definition

The source project contains the definition of the layers inside the vector tiles. The definition
contains metadata to access the database and a query which returns the necessary data for
this layer. The listing 4 shows the definition of the layer building. The query does not di-
rectly access the database table building_polygon. Instead it queries the zoom level views
building_z13 and building_z14.

- id: aeroway
Datasource:
type: postgis
table: |-

(
SELECT osm_ids2mbid(osm_id, is_polygon(geometry)) AS osm_id,

geometry, building_is_underground(underground) AS underground
FROM (

SELECT * FROM building_z13
WHERE z(!scale_denominator!) = 13
UNION ALL
SELECT * FROM building_z14
WHERE z(!scale_denominator!) = 14

) AS building WHERE geometry && !bbox!
) AS data

properties:
"buffer-size": 4

Listing 4: Definition of layer aeroway in the vector tile source project

The layer definition serves as input to the vector tile renderer (Mapnik). The tile renderer
will execute every layer query for each tile and replaces expressions like !scale_denominator!
(zoom level) and !bbox! (extent of the tile) with the values of the current tile. If the query in
listing 4 is executed for a tile on zoom level 12 it won’t return any data as the WHERE clause
will not match in both cases. Whereas if it is executed on a tile on zoom level 13 all data of the
zoom level view building_z13 will be included in the layer building.

Figure 9: Layer road, water, and building features on same map
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3.2.4 Relation between Database Tables, Zoom Level Views and Layers

The Figure 10 shows how the database tables, zoom level views and layers are related to
each other. This architecture helps to structure the OpenStreetMap data inside the database
and opens the possibility to optimize single zoom levels individually. The arrow in Figure 10

describes the data flow.

Figure 10: Data flow between database tables, zoom level views and layer

3.3 problems and optimizations

During the development process of the map a number of problems were discovered and opti-
mizations were implemented. This section explains the most interesting problems in detail.

3.3.1 Avoid Expensive Transformations in Zoom Level Views

The purpose of the zoom level views is to filter the data to only contain rows that are shown
on a specific zoom level. Expensive calculations or transformations should be avoided in these
views or made in a preprocessing step.

For example there are multiple label layers which transform a polygon geometry to a point
geometry and since calculating the centroid from a polygon is expensive, transformations like
these result in bad rendering performance.
The reason for this is that every time the layer query gets executed, all rows of the view get
transformed even though only a subset of the data is needed for the rendered tile (Figure 12).
Therefore selecting the right rows and only executing the transformation on the smallest pos-
sible subset results in much better performance (Figure 11).
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Figure 11: Point calculation in layer definition

Figure 12: Point calculation in zoom level view

3.3.2 Classification Functions

OpenStreetMap contains a complex taxonomy of tags mapping to real-world objects. The tags
are structured into layers but cartographers need another level of abstraction to style groups
of features. For example designers want to set the color of all parks to green instead of styling
tags such as dog parks, gardens and playground individually. Therefore closely related tags
are grouped together and are stored in the class field. This process is called classification and
is essentially a mapping of many tag values to a single value.

These classifications cover more than 400 individual tags grouped into more than 100 groups
and are implemented by SQL functions as in listing 5. These class definitions are written in a
YAML based format from which the SQL classification functions are generated.
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CREATE OR REPLACE FUNCTION landuse_class(type VARCHAR) RETURNS VARCHAR
AS $$
BEGIN

RETURN CASE
WHEN type IN (’park’, ’dog_park’, ’garden’, ’playground’) THEN ’park’
WHEN type IN (’school’, ’college’, ’university’) THEN ’school’
WHEN type IN (’cemetery’, ’christian’, ’jewish’) THEN ’cemetery’

END;
END;
$$ LANGUAGE plpgsql IMMUTABLE;

Listing 5: Definition of classification helper function

The listing 5 shows the simplified class function of the layer landuse. It takes the type value
as input and returns the correct class value.

3.3.3 OpenStreetMap ID Transformation

The data model of OpenStreetMap consists of nodes, ways and relations. Every object gets its
own OSM id assigned. This id is not unique across object types. Therefore one can find three
objects with the same id but with a different object type.
While this works perfectly fine for OpenStreetMap, this represents a problem because during
the import process these OpenStreetMap objects get transformed to PostGIS geometries. Objects
of different types can get transformed to the same PostGIS geometry and therefore their ids
would collide.
In order to prevent this, the ids need to be transformed according to Table 1 to make OSM ids
unique within vector tiles [17].

OSM type Geometry type OpenStreetMap ID transform

node point id x 10

way linestring (id x 10) + 1

way polygon + polygon label points (id x 10) + 2

relation linestring (id x 10) + 3

relation polygon + polygon label points (id x 10) + 4

Table 1: OSM id transformation

3.3.4 Place Label Rank Calculation

Ranks are important for determining at which zoom level which places should be displayed.
The NaturalEarth database contains places with scaleranks assigned by humans and is the
most important source for better quality labels (historic places might be much more impor-
tant despite having a very small population). This dataset is merged with the imported Open-
StreetMap data. They can also be used to limit density at lower zoom levels to decrease data
density. Using the scalerank and other information such as place type and population the
actual rank called localrank is calculated. An example of localrank calculation can be seen in
figure Figure 13 (localrank is denoted as number inside circle).
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Algorithm

1. Divide map into grid

2. Group labels by tile index

3. Sort labels by scalerank, type and pop-
ulation within group

a) By scalerank ascending

b) By type city, town, village, hamlet,
suburb, neighbourhood

c) By population descending

4. Use the row number of the sorted labels
as localrank for each feature

Figure 13: Localrank calculation



4
S C A L A B L E R E N D E R I N G P R O C E S S

Rendering the planet file from zoom level 0 to zoom level 14 requires
P14

i=1 4
i = 357 913 941

tiles to be rendered. Rendering this amount of tiles serially is no longer possible due to two
reasons.

• The rendering process might fail and progress is lost

• A single worker process takes approximately 276 days to render the planet with a
throughput of 54 000 tiles per hour

To solve these problems two measurements described in Section 4.1 and Section 4.2 have been
taken.

