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Chapter 1

Introduction

This document provides a complete and up-to-date specification of Non-
Axiomatic Logic (NAL).

1.1 NAL and NARS

NAL is the logic part of NARS (Non-Axiomatic Reasoning System).

NARS is an AI project aims at a general-purpose thinking machine.

NARS is designed according to the theory that intelligence is the ability
for a system to adapt to its environment while working with insufficient
knowledge and resources [Wang, 1995a, Wang, 2006].

NARS is developed in the framework of reasoning system. The logic part
of NARS is NAL, a formal logic, consisting of a formal language Narsese
and a set of formal inference rules, plus a semantics. The control part of
NARS mainly consists of a memory mechanism and an inference control
mechanism.

NARS is an attempt to provide a normative model of general intelli-
gence, rather than a descriptive model of human intelligence, though the
latter is a special case of the former, therefore these two types of model are
similar in various (though not all) aspects.

As a normative model, NAL starts from some basic principles, then
derives a concrete design for what a system should do to adapt when its
knowledge and resources are insufficient with respect to its tasks.

1



2 CHAPTER 1. INTRODUCTION

1.2 Structure of NAL

NAL is established in multiple layers, each of which extends the logic by
adding new grammar and inference rules, with proper addition of the se-
mantics. Consequently, each layer has a higher expressive and inferential
power than the previous ones, so as to give the corresponding NARS a
higher level of intelligence.

In the current design, there are 8 layers. Consequently, each of the
logic is named as NAL-n, and the corresponding formal language is named
Narsese-n, with n being a number between 1 and 8.

This document starts at the meta-language of NAL. Using it, NAL-1 to
NAL-8 are introduced one by one, with formal and semi-formal specifica-
tions of its addition in language, semantics, and inference rules.

1.3 Specifying NAL

This specification only explains what NAL is and does, rather than why it is
designed in this way, what kind of overall functionality is produced, or how
it differs from other systems. For those contents, references are provided by
citing previous publications on NARS. All the NARS publications referred,
except the book [Wang, 2006], are available online at the project website
http://sites.google.com/site/narswang/.

This document is under constant revision. As an up-to-date description
of an on-going research project, this specification of NAL is not identical to
the previous publications on NAL in all details. Wherever such a difference
occurs, this document should be considered as representing the current
opinion of the author.

This document does not address the control part of NARS, which is de-
scribed in [Wang, 2006, Chapter 6], as well as [Wang, 1996c, Wang, 2004b,
Wang, 2009b]. Currently NARS is an open-source project, hosted at
http://code.google.com/p/open-nars/.

There are still some open issues in the design of NAL. In the document,
they are introduced in the footnotes.1

1Even after all the known issues are resolved, whether NAL is “complete” depends
on a new notion of completeness, because the traditional notion cannot be applied to
non-axiomatic logics. The new notion should be based on a formal definition of adaptive
system, whose interaction with the environment is described as streams of sentences in a
formal language. In that situation, NAL will be considered as “complete” if (1) Narsese
is shown to be powerful enough to describe all possible interactions between a system
and its environment, and (2) NAL inference rules are shown to be powerful enough to
describe all possible adaptive behaviors of a system.
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Chapter 2

IL-1: Inheritance Logic

NAL is described using several meta-theories, though cannot be reduced into
any of them, that is, results in NAL and results in any of its meta-theories
are distinct, though there are partial overlaps and intuitive similarity here
or there. The meta-theories include set theory, formal language theory,
first-order predicate logic, and inheritance logic (also known as NAL-0).
Since only the last one is not well known, it is specified here.

Inheritance Logic, or IL, is an idealized version of NAL, in the sense
that it is similar to NAL in language, semantics, and inference rule, though
it assumes sufficient knowledge and resources. Therefore it is not a “non-
axiomatic” logic, but a tool used when building such a logic. For each
layer n (1 ≤ n ≤ 8), the corresponding IL-n will be defined first, then the
effect of insufficient knowledge and resources is introduced, to turn IL-n
into NAL-n. This chapter defines IL-1, the simplest inheritance logic.

2.1 Language: term and inheritance

IL-1, like all members of the IL-NAL family, is a “term logic”. This type
of logic is characterized by its usage of categorical sentences and syllogis-
tic inference rules. Therefore, it is also known as “categorical logic” or
“syllogistic logic”.

Definition 1 The basic form of a term is a word, a string of letters in a
finite alphabet.

There is no additional requirement on the alphabet. In this document the
alphabet is that of English, plus digits 0 to 9 and a few special signs, such
as hyphen (‘-’).

5



6 CHAPTER 2. IL-1: INHERITANCE LOGIC

Definition 2 The inheritance copula, ‘→’, is a binary relation from one
term to another term, and defined by being reflexive and transitive.

There is no additional requirement associated with the inheritance copula
beside the above definition.

Definition 3 The basic form of a statement is an inheritance statement,
“S → P”, where S is the subject term, and P is the predicate term.

The “subject-copula-predicate” form of statement is what traditionally
called categorical sentences.

Definition 4 IL-1 is defined on a formal language whose sentences are
inheritance statements.

The above definitions are summarized in Table 2.1, using a variant of
the Backus-Naur Form (BNF).

〈sentence〉 ::= 〈statement〉
〈statement〉 ::= 〈term〉〈copula〉〈term〉
〈copula〉 ::= ‘→′
〈term〉 ::= 〈word〉
〈word〉 : a string in a given alphabet

Table 2.1: The Grammar Rules of IL-1

When embedded in expressions, “S → P” is often written as “(S → P )”
to avoid misunderstanding.

The above formal language is used in IL-1 both for internal representa-
tion and external communication.

2.2 Semantics: truth and meaning

Intuitively, “S → P” states that S is a specialization of P , and P is a
generalization of S. It roughly corresponds to “S is a kind of P” in English.

Definition 5 A sentence in IL has a binary truth-value, as a proposition
in propositional logic.

The following theorems directly follow from the definitions.

Theorem 1 For any term X, statement “X → X” is true.
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Theorem 2 For any term X, Y , and Z,

((X → Y ) ∧ (Y → Z)) ⊂ (X → Z)

In this theorem, IL sentences are treated as propositions, and “∧” and “⊂”
are the “conjunction” and “implication” connectives in propositional logic,
respectively.

The inheritance relation is neither symmetric nor anti-symmetric. That
is, for different X and Y , given “X → Y ” alone, the truth-value of “Y → X”
cannot be determined.

The initial knowledge of the system, obtained from the environment, is
defined as its “experience.”

Definition 6 For a system implementing IL-1, its experience, K, is a non-
empty and finite set of sentences in IL. In each sentence in K, the subject
term and the predicate term are different.

K can be also represented as a (directed and unweighted) graph, with terms
as vertices and statements as edges.

Definition 7 Given experience K, the system’s beliefs, K∗, is the transi-
tive closure of K, excluding sentences whose subject and predicate are the
same term.

Therefore, K∗ is also a non-empty and finite set of sentences in IL-1, which
includes K, as well as the sentences derived from K according to the tran-
sitivity of the inheritance relation. In systems implementing IL or NAL,
the words “belief” and “knowledge” are usually treated as exchangeable
with each other. Therefore, K∗ can also be called the knowledge base of
the system.

Definition 8 Given experience K, the truth-value of a statement is true
if it is in K∗, or in the form of X → X, otherwise it is false.

Therefore there are two types of truth in IL-1: empirical and literal
(or call them synthetic and analytic, respectively). The former is “true
according to experience,” and the latter is “true by definition.” Truth in
these two categories have no overlap.

In IL-1, all analytic truths are positive, in the form of “X → X”. Syn-
thetic truths may be either positive (on what is true) or negative (on what
is false). In IL-1, negative knowledge are implicitly represented: they are
not sentences in IL-1, but propositions in its meta-language. The amount of
positive knowledge (i.e., number of beliefs in K∗) increases monotonically
with the increase of the experience K, but that is not the case for negative
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knowledge, which is implicitly defined by the former as “statements that
not known to be true” (the Closed-World Assumption).

For a term T that does not appear in K, all statements having T in
them are false, except “T → T”.

Definition 9 Given experience K, let the set of all terms appearing in K
to be the vocabulary of the system, VK . Then, the extension of a term T
is the set of terms TE = {x | (x ∈ VK) ∧ (x→ T )}. The intension of T is
the set of terms T I = {x | (x ∈ VK) ∧ (T → x)}.

Obviously, both TE and T I are determined with respect to K, so they can
also be written as TE

K and T I
K . In the following, the simpler notions are

used, with the experience K implicitly assumed.
Since “extension” and “intension” are defined in a symmetric way in

IL, for any result about one of them, there is a dual result about the other.
Each belief of the system reveals part of the intension for the subject term
and part of the extension for the predicate term.

Theorem 3 For any term T ∈ VK , T ∈ (TE ∩ T I). If T is not in VK ,
TE = T I = {}, though “T → T” is still true.

Definition 10 Given experience K, the meaning of a term T consists of
its extension and intension.

Therefore, the meaning of a term is its relation with other terms, according
to the experience of the system. A term T is “meaningless” to the system, if
TE = T I = {} (that is, it has never got into the experience of the system),
otherwise it is “meaningful”. The larger the extension and intension of a
term are, the “richer” its meaning is.

Theorem 4 If both S and P are in VK , then (S → P ) ≡ (SE ⊆ PE) ≡
(P I ⊆ SI).

Here “≡” is the “if and only if” connective in propositional logic.
If “S → P” is false, it means that the inheritance is incomplete — either

(SE − PE) or (P I − SI) is not empty. However, it does not mean that S
and P share no extension or intension.

Theorem 5 (SE = PE) ≡ (SI = P I).

This means that in IL-1 the extension and intension of a term are mutually
determined. Consequently, one of the two uniquely determines the meaning
of a term.
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Consequently, IL-1 gets an “experience-grounded semantics”, since the
truth-values of its statements and the meanings of its terms are determined
by the experience of the system, except in trivial cases (analytical truths
and meaningless terms). No ontological assumption is made about the
outside world. To the system, the world is nothing but what the experience
reveals.

2.3 Inference: deriving and matching

IL-1 has a single inference rule that derives new knowledge from experi-
ence, justified by the transitivity of the inheritance relation. This rule is
syllogistic, in the sense that it takes two premises, B1 and B2, that share
a term M , and derives a conclusion between the other two terms S and P .
It is shown in Table 2.2.

B2 \ B1 M → P P →M

S →M S → P
M → S P → S

Table 2.2: The Inference Rule of IL-1

Definition 11 For different terms S and P , a question that can be an-
swered by an IL-based system has one of the following three forms: (1)
S → P?, (2) S → ?, and (3) ? → P . The ‘?’ in the last two is a “query
variable” to be instantiated. A belief S → P is an answer to any of the
three. If no such an answer can be found in K∗, “NO” is answered.

The first form of question asks for an evaluation of a given statement, while
the other two ask for a selection of a term with a given relation with another
term. If there are more than one answers to (2) and (3), they are equally
good. Literal truth “X → X” is a trivial answer to such a question, so it
is not allowed.

The matching rule is shown in Table 2.3, with Q for question and B for
matching belief.

Similar to negative knowledge, in IL-1 questions are not represented as
sentences in object language, but in the meta-language only. IL-1 does not
accept question “What is not T?”.
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B \ Q S → P? S → ? ?→ P

S → P S → P S → P S → P

Table 2.3: The Matching Rule of IL-1

References

[Wang, 2006, Chapter 3], [Wang, 1994, Wang, 1995a]



Chapter 3

NAL-1: Evidential
Inference

NAL-1 turns IL-1 into a non-axiomatic logic, under the Assumption of
Insufficient Knowledge and Resources (AIKR).

3.1 Evidence and uncertainty

As shown by Theorem 4, a perfect inheritance is equivalent to a complete
subset relation between the extension or intension of the two terms. It is
natural to extend a complete subset relation into a partial subset relation,
and, by the above equivalence, it also extends a perfect inheritance into an
imperfect inheritance.

Furthermore, since the subset relation can be seen as a summary of a set
of inheritance statements, an inheritance statement can also be seen as a
summary of inheritance statements. Based on this observation, “evidence”
of an inheritance statement is introduced.

Definition 12 For an inheritance statement “S → P”, its evidence are
terms in SE and P I . Among them, terms in (SE ∩ PE) and (P I ∩ SI)
are positive evidence, and terms in (SE −PE) and (P I −SI) are negative
evidence.

Here ‘∩’ and ‘−’ are the intersection and difference of sets, respectively, as
defined in set theory.

Evidence is defined in this way, because as far as a term in positive
evidence is concerned, the inheritance statement is correct; as far as a term
in negative evidence is concerned, the inheritance statement is incorrect.

11



12 CHAPTER 3. NAL-1: EVIDENTIAL INFERENCE

Since according to the previous definition, terms in the extension or
intension of a given term are equally weighted, the amount of evidence can
be simply measured by the size of the corresponding set.

Definition 13 For “S → P”, the amount of positive, negative, and total
evidence is, respectively,

w+ = |SE ∩ PE |+ |P I ∩ SI |
w− = |SE − PE |+ |P I − SI |
w = w+ + w−

= |SE |+ |P I |

When comparing competing beliefs and deriving new conclusions, rel-
ative measurements are usually preferred over absolute measurements, be-
cause the evidence of a premise normally cannot be directly used as evidence
for the conclusion. Also, it is often more convenient for the measurements
to take values from a finite range, while the amount of evidence has no
upper bound.

Definition 14 The truth-value of a statement consists of a pair of real
numbers in [0, 1]. One of the two is called frequency, defined as f = w+/w;
the other is called confidence, defined as c = w/(w + k), where k is the
“evidential horizon” of the system, a positive constant.

Informally speaking, frequency is the proportion of positive evidence among
all evidence; confidence is the proportion of current available evidence
among available evidence in the near future, after the coming of new evi-
dence of amount k. This evidential horizon k is a “personality parameter”
of the system, in the sense that in different NAL-based systems, it can take
different values, and in general it is hard (if possible) to say what value is
the best.

In this two-factor truth-value, the frequency factor indicates the ratio
between positive and negative evidence, and the confidence factor indicates
the ratio between current and future evidence. Since it is impossible to
consider infinite future, the evidential horizon k is introduced to restrict
“future” into a constant “near future”. Since what matters is the relative
confidence of beliefs, they should be measured against the same evidential
horizon, though the exact distance to the horizon (the k value) is not always
important.

The above definition implies that in a truth-value, the frequency factor
and the confidence factor are independent of each other, in the sense that
given the value of one, the value of the other is not determined, or even
bounded.
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The frequency value will be restricted in an interval within the evidential
horizon, until the coming evidence reaching amount k.

Definition 15 The frequency interval of a statement [l, u] contains its fre-
quency value from the current moment to the moment when the new evi-
dence has amount k. The lower frequency l is w+/(w + k), and the upper
frequency u is (w+ + k)/(w + k).

The frequency of a statement does not necessarily converge to a limit. Even
if it does, the limit is not necessarily in the frequency interval at every
previous moment.

Definition 16 The ignorance of a statement is measured by the width of
the frequency interval, i.e., i = u− l.

Theorem 6 For a statement, its confidence and ignorance are comple-
ment to each other, that is, c + i = 1.

