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0. What’s new? 
 
This Section of the Manual summarises the methods used to create the Propensity to Cycle 
(PCT) commuting layer. Further details can be found in the technical appendix of our 
publication Lovelace et al [1].  In most respects the methods described in Lovelace et al. [1] 
are still being used in the PCT, with the following improvements: 

1. The PCT now exists at the Lower-layer Super Output Area (LSOA) as well as at the 

Middle-layer Super Output Area level (MSOA).  Results presented in the PCT at the 

MSOA layer (and above) are aggregated from those at the LSOA layer. 

2. The PCT is now calculated with reference to an individual-level synthetic population, 

rather than the aggregate data in previous versions. Full details of the creation of this 

synthetic population can be found in Appendix 1.  This allows the health and carbon 

impacts to be calculated more accurately, by allowing variables such as mortality to 

vary according to an individual’s age. 

3. A fifth ‘Government Target (Near Market)’ scenario has been added. This is described 

in the main text of this document, with additional details in Appendix 2. The previous 

four PCT scenarios are not changed, although the previous “Government Target” 

scenario has been renamed “Government Target (Equality).  

4. Input parameters from the British and Dutch National Travel Surveys have been 

updated to both now use data from 2010-2016, rather than 2008-2014 (England) and 

2010-2014 (Netherlands).  This has included updating parameters used in the Go 

Dutch and Ebikes scenarios. We have likewise updated our input mortality data to 

come from 2016, and have updated to 2017 the input parameters published by the 

Department for Transport (DfT) and the Department for the Environment, Food and 

Rural Affairs (DEFRA). An updated table of inputs for the health and carbon 

calculations is in Appendix 5. 

5. We now estimate cycling and walking speed, and physical activity energy expenditure 

while cycling and walking, as a function of route hilliness. 

6. We now estimate impacts on mortality in terms of the reduction in Years of Life Lost 

(YLLs) as well as the impact on deaths. We also now additionally estimate impacts on 

sickness absence. 

7. Both the clickable and the image route networks are now calculated at the more 

detailed LSOA level, providing higher geographic resolution and improved route 

network results, especially in rural areas. 
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1. PCT input datasets 
 

i. Core input dataset: ‘travel to work’ origin-destination dataset from the Census 2011 
 
Using Census 2011 data to build an individual-level synthetic population  
 
To estimate cycling potential, the PCT was designed to use the best available geographically 
disaggregated data sources on travel patterns. Currently for England and Wales this is the 
2011 Census data on main mode of travel to work. For this reason, the commuting layer was 
the first layer added to the PCT.  The 2011 Census was conducted on 27th March 2011 and 
covered an estimated 94% of the population.  All individuals aged 16 or over with a current 
job were asked “How do you usually travel to work? (Tick one box only, for the longest part, 
by distance, of your usual journey to work)”.  The commuting layer of the PCT is based on 
the 23,903,549 commuters living in England and Wales in 2011, with adults who reported 
that their home address was also their place of work being treated as non-commuters. 
 
The core input dataset for the synthetic population was Census 2011 origin-destination (OD) 
pair data that linked each commuter’s usual place of residence to the workplace location of 
their main job (safeguarded dataset ‘WM12EW[CT0489]_lsoa’ from 
https://wicid.ukdataservice.ac.uk/ ).1  The data are disaggregated by sex; age (categories: 
16-24; 25-34; 35-49; 50-64; 65-74; 75+) and mode of travel to work (categories: bicycle; 
walking; car driver; car passenger; motorcycle; train; underground or light rail; bus; taxi; or 
other).  Usual place of residence and place of work are identified at the level of the Lower-
layer Super Output Area (LSOA), although we subsequently aggregated these up into OD 
pairs between Middle-layer Super Output Areas (MSOAs) for the MSOA layer of the PCT. 
LSOAs are administrative regions designed to contain a population of around 1560 
individuals (average 690 commuters). MSOAs are administrative regions designed to contain 
a population of around 7500 individuals (average 3330 commuters). 
 
 
We enhanced this initial OD dataset by merging in information on: 
 

• Income Deprivation of the home LSOA. This came from the Index of Multiple 

Deprivation data from England (IMD20152) and Wales (IMD20143). We ranked LSOAs 

into fifths for income deprivation, with the fifths defined relative to the country in 

question.   

 
1 Note that this dataset was created using the same method that was used in the 2001 census, namely 
assigning no travel mode to people who work 'at or from home'.  Some 2011 ONS travel to work datasets 
instead use an alternative method in which people who work 'from home' but who do travel in the course of 
their work are given the mode they usually use for that travel.  This does not make much difference, 
particularly for cycling, but does lead to small discrepancies between our Census 2011 numbers and some 
other published census data sets. Another potential reason for discrepancy is that some census data sets only 
include commuters aged 16-65, whereas our dataset includes all ages 16+. 
2 https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015  
3 https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Welsh-Index-of-Multiple-
Deprivation/WIMD-2014  

https://wicid.ukdataservice.ac.uk/
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015
https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Welsh-Index-of-Multiple-Deprivation/WIMD-2014
https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Welsh-Index-of-Multiple-Deprivation/WIMD-2014
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• Urban-rural status and sparsity of the home LSOA. This came from the Rural Urban 

Classification (2011) of Lower Layer Super Output Areas in England and Wales.4  

Urban-rural status is categorised into five categories: Urban major conurbation; 

Urban minor conurbation; Urban city and town; Rural town and fringe; Rural village 

and dispersed.  This dataset also provides a sparsity index, identifying the sparsest 

5% of areas in terms of population. 