4.1 split rendering process into jobs

The rendering process (Mapnik) renders tiles within the given bounding box into a SQLite
database (MBTiles). To adapt the process the global bounding box needs to be divided into
many smaller bounding boxes and the many small SQLite databases need to be merged to-
gether into a large planet SQLite database at the end of the process. The unit of a job therefore
is a bounding box derived from a XYZ tile index (pyramid job Section 4.1.1) or a list of tiles
(list job Section 4.1.2).

Figure 14: Adapt rendering process to divide work and merge it back together

16
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4.1.1 Pyramid Job

To divide the work of rendering the planet into equal parts across the world, the XYZ coordi-
nate schema described in Section 2.4 is used to divide the planet into several subpyramids. A
pyramid job means that the worker needs to not only render the given tile index but also all
descendant tiles down to the maximum zoom level (the entire tile subpyramid).

Algorithm

1. Choose job zoom level z and maximum zoom level Z

2. Calculate the 4

z tiles for job zoom level

3. Convert XYZ tile index into a WGS84 bounding box

4. Render bounding box from zoom level z down to the maximum zoom level Z

Figure 15: Pyramid job of a zoom level 2 tile and the descendants

Example

Given the job zoom level z = 8 and the max
zoom level Z = 14 the planet is divided into
4

8 jobs. This means each subpyramid task
consists of rendering all descendant tiles
from a tile at zoom level 8. Each job therefore
consists of

P6
i=0 4

i = 5 461 tiles that need to
be rendered.

Figure 16: Map divided into tasks at job zoom
level 8
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4.1.2 List Job

It is important to be able to update distinct tiles to fix bugs later
on or rerender all changed geometries. A list job is a batch job
of tiles grouped together by their proximity and is created from
a large list of tiles.

Each week a list of changed tile indizes is produced by the
changed tiles detection (20 000 000 to 30 000 000 tiles). This list
must be split into batch jobs where each job contains several
thousand tiles that need to be rendered. Since PostgreSQL has
been configured to cluster rows together by the tile index of the
geometry column it is possible to gain additional performance
by grouping the tiles that are close to each other into a batch
job.

Algorithm

To group tiles that are in close proximity in one batch job the
tiles are sorted lexically by their Quadkey[19]. Due to the prop-
erties of the Quadkey numbering scheme this results in the tiles
being sorted by their parents indizes.

1. Given a large list of tiles

2. Calculate Quadkey of XYZ tile index

3. Sort lexically by Quadkey

4. Split list into sublists of batch size

XYZ Index Quad Key

8/175/48 10321111

8/48/103 02310222

8/76/60 01223300

8/154/130 30011030

8/205/31 11023323

8/128/93 12022202

8/63/33 00311113

8/86/117 03230312

8/160/119 12320222

8/246/84 13130310

Table 2: List of changed tiles
indizes

XYZ Index Quad Key

8/63/33 00311113

8/76/60 01223300

8/48/103 02310222

8/86/117 03230312

8/175/48 10321111

8/205/31 11023323

8/128/93 12022202

8/160/119 12320222

8/246/84 13130310

Table 3: List of tile indizes
split into batches
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Quadkey

The Quadkey has several unique properties
which makes it ideal for grouping tiles to-
gether.

1. Length indicates level of detail

2. Quadkey starts with Quadkey of parent
tile

These properties make it possible to simply
sort lexically by the Quadkey of a tile to
group tiles together in batches.

Figure 17: Quadkey indexing

4.2 distributed architecture

To distribute across several hosts a distributed architecture (Figure 18) using job queues has
been implemented.

1. Pyramid or list jobs are created by generate-jobs and put into the jobs queue

2. The different worker processes on different hosts poll the jobs queue for new jobs and
try to render them in the given time frame.

3. If the rendering does not complete in the given time frame it is put into the failed-jobs

queue.

4. The resulting SQLite database is uploaded to a S3 compatible object store and linked in
the result message which is stored in the results queue.

Figure 18: Distributed rendering architecture using message queues
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Dealing with Errors

The message queue is using an acknowledge mechanism together with durable queues. This
means if any process fails at any stage in the workflow (render or merge) the message is
requeued and redelivered to the next worker. Since there are always some jobs that never
complete or have very distinct problems the timeout prevents the workers from being jammed
by the same failing jobs over and over again. Failed jobs can be inspected and rescheduled at
a later point in time.

4.3 merging results

A very important part of the workflow is merging all of the 65 536 SQLite databases. The
merge-jobs process downloads the linked SQLite database in the result message and then
merges it into the specified merge target (e.g. the Planet MBTiles file).

1. Message is consumed from the results queue.

2. The linked SQLite database is downloaded from S3.

3. The downloaded SQLite database is attached to the merge target.

4. The data tables map containing the tile indizes and images containing the actual PBF
data are copied over replacing the already existing entries in the database.

ATTACH DATABASE ’source.mbtiles’ AS source;
REPLACE INTO map SELECT * FROM source.map;
REPLACE INTO images SELECT * FROM source.images;

Figure 19: Merge completed MBTiles files together

This is a very fast way of distributing updates to an MBTiles file which can be applied with
any SQLite client and performs for many small databases merged into one large merge target.

4.4 save space by removing identical subpyramids

Water tiles are a large part of the resulting planet file since most of the earth is covered in
water. If a tile only contains water it is not desirable to store the same water geometry on all
zoom levels from z8 down to z14 (resulting in

P6
i=0 4

i = 5 461 tiles all containing the same
geometry). To prevent this issue all z8 subpyramids containg the same data on all descendant
tiles are removed.
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Algorithm

1. Calculate all descendant tiles of a given parent tile at the zoom level maskLevel

2. Calculate SHA1 checksum for each tile

3. Count occurences of each unique checksum

4. Ensure there is only one checksum used in all descendants

5. If checksum matches parent tile checksum remove all descendants

Figure 20: A z8 subpyramid with the same data hash in all descendant tiles

Tile Server Implementation

To support removed subpyramids in tile server implementations need to be able to backfill
missing data in higher zoom levels with data from lower zoom levels.

1. Serve vector data of requested tile if exists

2. If tile not exists calculate parent tile at zoom level maskLevel

3. Serve vector data from parent tile
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U P D ATA B L E V E C T O R T I L E S

OpenStreetMap contributors add more than three million nodes and ways every day. In order
to keep the prerendered tiles up to date this poses a challenge of looking at the changes and
figuring out which tiles are affected by those changes and schedule them for rerendering.