The interval representation of uncertainty provides a mapping between
the “accurate representation” and the “inaccurate representation” of uncer-
tainty, because “inaccuracy” corresponds to willingness to change a value
within a certain range. If in a situation there are only N words that can
be used to specify the uncertainty of a statement, and all numerical values
are equally possible, the most informative way to communicate is to evenly
divide the [0, 1] interval into N section: [0, 1/N], [1/N, 2/N], ..., [(N-1)/N,
1], and to use a label for each section. A special situation of this is to
use a single number, with its accuracy, to carry out both frequency and
confidence information.

In summary, NAL uses three functionally equivalent representations for
the uncertainty (or degree of belief) of a statement:

Amounts of evidence: {w+, w}, where 0 ≤ w+ ≤ w, or using w− =
w − w+ to replace one of the two;

Truth value: 〈f, c〉, where both f and c are real numbers in [0, 1], and
are independent of each other;

Frequency interval: [l, u], where 0 ≤ l ≤ u ≤ 1, or using i = u − l to
replace one of the two.

Among all possible values of the measurements, there are two extreme
cases that only appear in the meta-language, and a normal case that actu-
ally happen in Narsese:
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Null evidence: This is indicated by w = 0, c = 0, or i = 1. It means the
system knows nothing at all about the statement, so does not need
to be actually represented in the system.

Full evidence: This is indicated by w =∞, c = 1, or i = 0. It means the
system already knows everything about the statement, which cannot
occur in a non-axiomatic logic.

Normal evidence: This is indicated by 0 < w, 0 < c < 1, or 0 < i < 1. It
means the statement is supported by finite amount of evidence, which
is the normal case for every belief in NAL.

Though the extreme cases never appear in actual beliefs of the system, they
can be discussed in the meta-language of NAL, as limit cases of the actual
beliefs, and therefore play important roles in system design.

This is why IL can be considered as an idealized version of NAL, while
still being a meta-logic of it. The beliefs of IL is supported by “full positive
evidence”, and therefore having binary truth-value. On the contrary, in
NAL each belief may have both positive and negative evidence, and the
impact of future evidence must be considered, too. Therefore, the truth-
value true of IL can be mapped into truth-value 〈1, 1〉 of NAL, since the
former assumes that there is neither negative evidence nor future evidence.

For the normal case, formulas for inter-conversion among the three forms
are displayed in Table 3.1.

to \ from {w+, w} 〈f, c〉 [ l, u ] (and i)

{w+, w} w+ = kfc/(1− c) w+ = k l/i
w = kc/(1− c) w = k(1− i)/i

〈f, c〉 f = w+/w f = l/(1− i)
c = w/(w + k) c = 1− i

[l, u] l = w+/(w + k) l = fc
u = (w+ + k)/(w + k) u = 1− c(1− f)

Table 3.1: The Mappings Among Measurements of Uncertainty

3.2 Grammar and semantics

The grammar of Narsese-1, the language used in NAL-1, is that of IL-1,
except that a binary “statement” plus its truth-value becomes a multi-
valued “judgment”. Also, “question” is included in the object-level of the
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language, as a statement without truth-value, and may contain variable to
be instantiated.

〈sentence〉 ::= 〈judgment〉 | 〈question〉
〈judgment〉 ::= 〈statement〉〈truth-value〉
〈question〉 ::= 〈statement〉 | ‘?′ 〈copula〉〈term〉|〈term〉〈copula〉 ‘?′
〈statement〉 ::= 〈term〉〈copula〉〈term〉
〈copula〉 ::= ‘→′
〈term〉 ::= 〈word〉

〈truth-value〉 : a pair of real number in [0, 1]× (0, 1)
〈word〉 : a string in a given alphabet

Table 3.2: The Grammar of Narsese-1

The truth-value of each judgment is defined by a chunk of evidence
represented by IL-1 sentences. In communications between the system and
its environment, the other two types of uncertainty representation can also
be used in place of the truth-value of a judgment, though within the system
they will be translated to (from) truth-value.

Similarly, the definition of “meaning” in NAL-1 also comes from that
in IL-1.

Definition 17 A judgment “S → P 〈f, c〉” indicates that S is in the ex-
tension of P and that P is in the intension of S, with the truth-value of the
judgment specifying their grades of membership.

Consequently, the extension and intension of a term in NAL-1 are no longer
ordinary sets with well-defined boundaries (as in IL-1), but sets with (two-
dimensional) grades of membership.

Definition 18 The actual experience of a system implementing NAL-1 is
a stream of Narsese-1 sentences. The experience defined in IL-1 is renamed
idealized experience in NAL-1.

What differs idealized experience from actual experience is:

1. The former contains true statements only, while the latter contains
questions and multi-valued judgments,

2. The former is a set (without internal order or duplicated elements),
while the latter is a stream (where order matters, and duplicate ele-
ments are possible).
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Since NAL-1 works under AIKR, the transitive closure of its (actual)
experience is not defined. The system may not have the resources to ex-
haust all possible conclusions derivable from given experience, nor can it
be assumed that the conclusions will converge to a stable set of beliefs,
since new experience comes constantly, and consists of sentences with un-
restricted content.

Definition 19 The evidential base of a truth-value is the set of sentences
in the experience from which the truth-value is derived.

Therefore, the evidential base of an input sentence (in the experience of
the system) is a set containing itself, while the evidential base of a derived
conclusion is the union of the evidential bases of the premises. If the same
sentence appears multiple times in experience, each occurrence corresponds
to a separate evidential base.

In the actual implementation of NAL, the evidential base of a truth-
value is represented by a “stamp” containing sequential numbers of input
sentences, with a maximum length. To calculate the union of two eviden-
tial bases, the two stamps are interwoven, and the overflow part is ignored.
The system decides if two truth-values are based on overlapping evidence
by checking if their stamps contain any common element, which may fail
to recognize overlapping evidence for beliefs derived from many input sen-
tences, which, though not desired, is inevitable for a system with AIKR.

3.3 Forward inference

As a syllogistic logic, a typical forward inference rule in NAL takes two
judgments as premise, and derives a judgment as conclusion, with a truth-
value function to calculate the truth-value of the conclusion from those of
the premises. That is, it looks like

{premise1〈f1, c1〉, premise2〈f2, c2〉} ` conclusion〈f, c〉

where 〈f, c〉 is calculated by a truth-value function from 〈f1, c1〉 and 〈f2, c2〉.
Alternatively, the rule can be put into a table where each row and column
corresponds to a premise, as in IL-1.

In NAL-1, all the premises and conclusions are inheritance statements,
and the two premises share at least one common term. Furthermore, to
avoid circular inference, the premises cannot have common stamp elements.

Because the two premises share at least one term, their contents are
semantically related to each other. NAL never infers on two arbitrary
premises and only considers their truth-values in deriving a conclusion.
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For a pair of judgments that do share at least one common term, their
structures and the position of the shared term determine the content of the
conclusion, as well as the truth-value function.

A truth-value function is usually designed (with a few exceptions) by
treating the related measurements in [0, 1] as extended Boolean values, by
the following procedure:

1. According to the experience-grounded semantics, decide the uncer-
tainty values of the conclusion for each combination of the values in
the premises, when all of them are binary values 0 or 1.

2. Represent each value in the conclusion as a Boolean function of the
values in the premises, using Boolean operators “and”, “or”, and
“not”. Among the Boolean functions satisfying the given condition,
the function selected usually is the simplest, and with an intuitive
justification.

3. Assuming variables x1, ..., xn are mutually independent (i.e., the value
of one cannot be bounded by the value of the others), the Boolean
operators are extended from {0, 1} to [0, 1]:

Definition 20

not(xi) = 1− xi

and(x1, ..., xn) = x1 × ...× xn

or(x1, ..., xn) = 1− (1− x1)× ...× (1− xn)

When the operators are applied in truth-value functions, the inde-
pendence requirement is satisfied when the two premises have distinct
evidential bases, since the two factors in a truth-value (frequency and
confidence) are already independent of each other in this sense.

4. Rewrite the uncertainty functions as truth-value functions if they are
not in that form, using the mappings between truth-values and other
uncertainty measurements in Table 3.1.

In term logics, when two judgments share exactly one common term,
they can be used as premises in an inference rule that derives an inheri-
tance relation between the other two (unshared) terms. When the copula is
directed, like inheritance, there are four possible combinations of premises
and conclusions, as listed in Table 3.3. For each combination of premises,
there are two conclusions, corresponding to the two directions of inheritance
between the two terms that only appear on one premise. The involved in-
ference type include deduction, abduction, induction, and exemplification.
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J2 \ J1 M → P 〈f1, c1〉 P →M 〈f1, c1〉
S →M 〈f2, c2〉 S → P < Fded > S → P < Fabd >

P → S < F ′exe > P → S < F ′abd >
M → S 〈f2, c2〉 S → P < Find > S → P < Fexe >

P → S < F ′ind > P → S < F ′ded >

Table 3.3: The Basic Syllogistic Rules

In the table, Fnnn indicates the truth-value function that calculates
the truth-value of the conclusion, and F ′nnn is Fnnn with the order of the
premises switched. The associated truth-value functions are given in Table
3.4, together with the type of inference. The function Fded is derived from
the transitivity of the inheritance relation, while the other three are derived
from the definition of evidence.

Deduction Boolean version: f = and(f1, f2)
c = and(f1, c1, f2, c2)

Fded truth-value version: f = f1 × f2
c = f1 × c1 × f2 × c2

Abduction Boolean version: w+ = and(f1, c1, f2, c2)
w− = and(f1, c1, not(f2), c2)

Fabd truth-value version: f = f2
c = f1×c1×c2

f1×c1×c2+k

Induction Boolean version: w+ = and(f1, c1, f2, c2)
w− = and(not(f1), c1, f2, c2)

Find truth-value version: f = f1
c = c1×f2×c2

c1×f2×c2+k

Exemplification Boolean version: w+ = and(f1, c1, f2, c2)
w− = 0

Fexe truth-value version: f = 1

c = f1×c1×f2×c2
f1×c1×f2×c2+k

Table 3.4: The Truth-value Functions of the Basic Syllogistic Rules

In term logics, “conversion” is an inference from a single premise to a
conclusion by interchanging the subject and predicate terms of the premise.
The conversion rule in NAL is defined in Table 3.5.
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{P → S 〈f0, c0〉} ` S → P 〈Fcnv〉

Table 3.5: The Conversion Rules of NAL-1

By definition, statements “S → P” and “P → S” have the same positive
evidence, but distinct negative evidence. However, in conversion inference
directly letting w+ = w+

0 and w− = 0 lead to the undesired result that
“P → S 〈1, 1〉” derives “S → P 〈1, 1〉”. Instead, in NAL inference rules
evidence for a premise should not be taken as evidence of the same amount
for the conclusion (except in a few special rules to be introduced later). A
proper truth-value function for the conversion rule can be obtained by treat-
ing the conclusion as derived by abduction from premises “P → S〈f0, c0〉”
and “S → S〈1, 1〉”, or by induction from premises “P → P 〈1, 1〉” and
“P → S〈f0, c0〉”. Both of them lead to the function in Table 3.6, which
also means that in conversion the premise only provides positive evidence
(with the amount of f0 × c0) to the conclusion.

Conversion Boolean version: w+ = and(f0, c0)
w− = 0

Fcnv truth-value version: f = 1

c = f0×c0
f0×c0+k

Table 3.6: The Truth-value Function of the Conversion Rule

3.4 Revision and choice

In NAL, revision, given in Table 3.7, indicates the inference step in which
evidence from different sources for the same statement is accumulated. It
is applicable when the two premises contains the same statement, and their
stamps contain no common element. The two premises are still kept as
valid beliefs after the revision.

It is the only two-premise rule in NAL where the evidence of the premises
can be directly taken, with the same type and amount, as the evidence of
the conclusion (because they all contain the same statement). Therefore,
the truth-value function, given in Table 3.8, is not designed according to
the general procedure introduced previously, but comes directly from the
additivity of the amount of evidence.
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J2 \ J1 S〈f1, c1〉
S〈f2, c2〉 S〈Frev〉

Table 3.7: The Revision Rule

Revision evidence version: w+ = w+
1 + w+

2

w = w1 + w2

Frev truth-value version: f = f1c1(1−c2)+f2c2(1−c1)
c1(1−c2)+c2(1−c1)

c = c1(1−c2)+c2(1−c1)
c1(1−c2)+c2(1−c1)+(1−c1)(1−c2)

Table 3.8: The Truth-value Function of the Revision Rule

As in IL-1, judgment “S → P 〈f, c〉” provides a candidate answer to
evaluative question “S → P?”, as well as to selective questions “S → ?” and
“? → P”. However, unlike the situation of IL-1, in NAL-1 all candidates
are not equally good. The choice rule of NAL chooses the better answer
between two candidates.

For an evaluative question “S → P?”, both candidate answers contain
the same statement “S → P”, though have different truth-values. Between
them, the better one is the one with a higher confidence value. This is the
case because an adaptive system prefers an evaluation supported by more
evidence.

For a selective question “S → ?” or “?→ P”, the two candidate answers
usually suggest different instantiations T1 and T2 for the query variable in
the question. Between them, the better one is the one with a higher expec-
tation value, which is a prediction of the frequency for the statement to be
confirmed in the near future. This prediction is based on the past frequency,
but more conservative, by taking the confidence factor into account. The
expectation function is given in Table 3.9.

Expectation frequency-interval version: e = (l + u)/2
evidence-amount version: e = (w+ + k/2)/(w + k)

Fexp truth-value version: e = c(f − 1/2) + 1/2

Table 3.9: The Expectation Function
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In summary, the choice rule is formally defined in Table 3.10, where
S1 〈f1, c1〉 and S2 〈f2, c2〉 are two competing answers to a question, and
S 〈Fcho〉 is the chosen one. When S1 and S2 are the same statement, the
one with a higher confidence value is chosen, otherwise the one with a
higher expectation value is chosen. It is also a special rule because no new
conclusion is derived.

J2 \ J1 S1 〈f1, c1〉
S2 〈f2, c2〉 S 〈Fcho〉

Table 3.10: The Choice Rule

3.5 Backward inference

Backward inference happens when a judgment and a question are taken
as premises, and a derived question is produced as result. The question
derivation rules are specified by the following general principle, or meta-
rule, using the other (forward inference) rules defined previously.

Question derivation: A question Q and a judgment J will give rise to a
new question Q′ if and only if an answer for Q can be derived from
J and an answer for Q′, by a forward inference rule.

Therefore, if a question cannot be properly answered by the choice rule,
backward inference is used to recursively “reduce” the question into de-
rived questions, until all of them have direct answers. Then these answers,
together with the judgments involved in the previous backward inference,
will derive an answer to the original question by forward inference.

In NAL-1, all backward inference rules are obtained by turning the
forward syllogistic rules in Table 3.3 in a reverse direction, and the cor-
responding backward-inference rules are in Table 3.11, where P can be a
query variable (marked by ‘?’).

This table turns out to be identical to Table 3.3, if the truth-value
functions and the question/judgment difference are ignored.
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J \ Q M → P P →M

S →M〈f, c〉 S → P S → P
P → S P → S

M → S〈f, c〉 S → P S → P
P → S P → S

Table 3.11: The Backward Basic Syllogistic Rules



Chapter 4

NAL-2: Similarity and
Sets

In this chapter and the following ones, first the language of IL is extended,
then the inference rule of NAL is extended to handle the new items in the
language under AIKR.