Figure 21: Simplified diagram of changed tiles detection process

Figuring out which tiles are affected by updates requires a multi-step process.

1. Find relevant OpenStreetMap objects affected by the changes

2. Calculate tiles covered by the object geometries

time constraint In order to be able to keep up with rendering changes the update
process can not take longer than the number of days the database is behind.

5.1 openstreetmap diff file

OpenStreetMap provides a single XML file, which contains every mapped object. Since the
process of importing is time and resource consuming it is not feasible to redo this process to
keep up with all the changes.
Therefore OSM additionally provides hourly or daily diff files in the OsmChange format which
contains the created, modified and deleted objects over a period of time. Importing only the
subsequent diff files after an initial import allows to keep the database in sync with the latest
changes.

Example

The listing 6 shows an example diff file which contains a create, modify and delete entry for
different objects.

22
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<?xml version=’1.0’ encoding=’UTF-8’?>
<osmChange version="0.6" generator="Osmosis 0.43.1" timestamp="2016-05-20T11:32:32Z">

<create>
<node id="4196907493" version="1" uid="1" lat="46.9280366" lon="7.1163806">
<tag k="amenity" v="pharmacy"/>
<tag k="name" v="Amavita"/>

</node>
</create>
<modify>

<node id="4051684660" version="2" uid="1" lat="53.5705074" lon="9.9950888">
<tag k="emergency" v="fire_hydrant"/>
<tag k="ref" v="13874"/>

</node>
</modify>

<delete>
<node id="1044604768" version="2" uid="1" lat="52.6429848" lon="5.082264"/>

</delete>
</osmChange>

Listing 6: Create, modify and delete example

Different Change scenarios

create object A new object is created (e.g. a new point of interest is added). All tiles
covered by the created object must be rerendered.

delete object An object gets deleted (e.g. an old house which does not exist anymore).
All tiles covered by the deleted object must be rerendered.

modify object An object gets modified (e.g. add additional translations to a place). All
tiles covered by the modified object must be rerendered.

move object An object is moved (e.g. an incorrectly mapped bus stop had to be repaired
or has been moved in the real world). All tiles covered by the original object and all tiles
covered by the moved object must be rerendered.

5.2 diff import

Additionally to importing the regular OSM Planet file, imposm3 supports importing OSM Diff
files. Imposm3 will read the Diff file and calculate with the local cache of previous imports
which nodes, ways and relations are affected by the changes.
The create entry from listing 6 results in a SQL INSERT, delete in a SQL DELETE and
modify in a SQL DELETE followed by a SQL INSERT statement. This is very unfortunate,
one would think that a modify results in a SQL UPDATE statement.
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The diff import functionality of imposm3 is
only meant to keep the database in sync with
the OSM changes. It is not possible to track
which rows in the table have been inserted,
updated or deleted.
However this information is crucial to detect
changed tiles and support all change scenar-
ios described in section 5.1. The only way
to keep track of changed features is to ei-
ther modify Imposm3 or take actions at the
database level.

Figure 22: Imposm3 SQL statements and OSM-
Change actions

5.3 track changes

To track the entries at the database level the timestamp of the import is added to each object.
This makes it possible to query modified and created objects by filtering for the latest import
date. To keep track of entries that are no longer present in the database (like deleted and
moved objects) auditing of DELETE actions has been implemented.

5.3.1 Track inserted rows

The timestamp column is used to keep a history of inserted features. The timestamp column
contains the date of the original PBF or OSC file the feature was defined or changed. This is
important for calculating the changed tiles within a timeframe later on in Section 5.4.

1. The imposm3 diff process inserts new rows for updated and added features

2. The timestamp column is now set to NULL for all new rows

3. Update the table and set the rows timestamp column to the timestamp of the import

5.3.2 Track deleted rows

If OpenStreetMap features are changed or removed, Imposm3 will first delete the row from the
table and then insert it again (if it is an update). This is due to performance reasons since a
DELETE followed by an INSERT is faster than an UPDATE. To support the change scenarios
of deleting, modifying and moving an object, the track_osm_delete trigger is enabled for each
table to keep track of deleted rows as shown in listing 7.

DROP TRIGGER IF EXISTS osm_building_polygon_track_delete ON osm_building_polygon;
CREATE TRIGGER osm_building_polygon_track_delete
BEFORE DELETE ON osm_building_polygon
FOR EACH ROW EXECUTE PROCEDURE track_osm_building_polygon_delete()

Listing 7: Delete trigger on a table

The trigger in listing 8 will track the deleted row in a separate audit table before discarding it.
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CREATE OR REPLACE FUNCTION track_osm_building_polygon_delete() RETURNS TRIGGER AS $$
BEGIN

IF (TG_OP = ’DELETE’) THEN
INSERT INTO osm_building_polygon_delete(id, geometry)
VALUES($1, $2) USING OLD.id, OLD.geometry;
RETURN OLD;

END IF;
RETURN NULL;

END;
$$ language plpgsql;

Listing 8: Logic of delete trigger

As a result each table has an additional delete table which contains all deleted and modified
rows. This allows in a second step to calculate the affected tiles and rerender them.

5.4 calculate changed tiles

One way to determine which tiles are affected by changes in the database is to calculate
the covered tiles from changed geometries by recursively descending the XYZ Quadtree and
checking for intersections of the tiles and geometries.

Algorithm

1. Calculate the extent e for a given (x,y, z) tile index

2. Check if geometry g intersects with the tile extent e

3. Stop if there is no intersection in 2

4. Select tile index (x,y, z)

5. Calculate the four child (x,y, z) indizes0

BBBB@

x ⇤ 2 y ⇤ 2 z+ 1

x ⇤ 2+ 1 y ⇤ 2 z+ 1

x ⇤ 2 y ⇤ 2+ 1 z+ 1

x ⇤ 2+ 1 y ⇤ 2+ 1 z+ 1

1

CCCCA

6. Call 1 for each child row if zoom level z has not reached max zoom level Z

Figure 23: Recursive tile matching on polygon
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Tile Buffers

Geometries in vector tiles can extend beyond the boundaries of a tile (tile buffer). To support
the concept of a buffer in the algorithm the extent e for the (x,y, z) tile index is extended by
a custom buffer b. The tile usually has a resolution of 256px. By adding the buffer to the tile
256+ 2 ⇤ b it is ensured that tiles that contain the geometries inside their buffers are detected
as well.

Figure 24: Recursive buffered tile matching on polygon

PostgreSQL Implementation

The PostGIS implementation makes heavy use of the && operator and GiST indizes on the
geometry columns to check whether the tile extent and geometry intersect with each other.
Although using the bounding box of the geometry is not accurate and can yield false positive
changed tiles it is faster than using the correct ST_Intersects.

CREATE OR REPLACE FUNCTION overlapping_tiles(geom geometry, max_zoom_level INT, buffer_size INT)
RETURNS TABLE (tile_z INT, tile_x INT, tile_y INT) AS $$
BEGIN

RETURN QUERY
WITH RECURSIVE tiles(x, y, z, e) AS (

SELECT 0, 0, 0, geom && XYZ_Extent(0, 0, 0, buffer_size)
UNION ALL
SELECT x*2 + xx, y*2 + yy, z+1,

geom && XYZ_Extent(x*2 + xx, y*2 + yy, z+1, buffer_size)
FROM tiles, (VALUES (0, 0), (0, 1), (1, 1), (1, 0)) as c(xx, yy)
WHERE e AND z < max_zoom_level

)
SELECT z, x, y FROM tiles WHERE e;

END;
$$ LANGUAGE plpgsql IMMUTABLE;

Listing 9: Recursive tile matching of geometry

Export changed tiles

The algorithm defined in Section 5.4 is applied over all geometries that have changed since a
given timestamp to find out all unique tiles that are affected by the changes and need to be
rendered again.
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SELECT DISTINCT t.tile_x AS x, t.tile_y AS y, t.tile_z AS z
FROM osm_building_polygon AS g
INNER JOIN LATERAL overlapping_tiles(g.geometry, 14, 4) AS t
ON g.timestamp >= (LOCALTIMESTAMP - INTERVAL ’7 days’)

Listing 10: Calculate all tiles containing building polygons that changed in the last 7 days

Figure 25 shows the changed tiles on zoom level 10 over the course of 10 days. A number of
interesting discoveries were made.

Figure 25: Changed tiles on z10 over course of 10 days

boundaries It is striking that along the administrative boundaries many tiles have changed.
This leads back to the fact that in OpenStreetMap a single boundary is represented as multiple
nodes which are part of a single relation. However in the database a boundary is represented
as a single geometry of type linestring.
If somebody changes a single node on the administrative boundary, the Diff import process
deletes this geometry and inserts it again like described in Section 5.2. In a second step the
changed tiles process detects that this row has changed and calculates all affected tiles. This
is the reason why all tiles along the boundaries are detected as changed even though only a
small part of the boundary was actually changed.
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A possible solution for this problem could be to exclude administrative boundaries of the
changed tile process and only update them irregularly.

changes in africa It is encouraging to see that there is a lot of mapping activity in
Africa. This part of the world is probably the least mapped part in OpenStreetMap.

big generic blocks There are a couple of big generic blocks visible. No explanation
could be found for this symptom yet.

big rural areas were nothing changes There are a lot of areas like Canada, Alaska,
Russia, South America and Australia were almost nothing changes.

hypothesis It turns out that the unique changed tiles of 20 days is ~20 million tiles while
unique changed tiles of 10 days has ~18 million tiles. This leads to the hypothesis that less
tiles change often.
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R E S U LT S A N D F U T U R E

Solutions for all problems defined in Section 1.2 have been found and implemented.

6.1 results

• The quality of the vector tiles has been significantly improved and compatibility with
Mapbox Streets v7 has been reached.

• An open source workflow to scale rendering of vector tiles with global coverage has
been created.

• A process for updating vector tiles based on OpenStreetMap Diff files has been imple-
mented.

• The project website has been significantly improved based on user feedback.

• Vector tiles for the entire planet, 219 country and 692 city extracts are provided as down-
load on the project website.

• Detailed tutorials and a custom tile server to make getting started as easy as possible
were created.

6.2 future

The interest and involvement of many people showed that this project provides great value to
the FOSS community. In order for it to be valuable in the future, several challenges need to be
overcome:

• An infrastructure provider needs to found in order to be able to run the update process
on a regular basis.

• More people need to know about this project.

• During the project, Mapbox released an update to their vector tile specification (version
2.0). The new standard needs to be supported, in order to properly work with their tools
in the future.

For some of the challenges possible solutions are already planned in the coming months:

• The institute for software at HSR owns a server which could possibly be used for the
update process, but this is not yet confirmed.

• Lukas Martinelli and Manuel Roth will give a talk about OSM2VectorTiles at the FOSSGIS
conference in Salzburg and FOSS4G conference in Bonn. This will help to reach the
broader FOSS community and further enhance the interest in this project.

• In order to support the Mapbox vector tile 2.0 specification the entire planet needs to be
rerendered. If time and resources allow the project maintainers intend to do this in the
future.

29
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R E Q U I R E M E N T S S P E C I F I C AT I O N

This chapter describes the requirements, use cases and user characteristics for this project.

7.1 use cases

This section describes the two main use cases of this project.

render vector tiles The user renders a custom set of vector tiles. Since not all data
of OpenStreetMap is inside OSM2VectorTiles, some users may want to add or remove data.
Assuming users that are interested in creating their own vector tiles clone the OSM2VectorTiles
repository these are potentially 70 users each month.

use vector tiles The user makes use of the prerendered vector tiles and wants to create
a custom basemap. Assuming users that are interested in using their own vector tiles read the
documentation these are potentially 600 users each month.

7.2 user characteristics

limited or no access to the internet Users which have the constraint of limited or
no access to the internet can download vector tiles for the entire planet and serve their custom
basemap locally.

can not rely on a third-party service Many organizations can not afford to rely
on a third-party service and want to run their map on-premise.

customizing the look of the basemap In many use cases it is desirably to adjust the
basemap to better match the design of a product.

7.3 requirements

The bachelor thesis consists out of three major requirements out of the use cases described in
Section 7.1. The technically interesting problems of these requirements are described in Part i.