4.1 Similarity

Definition 21 For any terms S and P , similarity ‘↔’ is a copula defined
by

(S ↔ P ) ≡ ((S → P ) ∧ (P → S))

Since ‘≡’ and ‘∧’ are the equivalence and conjunction connectives in propo-
sitional logic, respectively, the expression in the definition is not a statement
in IL, but in its meta-language, though it introduce similarity statement
‘S ↔ P ’ into IL.

Theorem 7 Similarity is a reflexive, symmetric, and transitive relation
between two terms.

Theorem 8 (S ↔ P ) ⊃ (S → P )

Here ‘⊃’ is the implication connective in propositional logic. Since in all
the following definitions and theorems, symbols like S, P , and M are used
for arbitrary terms, they will not be explicitly declared as so.

Theorem 9 (S ↔ P ) ≡ (S ∈ (PE ∩ P I)) ≡ (P ∈ (SE ∩ SI))

23
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Theorem 10 (S ↔ P ) ≡ (SE = PE) ≡ (SI = P I)

That is, “S ↔ P” means the two terms have the same meaning, or are
identical to each other.

To extend the binary similarity statement in IL-2 to the similarity judg-
ment in NAL-2, the evidence of a similarity statement is defined, alike the
evidence of an inheritance statement.

Definition 22 For similarity statement “S ↔ P”, its positive evidence is
in (SE ∩ PE) and (P I ∩ SI), and its negative evidence is in (SE − PE),
(PE − SE), (P I − SI), and (SI − P I).

In NAL-2 a similarity statement is true to a degree, where the amounts
of evidence and truth-value are defined in the same way as in NAL-1. In
the following, the word “identical” will be reserved for terms S and P when
they are related by the binary “S ↔ P” in IL, which is an extreme case of
“similar” in both IL and NAL.

Corresponding to the basic syllogistic rules in NAL-1, in NAL-2 there
are three combinations of inheritance and similarity, corresponding to com-
parison, analogy, and resemblance, respectively, as indicated by the names
of truth-value functions in Table 4.1. To make the table (as well as the
following inference tables) simpler, the truth-values of the premises are
omitted in the table, though it is obvious that the truth-value of J1 and J2
are 〈f1, c1〉 and 〈f2, c2〉, respectively.

J2 \ J1 M → P P →M M ↔ P

S →M S ↔ P 〈Fcom〉 S → P 〈F ′ana〉
M → S S ↔ P 〈Fcom〉 P → S〈F ′ana〉
S ↔M S → P 〈Fana〉 P → S〈Fana〉 S ↔ P 〈Fres〉

Table 4.1: The Similarity-related Syllogistic Rules

The associated truth-value functions are given in Table 4.2.

4.2 Compound terms

To represent more complicated experience, “compound terms” are needed.

Definition 23 A compound term (con c1 · · · cn) is a term formed by
a term connector, con, that connects one or more terms c1, · · · , cn, called
the component(s) of the compound. The order of the components usually
matters.
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Comparison Boolean version: w+ = and(f1, c1, f2, c2)
w = and(or(f1, f2), c1, c2)

Fcom truth-value version: f = f1×f2
f1+f2−f1×f2

c = (f1+f2−f1×f2)×c1×c2
(f1+f2−f1×f2)×c1×c2+k

Analogy Boolean version: f = and(f1, f2)
c = and(c1, f2, c2)

Fana truth-value version: f = f1 × f2
c = c1 × f2 × c2

Resemblance Boolean version: f = and(f1, f2)
c = and(or(f1, f2), c1, c2)

Fana truth-value version: f = f1 × f2
c = (f1 + f2 − f1 × f2)× c1 × c2

Table 4.2: The Truth-value Functions of the Similarity-related Rules

Definition 24 Each term in NAL has a syntactical complexity. The com-
plexity of an atomic term (i.e., word) is 1. The complexity of a compound
term is 1 plus the sum of the complexity of its components.

Sometimes the “infix” format of a compound term can be used to write
(con c1 · · · cn) as (c1 con · · · con cn), and the syntactical complexity of
the two forms are the same.

When introducing term operators with two or more components in the
following, usually they are only defined with two components, and the gen-
eral case (for both the above prefix representation and the infix representa-
tion) is translated into the two-component case by the following definition.

Definition 25 If c1 · · · cn (n > 2) are terms, and con is a term connector
defined as taking two or more arguments, then both (con c1 · · · cn) and
(c1 con · · · con cn) are defined recursively as (con (con c1 · · · cn−1) cn),
though the latter form has a higher syntactical complexity.

In Narsese, all term connectors are defined in the grammar, and with
predetermined (experience-independent) meaning.

The meaning of a compound term is related to the meaning of the
components, so identical components form identical compounds.

Definition 26 In IL, two compound terms are identical if they have the
same term connector and pairwise identical components.

((c1 ↔ d1) ∧ · · · ∧ (cn ↔ dn)) ⊃ ((con c1 · · · cn)↔ (con d1 · · · dn))
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Since the interrelations among components influence the meaning of
a compound, identical compound terms do not necessarily have identical
pairwise components. An exception is the compounds that have a sole
component.

Definition 27 In IL, two compound terms with sole components are iden-
tical if and only if they have the same term connector and identical com-
ponents.

(c↔ d) ≡ ((con c)↔ (con d))

Just like there are analytical truth and empirical truth, the meaning
of a compound term has two parts, an analytical part and an empirical
part, where the former is determined by its definitional relation with its
components and other analytical truths about the term, while the latter
comes from the system’s experience when the compound term is used as a
whole.

All compound terms can be used by the inference rules as atomic terms.
When doing so, their internal structures are ignored. Furthermore, com-
pound terms can directly appear in the (idealized or actual) experience of
the system.

Consequently, in NAL the meaning of a compound term is not com-
pletely reducible to the meanings of its components plus the meaning of
the term connector, though related to them.

4.3 Sets and derivative copulas

Definition 28 If T is a term, the extensional set with T as the only com-
ponent, {T}, is a compound term, and its meaning is defined by

(∀x)((x→ {T}) ≡ (x↔ {T})).

That is, a compound term with such a form is like a set defined by a sole
element or individual. The compound therefore has a special property: all
terms in the extension of {T} must be identical to it, and no term can
be more specific than it (though it is possible for some terms to be more
specific than T ).

This compound term uses a special format, with ‘{ }’ as term connector.

Theorem 11 For any term T, {T}E ⊆ {T}I .

On the other hand, {T}I is not necessarily included in {T}E .
An instance copula, ‘◦→’, is another way to represent the same infor-

mation.
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Definition 29 The instance statement “S ◦→ P” is defined by the inher-
itance statement “{S} → P .”

Theorem 12 ((S ◦→M) ∧ (M → P )) ⊃ (S ◦→ P ).

However, “S →M” and “M ◦→ P” does not imply “S ◦→ P .”

Theorem 13 (S ◦→ {P}) ≡ (S → P ).

“T ◦→ {T}” follows as a special case. On the other hand, the statement
“T ◦→ T” is not an analytical truth, though may be an empirical one.

According to the duality between extension and intension, another spe-
cial compound term and the corresponding copula are defined.

Definition 30 If T is a term, the intensional set with T as the only com-
ponent, [T ], is a compound term, and its meaning is defined by

(∀x)(([T ]→ x) ≡ ([T ]↔ x)).

That is, a compound term with such a form is like a set defined by a sole
attribute or feature. The compound therefore has a special property: all
terms in the intension of [T ] must be identical to it, and no term can be
more general than it (though it is possible for some terms to be more general
than T ).

This compound term also uses a special format, with ‘[ ]’ as term con-
nector.

Theorem 14 For any term T, [T ]I ⊆ [T ]E.

On the other hand, [T ]E is not necessarily included in [T ]I .
A property copula, ‘→◦’, is another way to represent the same informa-

tion.

Definition 31 The property statement “S →◦ P” is defined by the inher-
itance statement “S → [P ].”

Theorem 15 (S →M) ∧ (M →◦ P ) ⊃ (S →◦ P ).

However, “S →◦M” and “M → P” does not imply “S →◦ P .”

Theorem 16 ([S]→◦ P ) ≡ (S → P ).

“[T ] →◦ T” follows as a special case. On the other hand, the statement
“T →◦ T” is not an analytical truth, though may be an empirical one.

An instance-property copula, ‘ ◦→◦ ’, is defined by combining ‘ ◦→’ and
‘→◦ ’.
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Definition 32 The instance-property statement “S ◦→◦ P” is defined by
the inheritance statement “{S} → [P ].”

Intuitively, it states that an instance S has a property P .

Theorem 17 (S ◦→◦ P ) ≡ ({S} →◦ P ) ≡ (S ◦→ [P ])

4.4 Grammar and inference rules

In summary, while all the grammar rules of Narsese-1 are still valid in
NAL-2, there are additional grammar rules of Narsese-2, as listed in Table
4.3.

〈copula〉 ::= ‘↔′ | ‘◦→′ | ‘→◦′ | ‘◦→◦′
〈term〉 ::= ‘{′〈term〉‘}′ | ‘[′〈term〉‘]′

Table 4.3: The New Grammar Rules of Narsese-2

Since each derivative copula is fully defined in terms of the inheri-
tance copula, its semantics and relevant inference rules can be derived from
those in NAL-1. To simplify the implementation of the system, deriva-
tive copulas instance, property and instance-property are only used in the
input/output interface, and within the system they are translated into in-
heritance. Therefore there is no need to introduce inference rules for them.
The same thing cannot be done to the copula similarity. Though in IL-
2 the binary form of similarity is defined in terms of the inheritance, in
NAL-2 similarity judgments usually cannot be translated into equivalent
inheritance judgments. Therefore, NAL-2 uses five copulas in its interface
language, but only keep two of them (inheritance and similarity) in its in-
ternal representation, without losing any power in expression and inference.
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NAL-3: Intersections and
Differences

In NAL-3, compound terms are composed by combining the extension or
intension of existing terms in certain way.

5.1 Intersections

Definition 33 Given terms T1 and T2, their extensional intersection, (T1∩
T2), is a compound term defined by

(∀x)((x→ (T1 ∩ T2)) ≡ ((x→ T1) ∧ (x→ T2))).

From right to left, the equivalence expression defines the extension of the
compound, i.e., “(x→ T1)∧(x→ T2)” implies “x→ (T1∩T2)”; from left to
right, it defines the intension of the compound, i.e., “(T1∩T2)→ (T1∩T2)”
implies “(T1 ∩ T2)→ T1” and “(T1 ∩ T2)→ T2.”

Theorem 18

(T1 ∩ T2)E = TE
1 ∩ TE

2 , (T1 ∩ T2)I = T I
1 ∪ T I

2

In the above expressions, the ‘∩’ sign is used in two different senses. On the
right-side of the first expression, it indicates the intersection of sets, but on
the left-side of the two expressions, it is the term connector of extensional
intersections.

Definition 34 Given terms T1 and T2, their intensional intersection, (T1∪
T2), is a compound term defined by

(∀x)(((T1 ∪ T2)→ x) ≡ ((T1 → x) ∧ (T2 → x))).

29
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From right to left, the equivalence expression defines the intension of the
compound, i.e., “(T1 → x)∧(T2 → x)” implies “(T1∪T2)→ x”; from left to
right, it defines the extension of the compound, i.e., “(T1∪T2)→ (T1∪T2)”
implies “T1 → (T1 ∪ T2)” and “T2 → (T1 ∪ T2).”

Theorem 19

(T1 ∪ T2)I = T I
1 ∩ T I

2 , (T1 ∪ T2)E = TE
1 ∪ TE

2

The duality of extension and intension in NAL corresponds to the du-
ality of intersection and union in set theory — intensional intersection
corresponds to extensional union, and extensional intersection corresponds
to intensional union.

Both operators can be extended to take more than two arguments. Since
‘∩’ and ‘∪’ are both associative and symmetric, the order of their compo-
nents does not matter.

Theorem 20

(T1 ∩ T2)↔ (T2 ∩ T1)
(T1 ∪ T2)↔ (T2 ∪ T1)

Theorem 21

(T1 ∩ T2)→ T1

T1 → (T1 ∪ T2)

Theorem 22

(T ∪ T )↔ T
(T ∩ T )↔ T

Theorem 23

T1 →M ∧ ¬((T1 ∪ T2)→M) ⊃ ¬(T2 →M)
¬(T1 →M) ∧ (T1 ∩ T2)→M ⊃ T2 →M

M → T1 ∧ ¬(M → (T1 ∩ T2)) ⊃ ¬(M → T2)
¬(M → T1) ∧ M → (T1 ∪ T2) ⊃ M → T2

Here ‘¬’ is the negation operator in propositional logic.

Theorem 24

S → P ⊃ (S ∪M)→ (P ∪M)
S → P ⊃ (S ∩M)→ (P ∩M)
S ↔ P ⊃ (S ∪M)↔ (P ∪M)
S ↔ P ⊃ (S ∩M)↔ (P ∩M)
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In the results of the above theorem, M can be any term in VK . The same
is assumed for some other theorems to be introduced later.

Definition 35 If T1, · · · , Tn (n ≥ 2) are different terms, a compound
extensional set {T1, · · · , Tn} is defined as (∪ {T1} · · · {Tn}); a compound
intensional set [T1, · · · , Tn] is defined as (∩ [T1] · · · [Tn]).

In this way, extensional sets and intensional sets can both have multiple
components. The former defines a term by enumerating its instances, and
the latter by enumerating its properties. The order of the components does
not matter. These multi-component sets no longer have the property of
single-component sets that their extension or intension is minimum.

Theorem 25

(∀x)(({x} → {T1, · · · , Tn}) ≡ ((x↔ T1) ∨ · · · ∨ (x↔ Tn)))
(∀x)(([T1, · · · , Tn]→ [x]) ≡ ((T1 ↔ x) ∨ · · · ∨ (Tn ↔ x)))

5.2 Differences

Definition 36 If T1 and T2 are different terms, their extensional differ-
ence, (T1 − T2), is a compound term defined by

(∀x)((x→ (T1 − T2)) ≡ ((x→ T1) ∧ ¬(x→ T2))).

From right to left, the equivalence expression defines the extension of the
compound, i.e., “(x → T1) ∧ ¬(x → T2)” implies “x → (T1 − T2)”; from
left to right, it defines the intension of the compound, i.e., “(T1 − T2) →
(T1 − T2)” implies “(T1 − T2)→ T1” and “¬((T1 ∩ T2)→ T2).”

Obviously, (T2 − T1) can also be defined, but it will be different from
(T1 − T2).

Theorem 26

(T1 − T2)E = TE
1 − TE

2 , (T1 − T2)I = T I
1

Definition 37 If T1 and T2 are different terms, their intensional differ-
ence, (T1 	 T2), is a compound term defined by

(∀x)(((T1 	 T2)→ x) ≡ ((T1 → x) ∧ ¬(T2 → x))).

From right to left, the equivalence expression defines the intension of the
compound, i.e., “(T1 → x) ∧ ¬(T2 → x)” implies “(T1 	 T2) → x”; from
left to right, it defines the extension of the compound, i.e., “(T1 	 T2) →
(T1 	 T2)” implies “T1 → (T1 	 T2)” and “¬(T2 → (T1 	 T2)).”
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Theorem 27

(T1 	 T2)I = T I
1 − T I

2 , (T1 	 T2)E = TE
1

Theorem 28

(T1 − T2)→ T1

T1 → (T1 	 T2)

Theorem 29

M → (T1 − T2) ⊃ ¬(M → T2)
(T1 	 T2)→M ⊃ ¬(T2 →M)

Unlike the intersection operators, the difference operators cannot take
more than two arguments. Also, neither (T − T ) nor (T 	 T ) is a valid
term.

Theorem 30

T1 →M ∧ ¬((T1 	 T2)→M) ⊃ T2 →M
¬(T1 →M) ∧ ¬((T2 	 T1)→M) ⊃ ¬(T2 →M)

M → T1 ∧ ¬(M → (T1 − T2)) ⊃ M → T2

¬(M → T1) ∧ ¬(M → (T2 − T1)) ⊃ ¬(M → T2)

Theorem 31

S → P ⊃ (S −M)→ (P −M)
S → P ⊃ (M − P )→ (M − S)
S → P ⊃ (S 	M)→ (P 	M)
S → P ⊃ (M 	 P )→ (M 	 S)
S ↔ P ⊃ (S −M)↔ (P −M)
S ↔ P ⊃ (M − P )↔ (M − S)
S ↔ P ⊃ (S 	M)↔ (P 	M)
S ↔ P ⊃ (M 	 P )↔ (M 	 S)

Theorem 32

({T1, · · · , Tn} − {Tn}) ↔ {T1, · · · , Tn−1}
([T1, · · · , Tn]	 [Tn]) ↔ [T1, · · · , Tn−1]

5.3 Grammar and inference rules

The additional grammar rules of Narsese-3 are listed in Table 5.1.
The previous grammar rule for extensional set and intensional set be-

comes a special case of the new rule.
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〈term〉 ::= ‘{′〈term〉+‘}′
| ‘[′ 〈term〉+ ‘]′

| ‘(∩′〈term〉〈term〉+ ‘)′

| ‘(∪′〈term〉〈term〉+ ‘)′

| ‘(−′〈term〉〈term〉 ‘)′
| ‘(	′〈term〉〈term〉 ‘)′

Table 5.1: The New Grammar Rules of Narsese-3

J2 \ J1 M → T1 T1 →M

T2 →M (T1 ∪ T2)→M 〈Fint〉
(T1 ∩ T2)→M 〈Funi〉
(T1 	 T2)→M 〈Fdif 〉
(T2 	 T1)→M 〈F ′dif 〉

M → T2 M → (T1 ∩ T2) 〈Fint〉
M → (T1 ∪ T2) 〈Funi〉
M → (T1 − T2) 〈Fdif 〉
M → (T2 − T1) 〈F ′dif 〉

Table 5.2: The Composition Rules of NAL-3

Each inference rule in Table 5.2 introduce a compound term in conclu-
sion. Such a rule is applicable only when T1 and T2 are different, and do
not have each other as component. Also, the two premises cannot be based
on overlapping evidence.

The truth-value functions in Table 5.2 are defined in Table 5.3, in an
extended Boolean version.

The frequency functions are obtained based on the assumption that the
two premises have independent truth-values, which is assumed when the
two do not use overlapping evidence. When T1 and T2 are either highly
similar or opposite to each other, the compound terms produced by these
rules may not have much practical value. However, even when it happens,
it is an issue to be handled by inference control, not by logic.

In the confidence functions, each case for the conclusion to reach its
maximum is separately considered. The plus operator is used in place of an
or operator, because the two cases involved are mutually exclusive, rather
than independent of each other.
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Fint : Intersection
f = and(f1, f2)
c = or(and(not(f1), c1), and(not(f2), c2)) + and(f1, c1, f2, c2)

Funi : Union
f = or(f1, f2)
c = or(and(f1, c1), and(f2, c2)) + and(not(f1), c1, not(f2), c2)

Fdif : Difference
f = and(f1, not(f2))
c = or(and(not(f1), c1), and(f2, c2)) + and(f1, c1, not(f2), c2)

Table 5.3: The Truth-value Functions of the Composition Rules
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Chapter 6

NAL-4: Products,
Relations, and Images

NAL-4 has the capability of representing and processing arbitrary relations
among terms that cannot be treated by the copulas.

6.1 Products and relations

Intuitively, a “product” is a compound term consisting of a sequence of
components.

Definition 38 For two terms T1 and T2, their product (T1 × T2) is a
compound term defined by

((S1 × S2)→ (P1 × P2)) ≡ ((S1 → P1) ∧ (S2 → P2)).

This definition can be extended to allow more than two components in a
product. The product connector allows duplicate components. The order
of components matters. The prefix format can be used for products.

Theorem 33

(S → P ) ≡ ((M × S)→ (M × P )) ≡ ((S ×M)→ (P ×M))

(S ↔ P ) ≡ ((M × S)↔ (M × P )) ≡ ((S ×M)↔ (P ×M))

Theorem 34

((S1 × S2)↔ (P1 × P2)) ≡ ((S1 ↔ P1) ∧ (S2 ↔ P2))

35
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As a special case of the definition of product, when the terms involved
are products with common components, the system can “concatenate” them
into longer products with more than two components:

Theorem 35

(((×, S1, S2)↔ (×, P1, P2)) ∧ ((×, S1, S3)↔ (×, P1, P3)))
≡ ((×, S1, S2, S3)↔ (×, P1, P2, P3))

Theorem 36

{(x× y) |x ∈ TE
1 , y ∈ TE

2 } ⊆ (T1 × T2)E

{(x× y) |x ∈ T I
1 , y ∈ T I

2 } ⊆ (T1 × T2)I

The ‘⊆’ cannot be replaced by ‘=’ in the above theorem, because (T1×T2)E

and (T1 × T2)I may contain other terms that are not products.

Definition 39 A relation is a term R such that there is a product (T1×T2)
satisfying “(T1 × T2)→ R” or “R→ (T1 × T2)”.

Since “(T1 × T2)→ (T1 × T2)”, a product is a relation, though a relation is
not necessarily a product. In NAL, a relation can be an atomic term.

Though in the meta-language of NAL, a copula (inheritance or simi-
larity) is a “relation” as defined set theory, it is not a relation in Narsese,
as defined above. A copula has a fixed meaning provided in the meta-
language of NAL, while a relation has an experience-grounded meaning, as
other terms in Narsese.

6.2 Images

Definition 40 For a relation R and a product (× T1 T2), the extensional
image operator, ‘⊥’, and intensional image operator, ‘>’, of the relation on
the product are defined as the following, respectively:

((× T1 T2)→ R) ≡ (T1 → (⊥ R � T2)) ≡ (T2 → (⊥ R T1 �))

(R→ (× T1 T2)) ≡ ((> R � T2)→ T1) ≡ ((> R T1 �)→ T2)

where ‘�’ is a special symbol indicating the location of T1 or T2 in the prod-
uct, and it can appear in any place, except the first (which is the relation),
in the component list. When it appears at the second place, the image can
also be written in infix format as (R⊥T2) or (R>T2).
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The above definition can be extended to include products with more
than two components, where the image can only be written in the prefix
format.

In general, (R⊥T ) and (R>T ) are different, but there are situations
where they are the same.

Theorem 37

T1 ↔ ((T1 × T2)⊥T2)

T1 ↔ ((T1 × T2)>T2)

Theorem 38

((R⊥T )× T )→ R

R→ ((R>T )× T )

The ‘→’ in the above theorem cannot be replaced by the ‘↔’.

Theorem 39

S → P ⊃ (S ⊥M)→ (P ⊥M)
S → P ⊃ (S >M)→ (P >M)
S → P ⊃ (M ⊥ P )→ (M ⊥ S)
S → P ⊃ (M > P )→ (M > S)

6.3 Grammar and inference rules

In summary, NAL-4 introduces the new grammar rules in Table 6.1.

〈term〉 ::= ‘(×′〈term〉〈term〉+‘)′

| ‘(⊥′〈term〉〈term〉∗‘ �′ 〈term〉∗‘)′
| ‘(>′〈term〉〈term〉∗‘ �′ 〈term〉∗‘)′

Table 6.1: The New Grammar Rules of Narsese-4

There is no new inference rule directly defined in NAL-4, except the
equivalence and implication propositions in the definitions and theorems,
which will be turned into inference rules later.
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Chapter 7

NAL-5: Statements as
Terms

When a statement is treated as a term, there are statements on statements,
as well as inference on this kind of higher-order statements.

7.1 Inference: higher-order vs. first-order

The new grammar rules of Narsese-5 are listed in Table 7.1. It includes
“higher-order statements” (statements on statements), so that NAL-5 can
carry out “higher-order inference” (inference on higher-order statements),
while NAL-4 is “first-order” (where statement and term are distinct).

〈term〉 ::= ‘(′〈statement〉‘)′
〈statement〉 ::= 〈term〉

| ‘(¬′〈statement〉‘)′
| ‘(∧′〈statement〉〈statement〉+‘)′

| ‘(∨′〈statement〉〈statement〉+‘)′

〈copula〉 ::= ‘⇒′ | ‘⇔′

Table 7.1: The New Grammar Rules of Narsese-5

In IL-5 and NAL-5, a statement can be treated as a term, and a term
can also be used as a statement. However, it does not mean that there is
no difference between term and statement. In IL and NAL, a statement

39



40 CHAPTER 7. NAL-5: STATEMENTS AS TERMS

has both meaning and truth-value, while a non-statement term only has
meaning, no truth-value.

The “propositional attitudes”, such as “believe” and “know”, are rep-
resented in Narsese as relations between a ordinary term and a statement,
so the corresponding statements are higher-order statements.

Compound statements can be formed using statement connectors nega-
tion (‘¬’), conjunction (‘∧’), and disjunction (‘∨’).

The two copulas, implication (‘⇒’) and equivalence (‘⇔’), are “higher-
order”, because they are defined between two statements. In their binary
form, ‘⇒’ and ‘⇔’ are different from ‘⊃’ and ‘≡’, though their intuitive
meanings (“if” and “if-and-only-if”, respectively) are similar. The former
two belong to the object language (Narsese), while the latter two belong to
the meta-language of Narsese (propositional calculus).

Definition 41 If S1 and S2 are statements, “S1 ⇒ S2” is true if and only
if in IL S2 can be derived from S1.

The derivation in the above definition can consists of any (finite) number
of inference steps.

Theorem 40 The implication copula, ‘⇒’, is a reflexive and transitive
relation from one statement to another statement.

Since the above theorem of implication is parallel to the definition of
inheritance in IL-1, higher-order inference in IL-5 can be defined as partially
isomorphic to first-order inference. The correspondences are listed in Table
7.2.

First-Order IL Higher-Order IL
inheritance implication
similarity equivalence
subject antecedent
predicate consequent
extension sufficient condition
intension necessary condition
extensional intersection conjunction
intensional intersection disjunction

Table 7.2: Isomorphism of First-Order and Higher-Order IL

The definitions of the new notions in Table 7.2 are in the following.

Definition 42 An implication statement consists of two statements related
by the implication copula. In implication statement “A ⇒ C”, A is the
antecedent, and C is the consequent.
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Definition 43 Given idealized experience K expressed in the formal lan-
guage of IL-5, the sufficient conditions of a statement T is the set of state-
ments TS = {x |x ∈ VK ∧ x⇒ T}; the necessary conditions of T is the set
of statements TN = {x |x ∈ VK ∧ T ⇒ x}.

Definition 44 For an implication statement “A ⇒ C”, its evidence are
statements in AS and CN . Among them, statements in (AS ∩ CS) and
(CN ∩AN ) are positive evidence, while statements in (AS−CS) and (CN−
AN ) are negative evidence.

Definition 45 Equivalence copula, ‘⇔’, is defined by

(A⇔ C) ≡ ((A⇒ C) ∧ (C ⇒ A))

The amounts of evidence and the truth-value for a higher-order state-
ment are defined in the same way from evidence as for a first-order state-
ment.

Definition 46 When S1 and S2 are different statements, their conjunc-
tion, (S1 ∧ S2), is a compound statement defined by

(∀x)((x⇒ (S1 ∧ S2)) ≡ ((x⇒ S1) ∧ (x⇒ S2))).

Their disjunction, (S1 ∨ S2), is a compound statement defined by

(∀x)(((S1 ∨ S2)⇒ x) ≡ ((S1 ⇒ x) ∧ (S2 ⇒ x))).

The above two statement connectors are symmetric, and can be extended
to take more than two arguments.

Because of this isomorphism between copulas, there are isomorphic in-
ference rules in NAL-5 for the following rules defined previously (and each
pair of rules uses the same truth-value function):

• The NAL-1 rules for deduction, abduction, induction, exemplification,
and conversion.

• The NAL-2 rules for comparison, analogy, and resemblance.

• The NAL-3 rules for the composition and decomposition of intersec-
tions.

• The backward inference rules corresponding to the above forward in-
ference rules.
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The term connectors for (extensional/intensional) set, product, and (ex-
tensional/intensional) image are not involved in the isomorphism between
first-order and higher-order terms. They treat higher-order terms just like
first-order terms, and there is no special rule added. Similarly, the revision
rule and the choice rule work the same way on first-order and higher-order
statements.

Though implication and equivalence are isomorphic to inheritance and
similarity, respectively, they are not the same. The higher-order copulas
indicate the substitutability between statements in truth-value, while the
first-order copulas indicate the substitutability between terms in meaning.
They both specify the extent to which one item can be used as another,
though in different ways.

7.2 Implication as conditional statement

Another group of rules are introduced by the identity between an implica-
tion statement (S1 ⇒ S2) and an inference process ({S1} ` S2).

By definition, in NAL a judgment “S 〈f, c〉” states that “The degree
of belief the system has on statement S, according to available evidence,
is measured by 〈f, c〉”. Assume that the available evidence currently used
on the evaluation of S can be written as a compound statement E, then
the same meaning can be represented by “E ⇒ S 〈f, c〉”, that is, “The
degree of belief the system has on statement ‘If E is true, then S is true’ is
measured by 〈f, c〉”. In this way, a statement “S” is equivalently translated
into an implication statement “E ⇒ S”.