• Prerendered vector tiles from OpenStreetMap for the entire planet (Chapter 4)

• Update functionality to keep up with future OpenStreetMap changes (Chapter 5)

• Vector Tiles compatible with Mapbox Streets v7 (Chapter 3)

7.4 non functional requirements

The non functional requirements are the key to success of this project. If the following require-
ments can be fulfilled, the specified users will be able to benefit of this project.
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performance The initial rendering process for the entire world must be kept below two
weeks. The import on the master server should take less than a day while rendering should
be kept below two weeks. Updates should happen in a weekly interval.

learnability It is important that users without previous vector tile or docker experience
can get started with as few obstacles as possible.

cost The cloud instances to render the world once costs around 1500 dollar. The updating
should only cost a fraction of this initial investment.

repeatability Since OSM2VectorTiles will provide continuous updates it is important that
the process and results are repeatable.

compatibility Compatibility with Mapbox Streets gives the users access to a wide range
of styles and editors. Therefore the vector tiles must contain all features sets Mapbox Streets
contains.

vector tile size The size of a single vector tile should not be greater than 500 KB.
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A R C H I T E C T U R E A N D D E S I G N

8.1 architecture

The architecture of the project is structured into the import phase (ETL process), the changed
tiles detection phase and the export phase (render vector tiles). This section describes the
components and their purpose.

Figure 26: Workflow structured into components

Each component is a Docker image[12] with a single purpose. The Docker containers (compo-
nents) are then linked against the database container and provided with additional input data
to perform their functions. Isolating the components into Docker images makes it possible to
ensure that the complicated installations and dependencies of some components never cause
an issue. By additionally using Docker Compose it is possible to define the entire ETL process
with different containers and make deployment and scaling containers easy.

8.1.1 Import Components

The import components take care of importing OpenStreetMap data, external data sources and
SQL utilities such as views, triggers, indices and functions to help with the rendering and
changed tiles detection process.

8.1.1.1 Import External

The import-external component is responsible for importing all data that is not mapped
directly from OpenStreetMap into the PostGIS database. Figure 27 shows the external data
sources and programs used to import the data into the PostGIS database. The GDAL tool
ogr2ogr is used to import the various data sources into the PostGIS database.
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Figure 27: Import of external data sources

8.1.1.2 Import OSM

The import-osm component takes the first PBF file in the import folder and imports it into
PostGIS. After that it updates the scaleranks using Natural Earth data from import-external

to update the scaleranks and create generalized tables based off the imported data. The data
is imported using imposm3 diff mode and can take up to 14 hours for the entire planet file.

Figure 28: Import OSM diagram
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8.1.1.3 Import SQL

The import-sql component is responsible for provisioning the SQL used in the different layers.
It also generates SQL code for different classifications and code to detect changed tiles as well
as table management commands for different layers.

Figure 29: Import SQL diagram

8.1.2 Changed Tile Detection Components

The changed tile detection components handle creating an OpenStreetMap Diff file based on a
certain OpenStreetMap planet file, importing a OpenStreetMap Diff file and updating outdated
OpenStreetMap planet file with the latest changes. The following sections show what happens
in every component.

8.1.2.1 Update OSM Diff

The update-osm-diff component takes the planet file as input and creates an OpenStreetMap
Diff file containing all the changes happened since the planet file was downloaded. The
osmupdate tool is used to execute this task.

Figure 30: Update OSM Diff diagram
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8.1.2.2 Import OSM Diff

The import-osm-diff component takes the OpenStreetMap diff file created with the update-
osm-diff component as input and imports all changes into the database.

Figure 31: Import OSM Diff diagram

8.1.2.3 Merge OSM Diff

The merge-osm-diff component takes the old planet file and the latest diff file as input and
merges all changes into the old planet file. Additionally the timestamp of the planet file is
updated in order to have a correct diff file when the update-osm-diff process runs the next
time. The osmconvert tool is used to merge the latest diff file into the old planet file.

Figure 32: Merge OSM Diff diagram

8.1.2.4 Changed Tiles

The changed-tiles component is responsible for executing the changed tiles SQL logic and
store the list of changed tiles in a text file using pgclimb. The actual logic for detecting the
changed tiles is contained in the import-sql component.

Figure 33: Changed Tiles diagram
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8.1.3 Distributed Tile Rendering Components

In order to meet the performance requirements a distributed rendering architecture is needed
to scale the process on to multiple hosts and process. The central component of the render-
ing pipeline is the message queue which contains the rendering jobs and results all other
components interact with the message queue to take or confirm a job.

8.1.3.1 Generate Jobs

The generate-jobs component is responsible for creating JSON jobs consumed by the export

component. It supports two types of jobs:

• Pyramid: Job of rendering a tile pyramid (e.g. from z8 all down to z14). Used for initial
rendering of the world.

• List: Batch jobs of list of tiles to be rendered grouped by data locality. Used for rendering
changed tiles.

Generate-jobs will output the jobs as individual JSON objects to stdout. A tool like pipecat

can be used to schedule them on the job server.

Figure 34: Generate Jobs diagram
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8.1.3.2 Export

The export component is responsible for rendering vector tiles using osm2vectortiles.tm2source
and the postgis component. Exports can be run together with a message queue like RabbitMQ
or standalone for smaller extracts where it is not necessary to divide the work into several
parts.

Figure 35: Export Worker diagram

8.1.3.3 Merge Jobs

The merge-jobs component is responsible for taking result messages from the queue, down-
load the attached MBTiles file and merge it into the latest planet MBTiles file.

Figure 36: Merge Jobs diagram
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8.2 database and layer schema

In this section the different layers and the database schema related to it are explained and jus-
tified. Each layer contains a diagram showing the relations and model between tables, zoom
level views (Section 3.2.2) and the vector tile layers (Figure 37). The database schema is denor-
malized and has no relations to fulfill the performance constraints of rendering. It is heavily
optimized for fast reads since the only use case of the database schema is generating vector
tiles from the PostGIS database. The arrow in Figure 37 represents the data flow.

Figure 37: Database and layer schema diagram notation

8.2.1 Barriers

The layer barrier_line contains barriers that
block a way or path. Common features are
structural walls, fences or access controls like
bicycle barriers and gates. Man made objects
like piers or natural barriers like a cliff are
contained as well in the barrier_line layer.
Barriers are quite a detailed information and
are therefore only relevant at the highest
zoom level 14.