This translation is a conceptual one, not an actual one, since E is not
really a statement in Narsese. Even so, this conceptual translation can be
used to justify certain inference rules. The implicit condition E can be
added into the premises, so as to change the premise combinations into
the ones for which we already have inference rules. Finally, the implicit
condition is dropped from the conclusion. Table 7.3 contains several rules
obtained in this way (truth-values of the premises are omitted).

premises add condition conclusion drop condition
M ⇒ P, M M ⇒ P, E ⇒M E ⇒ P 〈Fded〉 P 〈Fded〉
P ⇒M, M P ⇒M, E ⇒M E ⇒ P 〈Fabd〉 P 〈Fabd〉
M ⇔ P, M M ⇔ P, E ⇒M E ⇒ P 〈F ′ana〉 P 〈F ′ana〉

Table 7.3: The Conditional Syllogistic Rules (1)
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Similarly, when the two premises can be seen as derived from the same
evidence, the evidence can be used as the common virtual condition of the
two, and some conclusions can be derived accordingly, as in Table 7.4.1

premises add condition conclusion drop condition
P, S E ⇒ P, E ⇒ S S ⇒ P 〈Find〉 S ⇒ P 〈Find〉
P, S E ⇒ P, E ⇒ S S ⇔ P 〈Fcom〉 S ⇔ P 〈Fcom〉
P, S E ⇒ P, E ⇒ S E ⇒ (P ∧ S) 〈Fint〉 P ∧ S 〈Fint〉
P, S E ⇒ P, E ⇒ S E ⇒ (P ∨ S) 〈Funi〉 P ∨ S 〈Funi〉

Table 7.4: The Conditional Syllogistic Rules (2)

For practical purpose, the two middle-columns in the above tables of
conditional rules can be ignored, and the rules can be treated as directly
go from the first column (as premises) to the last column (as conclusions).

All together, NAL has three groups of syllogistic rules (deduction, ab-
duction, and induction), one defined on inheritance statements, one on
implication statements, and one on a mixture of the two, though the same
truth-value functions are used.

Theorem 41 For any statements S1, S2, and S3,

(S1 ⇒ (S2 ⇒ S3)) ≡ ((S1 ∧ S2)⇒ S3)

that is, a conditional statement of a conditional statement is equivalent to
a conditional statement with a conjunction of the conditions.

This equivalence give NAL the rules in Table 7.5.
The truth-values of the premises are omitted in the rules in Table 7.5.

As before, the induction rule is applied only when the two premises are
based on the same evidence. These rules can be seen as generalizations of
the corresponding rules in the previous two tables by adding a condition C
into J1. Table 7.6 gives further extension of these rules by adding another
condition S into J2.

In each group of the syllogistic rules, abduction and induction can be
obtained from deduction by switching a (different) premise and the conclu-
sion, so they are “reversed deduction” in different ways.

1NAL does not take two arbitrary judgments as premises in an inference step. Instead,
the P and S in Table 7.4 must be semantically related to each other in some way. In
the current implementation, the conjunction statements are introduced only in NAL-6,
while the implication and equivalence statements are introduced only in NAL-7. It is
still unclear when the disjunction statements should be introduced to get non-trivial
results that cannot be produced in another way.
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J1 J2 J F
(C ∧M)⇒ P M C ⇒ P Fded

(C ∧M)⇒ P C ⇒ P M Fabd

C ⇒ P M (C ∧M)⇒ P Find

Table 7.5: The Conditional Syllogistic Rules (3)

J1 J2 J F
(C ∧M)⇒ P S ⇒M (C ∧ S)⇒ P Fded

(C ∧M)⇒ P (C ∧ S)⇒ P S ⇒M Fabd

(C ∧ S)⇒ P S ⇒M (C ∧M)⇒ P Find

Table 7.6: The Conditional Syllogistic Rules (4)

In NAL, conjunction and disjunction are not defined by truth table.
With the help of the isomorphism and the implicit condition technique, the
following theorem can be proved.

Theorem 42

(S1 ∧ S2) ⊃ S1

S1 ⊃ (S1 ∨ S2)

7.3 Negation

Since the negation connector in NAL-5 takes one argument, it is not directly
isomorphic to the (extensional/intensional) difference connectors defined in
NAL-3. Instead, it is defined directly from evidence.

Definition 47 If S is a statement, its negation, (¬S), is a compound
statement, and its truth-value is obtained by switching the positive and neg-
ative evidence of S.

Intuitively, the negation of a statement S can either means “It is not the
case as S”, or “It is the opposite case of S”. In a binary logic (like IL),
these two interpretations coincide, but it is not the case in a multi-valued
logic. In NAL the latter interpretation is used.

The definition leads to the negation rule defined in Table 7.7.
The truth-value function is in Table 7.8.
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{S〈f0, c0〉} ` (¬S)〈Fneg〉

Table 7.7: The Negation Rule

Negation evidence version: w+ = w−0
w− = w+

0

Fneg truth-value version: f = 1− f0
c = c0

Table 7.8: The Truth-value Function of the Negation Rule

Theorem 43 (¬(¬S)) ≡ S

Theorem 44 When the truth-values of statements S1 and S2 are deter-
mined independently, and they decide the truth-values of the related com-
pound statements, then De Morgan’s laws hold, that is,

¬(S1 ∧ S2) ≡ (¬S1) ∨ (¬S2) and ¬(S1 ∨ S2) ≡ (¬S1) ∧ (¬S2)

Theorem 45

(S1 ∧ (¬(S1 ∧ S2))) ⊃ (¬S2)
((¬S1) ∧ (S1 ∨ S2)) ⊃ S2

Theorem 46 (S1 ⇔ S2) ≡ ((¬S1)⇔ (¬S2))

By definition, the evidence of (¬(S1 ⇒ S2)) is obtained by switching
the positive and negative evidence of (S1 ⇒ S2), which is the same as the
evidence of (S1 ⇒ (¬S2)). The same is true for the equivalence copula.

Theorem 47

(¬(S1 ⇒ S2)) ≡ (S1 ⇒ (¬S2))
(¬(S1 ⇔ S2)) ≡ (S1 ⇔ (¬S2))

When the truth-value of “S1 ⇒ S2” is determined by the induction rule
in Table 7.4 from the observations of the truth-values of S1 and S2, an
observation provides positive evidence if both S1 and S2 are true, negative
evidence if S1 is true and S2 is false, and no evidence if S1 is false. It follows
that “S1 ⇒ S2” and “(¬S2) ⇒ (¬S1)” have the same negative evidence,
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{S1 ⇒ S2〈f0, c0〉} ` (¬S2)⇒ (¬S1)〈Fcnt〉

Table 7.9: The Contraposition Rule

but completely distinct positive evidence. This leads to the contraposition
rule defined in Table 7.9.

In contraposition, though the negative evidence of the premise is taken
to be negative evidence of the conclusion, they do not have the same
amount, since the former is only taken as indirect evidence for the lat-
ter in NAL. This situation is similar to the situation of conversion, defined
in NAL-1. The truth-value function of contraposition is given in Table 7.10.

Contraposition evidence version: w+ = 0
w− = and(not(f0), c0)

Fcnt truth-value version: f = 0

c = (1−f0)c0
(1−f0)c0+k

Table 7.10: The Truth-value Function of the Contraposition Rule

7.4 Analytical truths of IL applied in NAL

The analytical truths in IL have been introduced by the definitions and
theorems, as propositions in the meta-languages of Narsese. Given the def-
inition of the implication and equivalence copulas in IL, ‘⇒’ and ‘⇔’, in the
current context they are exchangeable with the implication and equivalence
connectives in propositional logic, ‘⊃’ and ‘≡’, respectively, though they
are not defined in the same way.

Though binary IL truths correspond to NAL judgments with truth-value
〈1, 1〉, such a judgment can only appear in the meta-theoretical discussions
about NAL, not as a belief actually stored in the system, given AIKR. Even
so, there are meta-rules that allow the IL definitions and theorems to be
used in NAL inference.

Theorem 48 An IL analytical truth S can be used as a judgment “S〈1, r〉”
by a NAL inference rule as an implicit premise, to derive an empirical
conclusion from another empirical premise. The parameter r is a “reliance
factor” in [0, 1].
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The reliance factor is necessary, because many analytical truths are
introduced to define the analytical (literal) meaning of compound terms.
Though these definitions remain true in IL, in NAL the meaning of a com-
pound term also depends on the system’s empirical knowledge about it,
which can be more or less from the related analytical definitions. Con-
sequently, the analytical truths are not absolutely reliable when applied
under AIKR, even though they still contribute to the meaning of the terms
involved.2

References

[Wang, 2006, Chapter 5], [Wang, 2001a, Wang, 2004c]

2In the current implementation, r = 1 for inference rules that do not introduce
new terms not in the premise, or rules where the theorems involved are equivalence
statements. On the other hand, r ≤ 1 for rules where the the theorems involved are
implication statements. Furthermore, in the latter case, the implication statements are
used for deduction only.
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Chapter 8

NAL-6: Inference with
Variable Terms

8.1 Variable terms

Definition 48 A query variable is named by a word (or a number) pre-
ceded by ‘?’, and can only appear in a question; an independent variable
or dependent variable is named by a word (or a number) preceded by ‘#’,
and can appear in any type of sentence. The name of a dependent variable
also contains a list of independent variables, and the list can be empty.

Therefore, in NAL variable terms are distinguished from non-variable terms
in syntax, and so are different types of variable. All the types of variables
in NAL are summarized in Table 8.1.

〈term〉 ::= 〈variable〉
〈variable〉 ::= 〈independent-variable〉

| 〈dependent-variable〉
| 〈query-variable〉

〈independent-variable〉 ::= ‘#′〈word〉
〈dependent-variable〉 ::= ‘#′[〈word〉‘(′〈independent-variable〉∗‘)′]
〈query-variable〉 ::= ‘?′[〈word〉]

Table 8.1: The New Grammar Rules of Narsese-6
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Definition 49 The scope of a variable is the smallest statement that con-
tains all occurrences of the variable.

In a sentence with multiple variables, each of them uses a different name,
therefore its scope does not need to be explicitly specified. The scope of a
variable can be embedded in that of another variable.

Definition 50 The meaning of a variable term is determined locally by its
relations with the other terms within its scope.

On the contrary, a non-variable term is constant, in the sense that at any
given moment, its occurrences in the whole system have the same meaning,
determined by its (empirical and analytical) relations with the other term
in the whole system. The name of a variable term is unique in a sentence,
while the name of a constant term is unique in a system.

Definition 51 For a judgment containing variable terms in it, its truth-
value is defined by the truth-values of the statements obtained by replacing
the variable terms by constant terms satisfying the meanings of the vari-
ables. Especially, an independent variable can be replaced by any constant
satisfying the condition, and a dependent variable can be replaced by a sin-
gle constant satisfying the condition. A dependent variable may depend on
some independent variables when picking the constant it replaces.

In IL and NAL, an independent variable is used to describe the property of a
group of terms, typically in the extension or intension of a term; a dependent
variable is used to describe the property of a unspecified term, which may
depend on some independent variables. As a result, an independent variable
normally appears in both sides of an implication or equivalence copula, as
extension or intension of two terms. A dependent variable normally appear
in two components of a conjunction, also as extension or intension of two
terms. Therefore, the following are the simplest statements with variable
terms:

(#x→ S)⇒ (#x→ P ) (#x()→ S) ∧ (#x()→ P )
(S → #x)⇒ (P → #x) (S → #x()) ∧ (P → #x())

In this way, an independent variable is used to indicate the inclusion of
the extension (or intension) of one term in that of another; a dependent
variable is used to indicate the overlap of the extensions (or intensions) of
two terms.

Definition 52 A variable is open in a compound term if its scope goes
beyond the compound, otherwise it is closed in the compound term. A
compound term is a variable if it contains open variables.
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The IL-6 definition of query variable is an extension of the query variable
implicitly introduced in IL-1 as forms of questions in “S →?” and “?→ P”.
With the new definition, there can be multiple query variables in a question,
and a query variable can appear in other positions other than top-level
subject or predicate. Even so, the rule of its processing remains the same,
that is, all occurrences of a query variable can be substituted by the same
constant term.

Both a dependent variable and a query variable can be anonymous,
without a name, so each occurrence of it is taken to be a different term. An
anonymous dependent variable does not have to appear in two components
of a conjunction.

8.2 Variable elimination and introduction

Definition 53 For given terms R, s, t, a substitution R{s/t} produces a
new term by replacing all occurrences of s by t in R, which is usually a
compound term.

Theorem 49 If a true statement S contains independent variable #v, then
the statement S{#v/t} is true for any (constant or variable) term t.

Theorem 50 If a true statement S contains a (constant or variable) term
t, and does not contain dependent variable #v(), then the statement S{t/#v()}
is true.

Some independent-variable elimination rules are given in Table 8.2, and
each of them can be seen as carrying a substitution {#x/M}, followed by an
inference defined previously. A complete list of such rules include almost all
the two-premise rules with a common term, where “a common term” now
is replaced by “two terms that can be instantiated by the same constant”.

{(#x→ S)⇒ (#x→ P ), M → S} ` M → P 〈Fded〉
{(#x→ S)⇒ (#x→ P ), M → P} ` M → S 〈Fabd〉
{(#x→ S)⇔ (#x→ P ), M → S} ` M → P 〈F ′ana〉

Table 8.2: Sample Independent-Variable Elimination Rules

The reverse of independent-variable elimination is independent-variable
introduction, as given in Table 8.3. These rules are justified in the same
way as the rules in NAL-1 and NAL-2, except that here the “extensional
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{M → P, M → S} ` (#x→ S)⇒ (#x→ P ) 〈Find〉
{M → P, M → S} ` (#x→ S)⇔ (#x→ P ) 〈Fcom〉

Table 8.3: Sample Independent-Variable Introduction Rules

inheritance” and “intensional inheritance” between S and P are separated,
due to the using of an independent variable.

The rule in Table 8.4 introduces a dependent variable into conjunction,
which can be seen as the conjunction-composition rule defined in Table 7.4
followed by a substitution {M/#x()}.

{M → P, M → S} ` (#x()→ P ) ∧ (#x()→ S) 〈Fint〉

Table 8.4: Sample Dependent-Variable Introduction Rule

The reverse of the rule in Table 8.4 can be seen as a special type of unifi-
cation to match a dependent variable with a constant, as given in Table 8.5.
Conceptually, the inference is a comparison followed by an analogy. First,
in “(#x()→ P ) ∧ (#x()→ S)” the anonymous term provides evidence for
a similarity statement “P ↔ S”, then the latter is used with “M → S” by
the analogy rule to derive “M → P”. Therefore, the truth-value function
Fw
ana is just the analogy function Fana, except that the confidence of the

second premise is taken to be the weight of confidence of the corresponding
similarity statement.

{M → S, (#x()→ P ) ∧ (#x()→ S)} ` M → P 〈Fw
ana〉

Table 8.5: Sample Dependent-Variable Elimination Rule

The rules in Table 8.4 and Table 8.5 are only about the extensions of
S and P . Similarly, there are rules that only process the intensions of the
terms involved. As required before, in NAL a dependent variable is only
introduced into a conjunction, and an independent variable into both sides
of an implication or equivalence.

Variables can be introduced into statements where other variables ex-
ist. When an independent variable is introduced, the existing dependent



8.2. VARIABLE ELIMINATION AND INTRODUCTION 53

variables become its function. The rules for multiple variables in Table 8.6
can be extended to handle more than two variables.

{(#x→ P )⇒ (M → (⊥ R #x �)), M → S}
` ((#y → S) ∧ (#x→ P ))⇒ (#y → (⊥ R #x �)) 〈Find〉
{(#x→ P )⇒ (M → (⊥ R #x �)), M → S}
` (#y()→ S) ∧ ((#x→ P )⇒ (#y()→ (⊥ R #x �))) 〈Fint〉
{(#x()→ P ) ∧ (M → (⊥ R #x() �)), M → S}
` ((#y → S)⇒ ((#x(#y)→ P ) ∧ (#y → (⊥ R #x(#y) �))) 〈Find〉
{(#x()→ P ) ∧ (M → (⊥ R #x() �)), M → S}
` (#y()→ S) ∧ (#x()→ P ) ∧ (#y()→ (⊥ R #x() �)) 〈Fint〉

Table 8.6: Sample Multi-Variable Introduction Rules

The revision rule is also extended to unify independent variables. For
example, statements (#x→ S)⇒ (#x→ P ) and (#y → S)⇒ (#y → P )
can be merged together. On the other hand, this rule cannot be applied on
two judgments containing ((#x()→ S)∧(#x()→ P )), since the dependent
variables in them do not necessarily correspond to the same (constant) term,
even though they share the same name.
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Chapter 9

NAL-7: Temporal
Inference

NAL-7 introduces time into the logic.

9.1 Time and events

In an implementation of NAL, call it NARS, time appears as a total order
among the system’s internal and external activities and events.

Definition 54 Time within NARS can be measured by an internal clock,
with the unit being certain recurrent activity in the system, such as its
inference cycle.

Such a time measurement is relative to the system’s internal activity, and
independent of the hardware/software speed of the implementation, so dif-
ferent copies of NARS may have different “subjective time” associated to
an activity in their common environment.

Definition 55 The real-time experience of a NARS is a sequence of Nars-
ese sentences, separated by non-negative numbers indicating the interval
between the arriving time of subsequent sentences.

Therefore, each input sentence can be associated with a moment in the sys-
tem clock, and the experience of the system can be represented as a stream
of Narsese sentences, with the time interval between adjacent sentences
marked according to the system clock.

So far, there have been three notions of experience used in NAL:
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• In IL, idealized experience is defined as a set of (true) statements,
with the Closed-World Assumption. The order of sentences does not
matter, and is ignored by the logic.

• In NAL-1 to NAL-6, actual experience is defined as a stream of sen-
tences of the corresponding Narsese (i.e., Narsese-1 to Narsese-6),
without the Closed-World Assumption. The timing in the stream is
omitted in the language, and ignored by the inference rules (though
it matters for the inference control mechanism).

• Since NAL-7, real-time experience explicitly indicates time in the in-
put stream, using the internal clock. It covers the previous notions of
experience as special cases: actual experience corresponds to the sit-
uation where there is one input per moment, and idealized experience
is where all inputs arrive at the very beginning.

In NARS, the meaning of a term and the truth-value of a statement can
be produced from many different real-time or actual experiences expressed
in Narsese, though they are defined by an idealized experience consisting
of IL statements.

Definition 56 An event is a statement with a time-dependent truth-value,
that is, the evidential support summarized in its truth-value is valid only
for a certain period of time.

Accurately speaking, almost all empirical statements are time depen-
dent, and few statements are about relations holding forever. However,
for practical purposes, it is not always necessary for a system to take the
temporal attributes of a statement into consideration. Therefore, whether
a statement should be treated as an event may change from context to con-
text, and events are just statements whose temporal attributes are specified.
On the contrary, the time interval of a “non-event” statement is unspeci-
fied, except that it includes the current moment, as well as all the moments
of relevance.

If the time interval of a truth-value is referred to as when the corre-
sponding event “happens”, then between two events E1 and E2, their basic
temporal relation can be one of the following three cases:

• E1 happens before E2 happens,

• E1 happens after E2 happens,

• E1 happens when E2 happens.



9.2. TEMPORAL OPERATORS AND COPULAS 57

Obviously, “before” and “after” are the opposite directions of the same
temporal relation.

Definition 57 There are two basic temporal relations between two events:
“before” (which is irreflexive, antisymmetric, and transitive) and “when”
(which is reflexive, symmetric, and transitive).

If the temporal relation between two events is more complicated than
these cases (for example, if their time intervals overlap partially), it is
always possible to divide an event into subevents (such as talking about
“when E1 starts” and “when E2 ends”), then describe their temporal rela-
tions in detail.

If event E1 is represented as “before” event E2, the time interval between
“E1 finishes” and “E2 starts” is omitted as negligible, even if the duration
of this interval is not zero. When the interval is not negligible, it should be
represented as an event E3, which happens after E1 and before E2.

Similarly, when two events are described as happening at the same time,
it does not mean that their time intervals perfectly overlap, but that their
difference in timing is negligible. If an absolute time, such as the system
clock, is used to represent the temporal property of an event, then a moment
in that time dimension can be treated as a special event, and these two
events are described as happening at the same time. In this sense, the
system clock corresponds to a sequence of events, each of which having the
same duration.

By using a relational description for temporal attributes of event, NAL
can be applied to fields where phrases like “at the same time” and “imme-
diately after” are used with very different scales, scopes, and accuracies.
This treatment is consistent with the general semantic principle of Nars-
ese, that is, the language is not used to represent the world as it is, but to
summarize the experience as the system needs.

The above representation of temporal information only supports some
basic types of temporal inference, and more complicated and accurate types
of temporal inference can be carried out by explicitly specifying temporal
relations as terms, and their relationships as implication and equivalence
statements.

9.2 Temporal operators and copulas

Since in NAL temporal attributes is optional in statements, the two tem-
poral relations are never used alone, without any logical relations between
the events. Instead, they are used in combination with certain copulas and
term connectors that have been introduced before.
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First, “E1 happens before E2 happens” and “E1 happens when E2 hap-
pens” both assume “E1 and E2 happen (at some time)”, which is “E1∧E2”
plus temporal information.

Definition 58 The conjunction connector has two temporal variants: “se-
quential conjunction” (“,”) and “parallel conjunction” (“;”). “(E1, E2)”
corresponds to compound event “E1 then E2”, and “(E1;E2)” corresponds
to compound event “E1 and E2”.

Like ordinary conjunction, either of the two temporal operators can take
more than two components, and is associative.

Similarly, there are temporal variants of copulas implication and equiv-
alence.

Definition 59 For an implication statement “S ⇒ T” between events S
and T , three different temporal relations can be distinguished:

1. If S happens before T happens, the statement is called “predictive im-
plication,” and is rewritten as “S /⇒ T”, where S is called a sufficient
precondition of T , and T a necessary postcondition of S.

2. If S happens after T happens, the statement is called “retrospective
implication,” and is rewritten as “S \⇒ T”, where S is called a suffi-
cient postcondition of T , and T a necessary precondition of S.

3. If S happens when T happens, the statement is called “concurrent im-
plication,” and is rewritten as “S |⇒ T”, where S is called a sufficient
co-condition of T , and T a necessary co-condition of S.

Definition 60 Three “temporal equivalence” (predictive, retrospective, and
concurrent) relations can be defined.

1. “S /⇔ T” (or equivalently, “T \⇔ S”) means that S is an equivalent
precondition of T , and T an equivalent postcondition of S.

2. “S |⇔ T” means that S and T are equivalent co-conditions of each
other.

3. To simplify the language, “T \⇔ S” is always represented as “S /⇔
T”, so the copula “ \⇔” is not actually included in the grammar of
Narsese.

As explained in NAL-5, judgment “S〈f, c〉” can be equivalently rewrit-
ten as “E ⇒ S〈f, c〉”, where E is a virtual compound statement summa-
rizing the currently available evidence. Now if statement S is an event,
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its temporal attribute can be specified relative to E, taking as an event
that is currently occurring. Since in Narsese E is implicitly assumed, the
temporal implication operators serve here as tense, which are operators in-
dicating the temporal nature of truth-values. In this way, adjectives like
“past,” “present,” and “future” can be represented in Narsese.

Definition 61 The tense of a sentence indicates the occurring time of an
event with respect to “events happening now”, a special event. The temporal
implication symbols ‘\⇒’, ‘|⇒’, and ‘/⇒’ are also used in a sentence to
indicate “past tense”, “present tense”, and “future tense”, respectively.

What makes the situation complicated is that tenses are always used
with respect to the using time of a sentence, and in a real-time system
“now” changes constantly, so “future” gradually becomes “present”, then
“past”. Furthermore, while “present” is unique, the moments referred to
as “past” and “future” are not. The same judgment may have different
truth-values while having the same “past” or “future” tense, and it may
not be considered as conflicting evidence, because each of them is actually
about a different moment.

Because of the above reasons, the above qualitative “tense” is not used
in the internal representation of a belief. Instead, when a belief in NARS
corresponds to an event, its truth-value is associated with its happening
time represented by the system clock. Additionally, the creation time of a
sentence, either from outside (input) or inside (derivation) is recorded, too.
When a sentence is expressed in Narsese for communication, this temporal
information is translated into (and from) a tense (which has three possible
values), with respect to the current time when the communication happens.
The clock values are not directly used in communication, because of their
system-specific nature.

The new statements introduced in NAL-7 are summarized in Table 9.1.

〈judgment〉 ::= 〈statement〉[〈tense〉]〈truth-value〉
〈question〉 ::= 〈statement〉[〈tense〉]
〈statement〉 ::= ‘( ,′ 〈statement〉〈statement〉+‘)′

| ‘( ;′ 〈statement〉〈statement〉+‘)′

〈tense〉 ::= ‘/⇒′ | ‘\⇒′ | ‘|⇒′
〈copula〉 ::= ‘/⇒′ | ‘\⇒′ | ‘|⇒′ | ‘/⇔′ | ‘|⇔′

Table 9.1: The New Grammar Rules of Narsese-7

In summary, temporal information is represented in NARS in multiple
ways:
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Absolute representation. Some sentences have “tense” associated, to
indicate the time-dependency of their truth-values. In the commu-
nication interface, tense is represented qualitatively, with respect to
the current time; within the system, this information is represented
by clock values, indicating the moment for which the truth-values are
established.

Relative representation. Some compound terms (implication, equiva-
lence, and conjunction) may have temporal order specified among its
components (each taken to be an event).

Explicit representation. When the above representation cannot satisfy
the accuracy requirement when temporal information is needed, it is
always possible to introduce terms to explicitly represent an event, as
well as its beginning, ending, and duration.

9.3 Temporal inference

Different types of temporal information are treated in different ways in
NARS.

In the reasoning process of NARS, the terms that explicitly represent
temporal information are treated just like other term, and temporal rela-
tions are handled like other relations. There is no special inference rule
needed.

When temporal information is represented relatively, the existing rules
are modified by taking the temporal properties in the premises and conclu-
sions into consideration while processing their local properties.

The temporal orders within copula and operators are handled by the
inference rules based on the properties of the two basic temporal relations.
Consequently, some of the inference rules in NAL-7 are variants of the rules
defined in NAL-5 and NAL-6. In them, the only additional function of
these rules is to decide the temporal property of the conclusions according
to that of the premises, and the truth-value functions remain the same. For
example, the following is a deduction rule introduced in NAL-5,

{(C ∧M)⇒ P, S ⇒M} ` (C ∧ S)⇒ P 〈Fded〉

Now it has a variant in NAL-7, as listed in Table 9.2. Since the logical factor
and the temporal factor are independent of each other in the rules, these
variant rules can be obtained by considering the two factors separately, then
combining them in the conclusion. An alternative way is to see the above
rules as the combinations of the NAL rules introduced previously and a
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{(M, C) /⇒ P, S /⇒M} ` (S, C) /⇒ P 〈Fded〉

Table 9.2: Sample Temporal Inference Rule

“meta-rule” of temporal inference, based on the properties of the two basic
temporal relations.

When temporal information is represented absolutely as clock values,
there are three basic cases:

• When the premises are about the same moment t, the conclusion is
about the same moment.

• When one premise is about moment t, and the other one is timeless,
the conclusion is about moment t.

• When the premises are about the different moments t1 and t2, one of
them need to be “casted” into another.

In a tensed sentence, the truth-value is about a given moment, indicated
by a clock value. When there is no other information, this truth-value can
also be used for nearby moments. When a truth-value about moment t1 is
used for moment t2, its confidence is decreased by multiplying a “discount
factor” d:

d = 1− |t1 − t2|
|t− t1|+ |t− t2|

where t is the moment when the judgment is made, and when t = t1 = t2,
d = 1.

A tensed sentence can also be cased into a timeless sentence, as a form
of “temporal induction”. Since a sentence at a certain moment provides for
the sentence in all moments, the frequency of the conclusion is the same as
that of the premise, and the confidence of the conclusion, c, is determined by
that of the premise, c0, as c = c0/(c0 +k), where k is the evidential horizon
defined in NAL-1. In other words, the confidence value is multiplied to a
“discount factor” 1/(c0 + k).

Both absolute and relative temporal information are present in rules
like

{S , S /⇒ P} ` P 〈Fded〉

where if the two premises are about moment t, the conclusion is about
moment t + 1.
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Another group of NAL-7 rules are variants of the following inference
rules defined in NAL-5:

{P, S} ` S ⇒ P 〈Find〉

{P, S} ` S ⇔ P 〈Fcom〉

Though these rules do not apply to arbitrary P and S, they are applicable
when the two are temporally related events. When P and S are events
happening at the same time, the conclusions are “S |⇒ P 〈Find〉” and
“S |⇔ P 〈Fcom〉”; when S happens right before P , the conclusions are
“S /⇒ P 〈Find〉” and “S /⇔ P 〈Fcom〉”. Here the situation is different from
the above temporal meta-rule in that without a temporal relation, these
rules will not be applied.
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Chapter 10

NAL-8: Procedural
Inference

NAL-8 interprets certain events as operations of the system itself, and uses
them to achieve goals.

10.1 Operations and goals

Definition 62 An operation of a system is an event that the system can
actualize. In Narsese, an operation is represented as an operator (a spe-
cial term whose name starts with ‘⇑’) followed by an argument list (a
sequence of terms), which can be empty. Within the system, operation
“(⇑op a1 · · · an)” is treated as statement “(× a1 · · · an) → op”, where op
belongs to a special type of term, which has a procedural interpretation.

Therefore operation is system dependent: the operations of a system will
be observed as events by other systems. An operator is a system-specific
term connector. For a system implementing NAL-8, its list of operators
remains constant, though not specified in Narsese.

While statements are declarative knowledge and events are episodic
knowledge, operations are procedural knowledge, in the sense that the mean-
ing of an operation is not only revealed by how it is related to the other
terms in Narsese (according to the system’s experience), but also by what
it does to the “body” of the system, as well as to the environment.

An operation usually distinguishes input and output among its argu-
ments. When an operation is described abstractly, its input arguments are
typically independent variables, and its output are dependent variables.
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Such an operation corresponds to a function that maps certain input val-
ues into output values. Optionally, an operation may bring the system
some Narsese sentences as feedback.

Since the main purpose of operations is for the system to achieve various
consequences, their meaning, or the system’s beliefs on them, is usually
represented as (temporal or not) implication or equivalence statements,
which indicate the conditions, causes, and effects of an operation. Typically,
it takes the following form:

(condition, operation) /⇒ consequence

where condition and consequence are both events. This form is common,
because it is a simplified version of

condition /⇒ (operation /⇒ consequence)

so the condition is not really applied on the operation, but on its relation
with the consequence.

For an operation to be meaningful and useful for the system, it will have
some consequence that is eventually observable, that is, trigger certain input
judgments, as the feedback of the operation, in the system’s experience.