Figure 38: Barrier line layer with piers

Figure 39: Barrier layer
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8.2.2 Water

The water layer contains bodies of water like
the ocean, lakes or large rivers. Since water is
essential to the quality of the map, different
data sources as shown in Table 4 are used on
different zoom levels. The water_label layer
shows the labels of lake bodies (not marine
waters). Due to the costly calculation of cen-
troid of very large polygons the water_point
table is precalculated ahead of rendering
time.

Coastlines in OpenStreetMap are sensitive
for change and the OpenStreetMapData[21]
project takes care of repairing broken
coastlines and checking it thoroughly. The
OpenStreetMapData project also takes
care of splitting the ocean into several
smaller tiled polygons which results in
better database performance. The wa-
ter layer uses simplified ocean polygons
from osm_ocean_polygon_gen0 on zoom
level 4 and the original polygons from
osm_ocean_polygon are used from zoom
level 5 up to zoom level 14.

For choosing the right water bodies at
low zoom levels the NaturalEarth data set
[20] provides manually curated data of phys-
ical features such as water in the Shapefile
format. For lakes and oceans water polygons
of different resolutions (1:110M, 1:50M and
1:10M) were chosen on zoom level 0 to 4.

Figure 40: Ocean and water polygons in southern
Europe

Table Name Source

ne_110m_ocean NaturalEarth
ne_110m_lakes NaturalEarth
ne_50m_ocean NaturalEarth
ne_50m_lakes NaturalEarth
ne_10m_ocean NaturalEarth
ne_10m_lakes NaturalEarth
osm_ocean_polygon_gen0 OpenStreetMapData
osm_ocean_polygon OpenStreetMapData

Table 4: Tables from external data sources for wa-
ter layer
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Figure 41: Water layer schema
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8.2.3 Roads

Roads are one of the most essential features
in maps. Roads are present across all zoom
levels filtered by type. At the lowest zoom
levels only motorways are shown while at
higher zoom levels residential and service
roads are rendered as well. Due to the com-
plex hierarchy of roads in OpenStreetMap
each zoom level contains custom filters to
control which kind of roads get displayed on
which zoom level. The road and road_label
layer, query the data from the road_geometry
table where both linestrings and polygons
(for bigger avenues and squares) are present.
The road_label layer consists of linestrings
with a road name assigned and the vector tile
client then takes care of drawing the road la-
bel text across the road linestring. To avoid
having too many labels on roads (especially
relevant for motorway signs) the roads are
grouped by their vicinity and ranked by their
length to reduce label density.

Figure 42: Road layer around Paris

Figure 43: Road layer schema
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8.2.4 Buildings and Housenumbers

Buildings are polygons such as houses or
skyscrapers. They only appear on the high-
est zoom level 14 with the exception of large
buildings already appearing at zoom level 13.
Buildings are one of the most frequent fea-
tures at high zoom levels.
The housenum_label layer contains build-
ings or single points tagged with a house-
number. Housenumbers only appear on
zoom level 14.

Figure 44: Buildings and house numbers

Figure 45: Building layer schema
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8.2.5 Administrative Boundaries

The admin layer contains the linestrings of
administrative boundaries such as countries,
states or provinces. Boundaries are treated
as linestrings because borders often break
in OpenStreetMap and can no longer be re-
constructed as polygons. Therefore it is safer
to work with linestrings even though this
provides less cartographic styling options.

Since a different level of detail is required
at different zoom levels the cultural data
set from Natural Earth [20] has been used
at low zoom levels for boundaries of coun-
tries, provinces and disputed areas while
at higher zoom levels the more accurate
OpenStreetMap data is used.

Figure 46: Admin level 4 (states) in the US

Figure 47: Admin layer schema
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8.2.6 Landuse and Landuse Overlay

The layer landuse contains polygons of spe-
cially zoned land. The most frequent fea-
tures inside landuse are wood areas as well
as national parks, swamps, commercial, in-
dustrial and military zones. Very large poly-
gons are split into several pieces into the
landuse_split_polygon table and large poly-
gons are generalized for lower zoom levels.
The polygons in the landuse layer are filtered
by area depending on the zoom level so that
at low zoom levels only the biggest polygons
are shown.

Figure 48: Landuse (wood) at zoom level 10

Figure 49: Landuse layer schema
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8.2.7 POI Labels

A point of interest (POI) is a feature bound to
a particular point of the map (e.g. churches,
schools, tourist attractions, hotels, trees).
Not all POIs mapped in OpenStreetMap are
relevant for a visual map. In order to appear
on the map, POIs are required to have at
least a name or icon derived by the type field.

Users shouldn’t be overwhelmed with
too many point of interest icons. Therefore
the field localrank contains an ascending
importance rank which can be used by map
clients to prioritize important POIs. Very
prominent POIs additionally have a scaler-
ank based on their covered area. The rank
calculation for POIs works very similar to
place label ranking described in Section 3.3.4.

Figure 50: POI layer on top of building layer

Figure 51: POI label layer schema
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8.2.8 Countries and States

The placement and importance of labels of
countries, states and seas matters[1] and is
important to get right. Because it is difficult
to ensure the quality of these features when
importing directly from OpenStreetMap, the
labels of countries and states are curated by
hand.
Data from the Overpass API [5] is converted
into GeoJSON and manually edited and en-
hanced with a label rank to get the best pos-
sible label placement and importance rank-
ing. This effort is worth it because country
and state data changes at infrequent intervals.
Country labels are not present on all zoom
levels and are filtered based on their scaler-
ank value to show countries like Italy prior
to a less important city state like the Vatican.

Figure 52: Country and state labels around Brasil

Figure 53: Country and state layer schema
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8.2.9 Places

Place labels are vital for building nice maps
with good text hierarchy. It is important
to show only world cities at low zoom
levels and then gradually show more and
more local places. Filtering happens via the
scalerank and localrank fields in the vector
tiles. The scalerank field originates from the
ne_10m_populated_places table from Natu-
ralEarth and is merged into the place_point
table. Most place labels are mapped as point
in OpenStreetMap except for residential dis-
tricts and islands for which the centroid of
the geometry is used as label point. Since
place labels are very delicate and important
every zoom level has custom filters to control
which places are relevant. The rank calcula-
tion for places is explained in Section 3.3.4.

Figure 54: Important place labels in Europe

Figure 55: Place label layer
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8.2.10 Aeroways and Airports

The layer aeroway contains infrastructure re-
garding air travel. The most common fea-
tures are airports and their aprons, runways
and taxiways. Airports are big landmarks
and therefore all features are already present
after zoom level 10. The layer consists of poly-
gons and linestrings because runways are
often polygons, while taxiways are mostly
linestrings.
The layer airport_label contains labels of air-
ports (either a point or the centroid of the
airport polygon) since airports are important
orientation points. The scalerank field de-
scribes the importance of the airport based
on the covered area and type. Airports usu-
ally have official abbreviations (either the
IATA, FAA, ICAO or custom reference code)
that are stored in the ref field.

Figure 56: Aeroway and airport label layer of
Zurich airport

Figure 57: Aeroway layer



8.2 database and layer schema 50

Figure 58: Airport label layer

8.2.11 Oceans, large Lakes and Bays

For oceans, large lakes and bays having a
curved label along the body is advantageous
because the label does not interfere with
other labels like places.
Since these features are not available as poly-
gons the label linestrings cannot be calcu-
lated but had to be drawn by hand. For the
100+ most important lakes and bays custom
linestrings have been drawn. The metadata
still originates from OpenStreetMap but the
geometries are custom. Since these natural
features do not change this does not pose a
problem.
The linestrings are filtered ascending for the
upper zoom levels based on the rank field
and are only shown at low zoom levels 0 to
6. Figure 59: Marine label of Mediterranean Sea

Figure 60: Marine label layer
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8.2.12 Mountain Peaks

Mountain peaks are points tagged as mountains and volcanoes with a name and elevation.
Because clients only have limited logic capabilities the elevation is calculated in both meters
and feet.

Figure 61: Mountain peak label layer

8.2.13 Rail Stations

Rail stations include railways, metros and tram stations. Since these public transport features
are usually styled differently than other point of interests they are contained in a separate
rail_station_label_layer.

Figure 62: Rail station label layer
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P R O J E C T M A N A G E M E N T

9.1 software development process

An agile approach based on SCRUM has been used as the process model of this project. The
maintainers of the project act as joint product owners while the backlog is managed not only
by the product owners but also by the community which add features to the wish list and
even contribute code to the repository.
At the beginning of each sprint features of the backlog are estimated and scheduled for the
next release. After each sprint (two to three weeks) a new stable version is released.
In comparison to SCRUM there are no sprint reviews and retroperspective but regular meet-
ings with the thesis advisor to inform about project status are conducted. Regular meetings
with the technical advisor help to solve problems together.

GitHub

GitHub was used for planning and tracking of the tasks and milestones. To provide a SCRUM
board and burndown chart the ZenHub browser plugin has been used.
It has a big advantage over other project management tools, as revision control and issue track-
ing are at the same place. Non project members can understand the thoughts behind certain
decisions and communicate their ideas directly to team members which is important for an
open source project.

An organization named osm2vectortiles has been created with the following repositories:

• osm2vectortiles Contains the dsitributed workflow to create vector tiles

• tileserver-gl-light A trimmed down fork of tileserver-gl for serving MBTiles and prede-
fined Mapbox GL styles with emphasis on serving vector tiles from OSM2VectorTiles

• imposm3 Custom fork of imposm3 to support timestamp field

• mapbox-gl-styles Collection of Mapbox GL styles that are compatible with OSM2VectorTiles.

• rabbitmq Custom fork of official RabbitMQ Docker image with additional support for
message timeout configuration

• bachelor-thesis LaTeX source for bachelor thesis

• study-thesis LaTeX source for preceding study thesis

9.2 schedule

Because the OSM2VectorTiles members where already familiar with the technologies and field
of work no elaboration phase was needed. Each sprint was tightly coupled to the next release.
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9.3 milestones

Each milestones marks a special release version of the vector tiles.

Version Date Resolved
Issues

Merged
PRs

Fixed
Bugs

v1.1 Mar 4 9 3 1

v1.2 Mar 21 9 5 1

v1.3 Apr 1 6 6 1

v1.4 Apr 12 14 11 6

v1.4.1 Apr 22 10 11 10

v1.4.2 Apr 25 5 4 11

v1.5 Apr 28 5 8 3

v2.0 May 24 12 8 4

Table 5: Project sprints and statistics

9.4 roles and responsibilities

Prof Stefan Keller Thesis advisor responsible for supervising work and as-
sess the thesis.

Petr Pridal, PhD Technical partner responsible for providing infrastruc-
ture

Manuel Roth Maintainer

Lukas Martinelli Maintainer

Table 6: Thesis contributors and their roles

9.5 risks

In contrast to the preceding study thesis the bachelor thesis is less risky due to the increased
knowledge of the field.

Risk Measurement Probability
(1-6)

Too slow update process Early measurements of solution 4

Vector tiles oversized Continuously measure vector tiles 4

Infrastructure not suffi-
cient

Switch to non school infrastructure and rely
on external sponsors

3

Unwanted Features Open roadmap and feedback of community 2

Lacking quality Regularly control whether defined quality
measurements were complied with

2

Table 7: Risks and measurements
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Q U A L I T Y M E A S U R E S

In order to ensure proper quality a number of measurements were taken. The following section
describes every measurement separately.

10.1 testing

OSM2VectorTiles consists of many different components in different languages that all work
together which makes testing quite challenging. This section describes how testing was ap-
proached in this project.

10.1.1 Mapping Report Tool

The mapping report tool was created to verify that all imported OpenStreetMap data is used
inside the vector tiles. This helped to identify OpenStreetMap key/value pairs which should
be removed from the import mapping because they are not used inside the vector tiles.