As other statements, the truth-value of the above statement indicates
the evidential support for the stated relationship. The system usually has
multiple such statements for each operation. Under AIKR, in NAL the
conditions and consequences of an operation are never exhaustively speci-
fied in each belief about it. Instead, each belief only records its (limited)
experience on the relation between the operation and the stated events.

Compound operations work like (object-level) programs, which organize
primitive operations into hierarchical control structures. The basic control
structures include

Sequential execution, formed by the sequential conjunction operator on
operations;

Parallel execution, formed by the parallel conjunction operator on op-
erations;

Conditional execution, formed by the implication (or equivalence) cop-
ula between events and operations;

Repeated execution, formed recursively by conditional execution.

These control structures give Narsese the capability of a general-purpose
programming language. Furthermore, the equivalence copula can be used
to give a compound operation a simple name.
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Operations can make changes both within a system and in its outside
environment, with consequences expressible as Narsese statements. How-
ever, not all activities in the system can be perceived and controlled in NAL
in this way.

Definition 63 A goal is a sentence containing an event the system is at-
tempting to realize by carrying out operations.

Given the inevitable uncertainty in the event, to “realize it” actually means
“to make it as close to absolute truth as possible.”

NARS usually has multiple goals, and they may conflict with one an-
other, in the sense that the achieving of a goal makes another one harder
to be achieved. Therefore, the system must make decisions about whether
to pursue various goals or whether to take various operations.

Definition 64 The desire-value of an event measures the extent to which
a desired state is implied by the event, that is, the desire-value of event
E is the truth-value of the implication statement E ⇒ D, where D is a
virtual statement describing the desired state of the system, a summary of
its current goals.

Here D is “virtual”, in the sense that it is not a concrete statement in
Narsese, but a conceptual one in the meta-language, used in the design of
the system. By it, the derived-values of the events involved are reduced
to truth-values, whose calculations have been specified by the truth-value
functions. Here is the situation is like in NAL-5 where a “virtual evidence”
is introduced so that the truth-value of a statement can be taken as the
truth-value for the statement to be implied by the available evidence. In
both situations, the evaluation of a statement is interpreted as an evaluation
of it and another (virtual) statement, which is coherent with the semantic
principle of NARS that the meaning of an item is revealed by its relations
with other items, rather than being an intrinsic property of the item itself.
Intuitively speaking, the truth-value of a statement evaluates its relation
with the “source” (where it comes from), while the desire-value is about
the “destination” (where it leads to).

A desire-value is attached to every statement in the system, because
it may become a goal in the future, if it is not already a goal. This value
shows the system’s “attitude” about the situation in which the statement is
true.1 The desire-value of a goal is always explicitly expressed, though the

1This desire value will eventually be attached to every term, to represent the system’s
“feeling” about it. If the term is not a statement, its desire value will be determined by
the beliefs in which it appears.
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desire-values of other statements are often omitted unless they are relevant
to a discussion.

Now the questions in NAL can not only be about the truth-value of a
statement, but also about its desire-value. To more clearly separate dif-
ferent types of sentences, in Narsese-8 a punctuation mark is added at the
end of each sentence: ‘.’ for judgment, ‘!’ for goal, ‘?’ for question (on
truth-value), and ‘@’ for quest, that is, question on desire-value. The new
grammar rules introduced in NAL-8 are summarized in Table 10.1.

〈sentence〉 ::= 〈judgment〉 | 〈goal〉 | 〈question〉
〈judgment〉 ::= 〈statement〉‘.′ [〈tense〉]〈truth-value〉

〈goal〉 ::= 〈statement〉‘!′ 〈desire-value〉
〈question〉 ::= 〈statement〉‘?′ [〈tense〉]

|〈statement〉‘@′ [〈tense〉]
〈statement〉 ::= ‘(⇑′〈word〉 〈term〉∗‘)′
〈desire-value〉 ::= 〈truth-value〉

Table 10.1: The New Grammar Rules of Narsese-8

10.2 Inference on operations and goals

Since operations and goals are events, the previously defined inference rules
on events work on them, too.

Inference on an operation can derive new beliefs about its precondi-
tions and postconditions. Furthermore, compound operations are selec-
tively formed from useful combinations of operations, and become “skills”
of the system that can be executed efficiently, without step-by-step delib-
eration.

Inference on a goal also derives new beliefs about how it can be realized,
as well as reveals its by-products and side-effects. Especially, for a given
goal G, the inference engine can find a plan, which is a compound operation
Op that achieves the goal (i.e., to have a high expectation value for “Op⇒
G”). By executing the plan, and adjusting it when necessary, the internal
or external environment is changed to turn the goal into reality. When
repeatedly appearing compounds of operations are memorized, repeated
planning is avoided, and the system learns a new skill.

When a goal is an operation, it can be directly realized by executing
the operator on the arguments. If a goal cannot be directly satisfied in
this way, by backward inference it can increase the desire-values of certain



10.3. SENSORIMOTOR INTERFACE 67

events. For a given event, the desire-values coming from different goals are
merged together using the revision rule, just like how truth-values from
different evidential bases are merged.

The decision-making rule will turn candidate goals with high desire-
value and plausibility into goals being actually pursued by the system.

Definition 65 The plausibility of goal G is the truth-value of implication
statement “#⇒ G”, that is, “there is a way to achieve G.”

The Decision-making Rule A candidate goal G is actually pursued by
the system, when its expected desirability pG and expected plausibil-
ity dG satisfy condition pG(dG− 0.5) + 0.5 > t, where t is a threshold
larger than 0.5.

The above “decision-making function” has the same form as the expectation
function, with desirability as frequency and plausibility as confidence.

If a goal G has been decided to be actively pursued, the system will
also derive a question with the same content to check if the desired event
has already happened. If that turns out to be the case, the goal will be
directly satisfied by a judgment, and therefore its desire-value will be greatly
reduced.

10.3 Sensorimotor interface

As a reasoning system, NARS communicates its environments in Narsese,
a formally defined language.

On the top of that, NAL-8 introduces an interface between NARS and an
external system, a tool, or a “body”, by allowing an out-going command to
be represented and processed as a NARS operation. Here the only require-
ment is that the command can be put into the form of “(⇑op a1 · · · an)”,
with all the arguments represented as terms in NARS.

In this way, NARS, as a general-purpose “mind”, can be embedded
within, or connected with, various host systems with different sensorimotor
mechanisms, either in a physical world or in a virtual world (which also
exists in a physical world, though is described abstractly). For a given
host, a special interface module needs to be built, which registers all the
relevant commands in the host that is exposed to the control of NARS, so
that whenever NARS decides to execute an operation, the corresponding
command is sent to the corresponding actuator in the host system.

Similarly, the sensors in the host are also formalized as operators, in-
voked by Narsese questions, and the result of the operations will be received
as new experience (input knowledge) to the system. Driving by questions
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derived both from goals and from other questions, the system’s observation
is not a merely passive process which accepts whatever comes from the en-
vironment, but an active process directed by the system’s goal-achieving
activities.

NARS leaves the low-level sensorimotor management to the host sys-
tem, which still contribute to the perception and action processes, by al-
lowing operations defined on multiple levels of abstraction (with different
granularity and scope), as well as using anticipations and goals to selec-
tively process incoming information. With a sensorimotor mechanism con-
nected to NARS, the effect of an operation can be anticipated, checked,
and confirmed, and the feedback will provide information for various types
of learning.

Though the integrated system (NARS plus host) as a whole can have
experience with multiple modalities, the NARS part of the system remains
amodal in design. On the other hand, the content of the system’s beliefs
and concepts will depend on its “body”.

10.4 Self-monitoring and self-control

The sensorimotor mechanism described above can be expanded into the
system itself. It means that a NARS implementation can be equipped
with sensors and actuators that perceive and modify the internal state of
the system itself. These sensors and actuators are invoked by commands
issued in NARS, and their results are feedback to the system, represented
as Narsese sentences.

Consequently, such a NARS has both an “external experience” and an
“internal experience”, and the two are represented and processed in similar
ways. Like its knowledge of the world, the system’s knowledge of itself is
also a summary of its experience, and restricted by its sensorimotor and
information-processing capability. There is no new grammar and inference
rules needed, but system-specific operations.

From the view power of NARS, the sensors and actuators can be roughly
divided into two types, those that are mostly about its “body” and those
that are mostly about its “mind”. When NARS is implemented in a robot,
there will be various sensors to monitor its energy level, damage of parts,
etc., which do not change how the reasoning/learning process, but provide
goals to be achieved and means to achieve them. Though these sensors work
on the body of the system, they are not that different from the sensors that
work on the outside environment. On the other hand, there are also sen-
sors on the reasoning/learning process, which express information about
the state of the system in a format (Narsese sentences) that can be pro-
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cessed by the system. These sensors are very different from the “ordinary”
ones, since they directly produce conceptual level results, without another
categorization process. Furthermore, their results can be self-referential.
Similarly, there are “physical” actuators and “mental” actuators. The the
latter are inevitably carried out by physical processes, they are known to
the system only at an abstract level, without their physical details.

Even though sensorimotor mechanism is system-specific, and optional
to NARS, we can still expect a small common cognitive capabilities needed
in most intelligent systems.

• There should be sensors to measure certain indicators of system’s
overall status, such as how busy it is and how much its current goals
have been achieved. This kind of information will be used by the
control mechanism to adjust resource allocation, among other things.

• There should be sensors and actuators to explicitly detect and adjust
the inference process, by “paying attention” to certain concepts and
sentences.

• There should be sensors to report certain properties of specific data
items. For example, the system may want to explicitly consider and
change the truth-value or desire-value of a statement.

• There should be sensors to remember the concept-level activities of
the system.

Before such a self-control mechanism is implemented, the inference con-
trol in NARS is pure autonomic. In each inference step, the task to be
carried out and the belief to be used are selected according to several fac-
tors to achieve the highest overall efficiency, and this process is governed by
algorithms that coded in the programming language of the system, and are
beyond the reach of the inference rules. With the above self-control mech-
anism, however, the system can think about its own thinking process, and
adjust it as allowed by its internal sensorimotor mechanism, according to
its experience. This introduces voluntary control (according to knowledge
represented declaratively in Narsese) that supplement (though not replace)
the autonomic control (according to knowledge represented procedurally in
the programming language of NARS). In the future, NARS can be imple-
mented in systems where the resources to be managed is not limited to
processing time and storage space of information. For example, a robot
should manage its own energy usage. This kind of task can also be carried
out by special-purpose operations.

Since the sensorimotor mechanism is only directly accessible to the sys-
tem, and its effect cannot be fully expressed and duplicated via communica-
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tion by other systems. Consequently, NARS will have consciousness, that
is, subjective experience that can only be partially communicated to and
understood by other systems. Even to the system itself, since its “inside-
oriented” and “outside-oriented” operations are separated from each other,
and there is no one-to-one mapping between the two, two separate concept
systems will be developed to describe its internal and external processes,
and there will be a “mind-body” gap in between.
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Chapter 11

Summary

11.1 Narsese grammar and semantics

The complete grammar rules of Narsese are listed in Table 11.1.
Additional notes about the Narsese grammar:

• Confidence values 0 and 1 are used in the meta-language of Narsese
only, and cannot appear in actual sentences in the system.

• In the communication between the system and its environment, a
truth-value can be replaced by amounts of evidence or frequency in-
terval.

• In the communication between the system and its environment, cop-
ulas “◦→”, “→◦”, and “◦→◦” are also valid.

• Most prefix operators in compound term and compound statement
can also be used in the infix form.

The symbols used in Narsese grammar are listed in Table 11.2.

11.2 NAL Inference Rules

The inference rules of NAL are summarized into several categories, accord-
ing to their syntactic features.

(A) Two-premise inference rules: each of these rules takes two
premises J1 and J2, and derive a conclusion J , with a truth-value calculated
from the truth-values of the premises by a function F .

71
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(A.1) First-order syllogistic rules, in Table 11.3, are defined on copu-
las inheritance and similarity.

(A.2) Higher-order syllogistic rules, in Table 11.4, are defined on cop-
ulas implication and equivalence.

(A.3) Conditional syllogistic rules, in Table 11.5, are based on the na-
ture of conditional statements.

(A.4) Composition rules, in Table 11.6, introduce new compounds into
the conclusion.

(A.5) Decomposition rules, in Table 11.7, are the opposite operation of
the composition rules. Each decomposition rule comes from a high-
level theorem of the form (st1 ∧ st2) ⊃ st3, where st1 is a statement
about a compound, st2 is a statement about a component of the
compound, while st3 is the statement about the other component.
As a two-premise inference rule, in the first step the truth-values of
st1 and st2 are used to calculate the truth-value of (st1 ∧ st2) (using
Fint), then the resulting truth-value is used by an Implication Rule
(to be defined in the following) to decide the truth-value of st3.

(B) One-premise inference rules: each of these rules takes one
premise J0, and derive a conclusion J , with a truth-value calculated from
the truth-value of the premise by a function F .

(B.1) Conversion rules, in Table 11.8, are rules only need to consider
the evidence provided by the premise.

(B.2) Equivalence rules, in Table 11.9, come from theorems of the form
“statement1 ≡ statement2”. Each of them can be used in inference
as equivalence statement “statement1 ⇔ statement2〈1, r〉”.

(B.3) Term reduction rules, in Table 11.10, come from theorems of the
form “term1 ↔ term2”. Each of them can be used in inference to
reduce term term1 into a simpler term term2, and turns a premise
into a conclusion with the same truth-value.

(B.4) Implication rules, in Table 11.11, come from theorems in the form
of “statement1 ⊃ statement2”. Each of them can be used in inference
as implication statement “statement1 ⇒ statement2〈1, r〉”.

(B.5) Inheritance rules, in Table 11.12, come from theorems in the form
of “term1 → term2”. Each of them can be used as two implications
“(X → term1) ⊃ (X → term2)” and “(term2 → X) ⊃ (term1 →
X)”, by the above Implication Rules.
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(C) Meta-level inference rules: Each of these rules specifies how to
use the other rules defined above for additional usages.1

(C.1) Question derivation. A question Q and a judgment J produce a
derived question Q′, if and only if the answer to Q′, call it J ′, can be
used with J to derive an answer to Q by a two-premise inference rule;
a question Q by itself produces a derived question Q′, if and only if
the answer to Q′, call it J ′, can be used to derive an answer to Q by
a one-premise inference rule.

(C.2) Goal derivation. A goal G and a judgment J produce a derived
goal G′, if and only if the solution to G′, call it J ′, can be used with J
to derive a solution to G by a two-premise inference rule; a question
G by itself produces a derived goal G′, if and only if the solution to
G′, call it J ′, can be used to derive a solution to G by a one-premise
inference rule. In both cases, the desire-value of G′ is derived as the
truth-value of G′ ⇒ D from the desire-value of G, as the truth-value
of G⇒ D, as well as the truth-value of J (if it is involved).

(C.3) Variable substitution. All occurrences of an independent variable
term in a statement can be substituted by another term (constant or
variable); all occurrences of constant in a statement can be substituted
by a dependent variable term (constant or variable). The reverse cases
of substitution are limited to Table 8.3 and 8.5. A query variable in
a question can be substituted by a constant term in a judgment.

(C.4) Temporal attributes. Temporal inference is carried out by pro-
cessing the logical factor and the temporal factor in the premises in
parallel. The former is based on the inference rules, and the latter on
the properties of the two basic temporal relations. When both fac-
tors can be decided, they are combined in the conclusion, otherwise
no conclusion is derived.

(D) Direct-processing rules: Each of these rules directly processes
a new inference task, based on the information local to the content of the
task.

1Beside the following meta-rules, it may be possible to summarize some other rules
into meta-rules. For instance, the rules in 7.5, 7.6, and 8.6 probably should be replaced
by the following meta-rules:

If {P1, P2} ` C〈Fn〉, then {(A⇒ P1), P2} ` (A⇒ C)〈Fn〉

If {P1, P2} ` C〈Fn〉, then {(A ∧ P1), P2} ` (A ∧ C)〈Fn〉
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(D.1) Revision/update. When the system gets a new judgment (or goal),
it is used with an existing judgment (or goal) by the revision rule,
under the conditions that (1) the two have the same content (top-level
statement), (2) the content does not contain dependent variable term,
and (3) the two have distinct evidential bases. The conclusion has the
same content, but a higher confidence value. When the statement is
an event, and the new judgment is significantly different from the old
one, the operation is update, and the old belief is adding a past tense,
and the new one becomes the current belief.2

(D.2) Choice. A judgment provides an answer to a question, and a so-
lution to a goal, with the same content. When there are multiple
candidate answers or solutions, the one with high expectation and
low complexity is chosen if the question contains query variables,3

otherwise the one with the highest confidence value is chosen.

(D.3) Decision. A candidate goal G is actually pursued by the system,
when its expected desirability pG and expected plausibility dG satisfy
condition pG(dG − 1/2) + 1/2 > t, where t is a threshold larger than
1/2. When the goal is an operation, it is executed.

11.3 NAL Truth-value Functions

All truth-value functions are summarized in Table 11.13, in their simplest
form. Different types of uncertainty measurements are mixed in the func-
tions, and their relations are given in Table 3.1.

The functions are clustered into groups, according to the syntactic fea-
ture of the rules using them. The functions used in the syllogistic rules are
divided into strong functions and weak functions. In a rule using a strong
function, the confidence of the conclusion has an upper bound 1, and the
rule remains valid in its binary form; in a rule using a weak function, the
confidence of the conclusion has an upper bound 1/(1+k) (since w has an
upper bound 1), and the rule is invalid in its binary form. A NAL inference
rule with a strong truth-value function will be a valid inference rule in IL if
when the truth-values are omitted (so the premises and conclusion become
binary), which is not the case for the rules with weak truth-value functions.

2There are situations where revision and update are both applicable. The system will
either to both or use additional information to select between the two interpretations of
the situation.

3When resource restriction is taken into consideration, the syntactic complexity of
the candidates should also be taken into account, together with the expectation value of
the candidate, and simpler answers should be preferred. In the current implementation,
the choice rule compare two candidates by their expectation/complexity ratio.
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〈sentence〉 ::= 〈judgment〉|〈question〉|〈goal〉
〈judgment〉 ::= 〈statement〉‘.′ [〈tense〉]〈truth-value〉
〈question〉 ::= 〈statement〉‘?′ [〈tense〉]
〈goal〉 ::= 〈statement〉‘!′ 〈desire-value〉

〈statement〉 ::= ‘(′〈term〉〈copula〉〈term〉‘)′ |〈term〉
| ‘(¬′〈statement〉‘)′
| ‘(∧′〈statement〉〈statement〉+‘)′

| ‘(∨′〈statement〉〈statement〉+‘)′

| ‘( ,′ 〈statement〉〈statement〉+‘)′

| ‘( ;′ 〈statement〉〈statement〉+‘)′

| ‘(⇑′〈word〉 〈term〉∗‘)′
〈copula〉 ::= ‘→′ |‘↔′ |‘⇒′ |‘⇔′ | ‘/⇒′ | ‘\⇒′ | ‘|⇒′ | ‘/⇔′ | ‘|⇔′
〈tense〉 ::= ‘/⇒′ | ‘\⇒′ | ‘|⇒′
〈term〉 ::= 〈word〉|〈variable〉|〈statement〉

| ‘{′〈term〉+‘}′ | ‘[′〈term〉+‘]′

| ‘(∩′〈term〉〈term〉+‘)′

| ‘(∪′〈term〉〈term〉+‘)′

| ‘(−′〈term〉〈term〉‘)′
| ‘(	′〈term〉〈term〉‘)′
| ‘(×′〈term〉〈term〉+‘)′

| ‘(⊥′〈term〉〈term〉∗‘ �′ 〈term〉∗‘)′
| ‘(>′〈term〉〈term〉∗‘ �′ 〈term〉∗‘)′

〈variable〉 ::= 〈independent-variable〉
|〈dependent-variable〉
|〈query-variable〉

〈independent-variable〉 ::= ‘#′〈word〉
〈dependent-variable〉 ::= ‘#′ [〈word〉‘(′〈independent-variable〉∗‘)′]
〈query-variable〉 ::= ‘?′ [〈word〉]
〈truth-value〉 : a pair of real number in [0, 1]× (0, 1)
〈desire-value〉 : the same as〈truth-value〉

〈word〉 : a string in a given alphabet

Table 11.1: The Complete Grammar of Narsese
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type symbol layer name

sentence punctuation . NAL-1 judgment
? NAL-1 question
! NAL-8 goal

copula → NAL-1 inheritance
↔ NAL-2 similarity
◦→ NAL-2 instance
→◦ NAL-2 property
◦→◦ NAL-2 instance-property
⇒ NAL-5 implication
⇔ NAL-5 equivalence
/⇒ NAL-7 predictive implication
\⇒ NAL-7 retrospective implication
|⇒ NAL-7 concurrent implication
/⇔ NAL-7 predictive equivalence
|⇔ NAL-7 concurrent equivalence

term operator {} NAL-2 extensional set
[ ] NAL-2 intensional set
∩ NAL-3 extensional intersection
∪ NAL-3 intensional intersection
− NAL-3 extensional difference
	 NAL-3 intensional difference
× NAL-4 product
⊥ NAL-4 extensional image
> NAL-4 intensional image
� NAL-4 image place-holder

statement operator ¬ NAL-5 negation
∧ NAL-5 conjunction
∨ NAL-5 disjunction
, NAL-7 sequential conjunction
; NAL-7 parallel conjunction

term prefix # NAL-6 variable
? NAL-6 query
⇑ NAL-8 command

Table 11.2: The Symbols in Narsese Grammar
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J2 \ J1 M → P P →M M ↔ P

S → P 〈Fded〉 S → P 〈Fabd〉 S → P 〈F ′ana〉
S →M P → S〈F ′exe〉 P → S〈F ′abd〉

S ↔ P 〈F ′com〉
S → P 〈Find〉 S → P 〈Fexe〉

M → S P → S〈F ′ind〉 P → S〈F ′ded〉 P → S〈F ′ana〉
S ↔ P 〈Fcom〉
S → P 〈Fana〉

S ↔M P → S〈Fana〉
S ↔ P 〈Fres〉

Table 11.3: The First-Order Syllogistic Rules

J2 \ J1 M ⇒ P P ⇒M M ⇔ P

S ⇒ P 〈Fded〉 S ⇒ P 〈Fabd〉 S ⇒ P 〈F ′ana〉
S ⇒M P ⇒ S〈F ′exe〉 P ⇒ S〈F ′abd〉

S ⇔ P 〈F ′com〉
S ⇒ P 〈Find〉 S ⇒ P 〈Fexe〉

M ⇒ S P ⇒ S〈F ′ind〉 P ⇒ S〈F ′ded〉 P ⇒ S〈F ′ana〉
S ⇔ P 〈Fcom〉
S ⇒ P 〈Fana〉

S ⇔M P ⇒ S〈Fana〉
S ⇔ P 〈Fres〉

Table 11.4: The Higher-Order Syllogistic Rules
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J1 J2 J F

S S ⇔ P P Fana

S P S ⇔ P Fcom

M ⇒ P M P Fded

P ⇒M M P Fabd

P M M ⇒ P Find

(C ∧M)⇒ P M C ⇒ P Fded

(C ∧M)⇒ P C ⇒ P M Fabd

C ⇒ P M (C ∧M)⇒ P Find

(C ∧M)⇒ P S ⇒M (C ∧ S)⇒ P Fded

(C ∧M)⇒ P (C ∧ S)⇒ P S ⇒M Fabd

(C ∧ S)⇒ P S ⇒M (C ∧M)⇒ P Find

Table 11.5: The Conditional Syllogistic Rules

J1 J2 J F

M → T1 M → T2 M → (T1 ∩ T2) Fint

M → (T1 ∪ T2) Funi

M → (T1 − T2) Fdif

M → (T2 − T1) F ′dif
T1 →M T2 →M (T1 ∪ T2)→M Fint

(T1 ∩ T2)→M Funi

(T1 	 T2)→M Fdif

(T2 	 T1)→M F ′dif
M ⇒ T1 M ⇒ T2 M ⇒ (T1 ∧ T2) Fint

M ⇒ (T1 ∨ T2) Funi

T1 ⇒M T2 ⇒M (T1 ∨ T2)⇒M Fint

(T1 ∧ T2)⇒M Funi

T1 T2 T1 ∧ T2 Fint

T1 ∨ T2 Funi

Table 11.6: The Composition Rules



80 CHAPTER 11. SUMMARY

st1 st2 st3

¬(M → (T1 ∩ T2)) M → T1 ¬(M → T2)
M → (T1 ∪ T2) ¬(M → T1) M → T2

¬(M → (T1 − T2)) M → T1 M → T2

¬(M → (T2 − T1)) ¬(M → T1) ¬(M → T2)
¬((T1 ∪ T2)→M) T1 →M ¬(T2 →M)

(T1 ∩ T2)→M ¬(T1 →M) T2 →M
¬((T1 	 T2)→M) T1 →M T2 →M
¬((T2 	 T1)→M) ¬(T1 →M) ¬(T2 →M)
¬(S1 ∧ S2) S1 ¬S2

S1 ∨ S2 ¬S1 S2

Table 11.7: The Decomposition Rules

J0 J F

S ¬S Fneg

S → P P → S Fcnv

S ⇒ P P ⇒ S Fcnv

S ⇒ P (¬P )⇒ (¬S) Fcnt

Table 11.8: The Conversion Rules
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statement1 statement2

S ↔ P (S → P ) ∧ (P → S)
S ⇔ P (S ⇒ P ) ∧ (P ⇒ S)
S ↔ P {S} ↔ {P}
S ↔ P [S]↔ [P ]

S → {P} S ↔ {P}
[S]→ P [S]↔ P

(S1 × S2)→ (P1 × P2) (S1 → P1) ∧ (S2 → P2)
(S1 × S2)↔ (P1 × P2) (S1 ↔ P1) ∧ (S2 ↔ P2)

S → P (M × S)→ (M × P )
S → P (S ×M)→ (P ×M)
S ↔ P (M × S)↔ (M × P )
S ↔ P (S ×M)↔ (P ×M)

(× T1 T2)→ R T1 → (⊥ R � T2)
(× T1 T2)→ R T2 → (⊥ R T1 �)
R→ (× T1 T2) (> R � T2)→ T1

R→ (× T1 T2) (> R T1 �)→ T2

¬(S1 ∧ S2) (¬S1) ∨ (¬S2)
¬(S1 ∨ S2) (¬S1) ∧ (¬S2)
S1 ⇔ S2 (¬S1)⇔ (¬S2)

¬(S1 ⇒ S2) S1 ⇒ (¬S2)
¬(S1 ⇔ S2) S1 ⇔ (¬S2)

Table 11.9: The Equivalence Theorems

term1 term2

¬(¬T ) T
(∪ {T1} · · · {Tn}) {T1, · · · , Tn}

(∩ [T1] · · · [Tn]) [T1, · · · , Tn]
({T1, · · · , Tn} − {Tn}) {T1, · · · , Tn−1}

([T1, · · · , Tn]	 [Tn]) [T1, · · · , Tn−1]
((T1 × T2)⊥T2) T1

((T1 × T2)>T2) T1

S1 ⇒ (S2 ⇒ S3) (S1 ∧ S2)⇒ S3

Table 11.10: The Reduction Theorems
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statement1 statement2

S ↔ P S → P
S ⇔ P S ⇒ P
S1 ∧ S2 S1

S1 S1 ∨ S2

S → P (S ∪M)→ (P ∪M)
S → P (S ∩M)→ (P ∩M)
S ↔ P (S ∪M)↔ (P ∪M)
S ↔ P (S ∩M)↔ (P ∩M)
S ⇒ P (S ∨M)⇒ (P ∨M)
S ⇒ P (S ∧M)⇒ (P ∧M)
S ⇔ P (S ∨M)⇔ (P ∨M)
S ⇔ P (S ∧M)⇔ (P ∧M)
S → P (S −M)→ (P −M)
S → P (M − P )→ (M − S)
S → P (S 	M)→ (P 	M)
S → P (M 	 P )→ (M 	 S)
S ↔ P (S −M)↔ (P −M)
S ↔ P (M − P )↔ (M − S)
S ↔ P (S 	M)↔ (P 	M)
S ↔ P (M 	 P )↔ (M 	 S)

M → (T1 − T2) ¬(M → T2)
(T1 	 T2)→M ¬(T2 →M)

S → P (S ⊥M)→ (P ⊥M)
S → P (S >M)→ (P >M)
S → P (M ⊥ P )→ (M ⊥ S)
S → P (M > P )→ (M > S)

Table 11.11: The Implication Theorems
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term1 term2

(T1 ∩ T2) T1

T1 (T1 ∪ T2)
(T1 − T2) T1

T1 (T1 	 T2)
((R⊥T )× T ) R

R ((R>T )× T )

Table 11.12: The Inheritance Theorems
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type inference name function

same-statement revision Frev w+ = w+
1 + w+

2

w− = w−1 + w−2
single-premise negation Fneg w+ = w−0

w− = w+
0

conversion Fcnv w+ = and(f0, c0)
w− = 0

contraposition Fcnt w+ = 0
w− = and((not(f0), c0)

strong syllogism deduction Fded f = and(f1, f2)
c = and(f1, f2, c1, c2)

analogy Fana f = and(f1, f2)
c = and(f2, c1, c2)

resemblance Fres f = and(f1, f2)
c = and(or(f1, f2), c1, c2)

weak syllogism abduction Fabd w+ = and(f1, f2, c1, c2)
w = and(f1, c1, c2)

induction Find w+ = and(f1, f2, c1, c2)
w = and(f2, c1, c2)

exemplification Fexe w+ = and(f1, f2, c1, c2)
w = and(f1, f2, c1, c2)

comparison Fcom w+ = and(f1, f2, c1, c2)
w = and(or(f1, f2), c1, c2)

term composition intersection Fint f = and(f1, f2)
c = or(and(not(f1), c1), and(not(f2), c2))

+ and(f1, c1, f2, c2)
union Funi f = or(f1, f2)

c = or(and(f1, c1), and(f2, c2))
+ and(not(f1), c1, not(f2), c2)

difference Fdif f = and(f1, not(f2))
c = or(and(not(f1), c1), and(f2, c2))

+ and(f1, c1, not(f2), c2)

Table 11.13: The Truth-Value Functions of NAL
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