OSM Tables Vector Tile Layers All Records Used Records Percent

osm_admin_* admin 11284 813 7.2
osm_aero_* aeroway 643 643 100

osm_airport_* airport_label 199 199 100

osm_barrier_* barrier_line 22880 22880 100

osm_building_* building 604304 604304 100

osm_housenumber_* housenum_label 108376 108376 100

osm_landuse_* landuse (overlay) 79337 79337 100

osm_mountain_peak_* mountain_peak_label 3235 3235 100

osm_place_* place_label 12269 6921 56.41

osm_poi_* poi_label 120793 75108 62.18

osm_rail_station_* rail_station_label 2990 2990 100

osm_road_* road (label) 522469 522469 100

osm_water_linestring waterway (label) 31075 20458 65.83

osm_water_polygon water (label) 10496 10496 100

Table 8: Example output of Mapping Report Tool

Table 8 shows an example output of the mapping report tool. It lists the number of rows per
table and compares them with the number of rows used in a certain layer. If the percentage
value is below 100 percent, the layer does not use all the features specified in the import
mapping. Therefore these OpenStreetMap key/value pairs should be removed.
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10.1.2 Integration Test

In Travis CI[3] the entire workflow was completed for a small data sample on each commit.
Because the entire workflow is configured with Docker Compose [11] the CI server had to
execute all import steps in serial order. This is a straightforward way to check if all components
work together correctly and although it is a simple setup it has helped tremendously during
project development, catching bugs like missing tables or SQL typos.

script:
# Test import
- docker-compose up -d postgis
- sleep 10
- docker-compose run import-external
- docker-compose run import-osm
- docker-compose run import-sql
# Test export
- docker-compose run export
# Test changed tiles
- docker-compose run update-osm-diff
- docker-compose run import-osm-diff
- docker-compose run changed-tiles

10.1.3 Structural Test

The Vector Tile Compare tool was created to analyze the content of single vector tiles. This
helped to identify which type of data is shown on which zoom levels and later to ensure that
the same amount of features are present in OSM2VectorTiles compared to Mapbox Streets v7.

10.1.4 Visual Test

In addition to comparing the content of the vector tiles the Visual Compare tool was created
to visually preview and compare the map on different zoom levels.

Figure 63: Visual Compare Tool

Figure 63 shows a screenshot of the Visual Compare tool. On the left hand side is OSM2VectorTiles
and on the right hand side Mapbox Streets v7. Both use the OSM Bright visual style.
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10.2 guidelines

To have homogeneous software the contributors have settled on common guidelines in the
beginning of the project.

10.2.1 Releases

Semantic versioning [22] should be used for releases. At the end of each milestone a new re-
lease will be created. For each release a changelog with all closed issues, merged pull requests
and fixed bugs should be created. This makes it easier for people to track the progress of the
project.

10.2.2 Git

commit messages The seven rules of great git commit messages[2] should be used.

rewriting Git history should be kept clean and therefore local branches should be squashed
meaningfully.

pulling To avoid unnecessary merge messages one should always use the --rebase pa-
rameter.

10.2.3 Workflow

The Feature Branch Workflow[25] should be used. Every project member has a local repository
with a copy of the remote repository. For each feature ticket in GitHub a separate branch will
be created. Once a ticket has been completed a pull request will be created and needs to be
reviewed and merged into the master branch by an other member.

Coding Standards

bash Bash was used for the Docker image entrypoints and follow the rules of Defensive
Bash Programming [15].

python Python code should stay PEP-8[23] compliant and write idiomatic Python code
according to PEP-20[24].

javascript The JavaScript code is checked using ESLint[13]

sql The PostgreSQL code is using upper case for the key words. Apart from nice formatted
SQL code and functions should be used to keep the queries DRY[9].

dockerfile Dockerfiles follow the best practices[10] defined by Docker.
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P R O J E C T M O N I T O R I N G

11.1 code statistics

Table 9 shows how many lines of code were
written in which language. A lot of SQL code
is generated during the import-sql process.
Most of the YAML definitions are used as in-
put to generate SQL functions resulting in a
much higher LOC count for generated code.
Most of the logic is written in SQL with
Python programs used for the distributed
workers and generating SQL code. Since the
ETL process requires a lot of programs to
work together there is also a significant por-
tion of small Bash scripts used as start scripts
inside the Docker containers.

Language LOC
SQL 1155

Bash 836

Python 728

Javascript 209

Dockerfile 201

YAML
Vector Tile Definition 1160

SQL Classifications Definition 1928

Docker Compose File 169

Other 18

Total 6404

Table 9: Lines of code (LOC) per language

11.2 estimated time vs actual time

The estimations are based on the required work hours per
week (20 hours per person) multiplied by the amount of
weeks that are planned for a certain sprint.

Table 10 shows that every sprint took longer than
planned. This has many reasons sometimes urgent issues
had to be resolved in the same sprint or some task just
took longer than expected. The issue management and
communication with the community also turned out to be
a very time intensive task.

Sprint Estimated Actual
v1.1 80 87

v1.2 80 99

v1.3 80 98

v1.4 100 121

v1.4.1 40 53

v1.4.2 40 52

v1.5 100 126

v2.0 80 87

v2.1 80 89

Total 720 812

Table 10: Estimated vs actual time
for different sprints
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11.3 time per person

The invested time per person was very bal-
anced. This was thanks to the agreement that
both contributors meet three times a week in
school to work together on the project.

Sprint Lukas Martinelli Manuel Roth Total
v1.1 43 44 87

v1.2 47 52 99

v1.3 50 48 98

v1.4 62 59 121

v1.4.1 28 25 53

v1.4.2 26 26 52

v1.5 62 64 126

v2.0 43 44 87

v2.1 46 43 89

Total 407 405 812

Table 11: Time for each contributor for each
sprint
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D E V E L O P E R A N D U S E R D O C U M E N TAT I O N

During the study thesis detailed documentation and tutorials for the OSM2VectorTiles project
has been created. The documentation was separated into a user-centric and developer-centric
part. All of this information was provided on the project website (http://osm2vectortiles.
org). However when the project was publicly released and people started to get interested in
the project, two main problems occurred:

• The tutorials targeted at regular users were too complicated and error prone

• Developers want to have the documentation on GitHub right next to the code and not
on the project website

With this knowledge it was decided to move the developer-centric documentation into README
files right next to the code and simplify the user-centric tutorials to eliminate most beginner
errors.

Figure 64: Documentation of the export component using a README file
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Figure 64 and Figure 65 show the documentation in the repository on GitHub and on the
project website. The documentation can be found either on GitHub (https://github.com/
osm2vectortiles/osm2vectortiles) or on the project website (http://osm2vectortiles.org).

Figure 65: Simplified overview of user documentation on the project website

https://github.com/osm2vectortiles/osm2vectortiles
https://github.com/osm2vectortiles/osm2vectortiles
http://osm2vectortiles.org
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