• Estimated distance and gradient of the ‘fastest’ routes between the home LSOA 

and work LSOA.  This was estimated by CycleStreets.net, using the same methods 

that have been used in previous iterations of the PCT.  As in previous versions of the 

PCT, gradient was measured as a percentage corresponding to the average slope 

experienced along the course of the route.  

• The background mortality rate, stratified by age category, sex, and home local 

authority. 

• Car ownership and ethnicity.  These two variables were probabilistically assigned by 

drawing on other safeguarded Census 2011 datasets about the number of people a) 

with no household car and b) of non-white ethnicity in each OD pair. These 

characteristics were probabilistically assigned, rather than being known for certain 

for each person in the core input dataset, hence the description of the population 

created as a “synthetic population”. The synthetic population is similar to the true 

population, in having the correct total number of non-white and non-car-owning 

individuals in each OD pair, and the correct distribution of these characteristics by 

age, sex population, region of residence and travel mode.  Full details are provided in 

Appendix 1 

A schematic summary of these and other data processing stages described below is 

presented in Figure 1. 

  

 
4 http://ons.maps.arcgis.com/home/item.html?id=9855221596994bde8363a685cb3dd58a  

http://ons.maps.arcgis.com/home/item.html?id=9855221596994bde8363a685cb3dd58a
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Figure 1: Flow diagram illustrating the input data and processing steps used to create the synthetic population 
of commuters from Census 2011 data, and then process it to generate PCT scenarios 

 
LSOA = Lower-layer Super Output Area, OD pair = origin-destination pair, MSOA = Middle-layer Super Output 
Area, TAG 
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Complementary analyses of national travel surveys, to parameterise scenarios 
 
In addition, some of our analysis decisions and model parameterisation drew on analyses of 
the National Travel Surveys in England and Wales (2010-2016, although data for Wales was 
only collected up to 2012, accessed from http://discover.ukdataservice.ac.uk/), the 
Netherlands (2010-2016, accessed from https://easy.dans.knaw.nl/ui/home)  and 
Switzerland (2010, obtained from the Swiss Federal Statistical Office, Neuchâtel [2], with 
data processing by Thomas Götschi).  All three are nationally-representative surveys that 
include a travel diary, of duration 1 week in England and Wales, and 1 day in the Netherlands 
and Switzerland. 
 
 

ii. Who is included in the propensity to cycle models? 
 
In our analysis, we distinguish between 4 types of OD pairs as shown in Table 1 with 
reference to the LSOA layer. As this table shows, all commuters are included in our counts of 
the number of cyclists at baseline. However, we do not model cycling as increasing for OD 
pairs that have fast route distance of >30 km, or where the workplaces outside England and 
Wales. All types of OD pairs are included in our zone-level summaries on the PCT.  Only some 
OD pairs are represented as lines in the PCT interface. Specifically, each region only shows 
lines that a) have a fast-route distance less than 20km, and b) contain more than a certain 
number of commuters (usually 10 for the MSOA layer and 5 for the LSOA layer) by any 
mode, counting commuters in both directions.  In addition, the Route Network (MSOA) only 
includes commuters who start and end in the PCT region. The Region Stats tab gives details 
of the criteria used in each region. 
 
Table 1: Summary of how different types of OD pairs are modelled and represented in PCT, for the LSOA 
layer*  

Type of OD pair % of 
comm-
uters 

% of 
cyclists 
at 
baseline 

Included in 
count of 
cyclists at 
baseline? 

Modelled 
as 
increasing 
in 
scenarios? 

Included in 
zone-level 
summaries 
in the PCT 
interface? 

Represented as 
lines in the PCT 
interface? 

Included in Route 
Network 
estimates in the 
PCT interface? 

Type 1: <30km, 
between LSOAs 

75.6% 86.9% Yes Yes Yes Sometimes, see 
Region Stats tab 

Sometimes, see 
Region Stats tab 

Type 2: within 
LSOAs  

3.4% 4.4% Yes Yes Yes No, represented 
as centroids 

No 

Type 3: No fixed 
workplace 

9.1% 4.9% Yes Yes Yes No No 

Type 4: >30km 
within England or 
Wales, or 
workplace 
outside England 
or Wales 

11.9% 3.9% Yes No Yes No No 

* Results for the MSOA layer are similar except that there are a higher proportion of commuters are in Type 2 
as opposed to Type 1 flows 

  

http://discover.ukdataservice.ac.uk/
https://easy.dans.knaw.nl/ui/home
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2A. Modelling ‘route-based baseline propensity to cycle’, using distance and hilliness 
only  

i. Plain language overview  

In order to generate ‘what if’ scenarios regarding possible future levels of cycling, we first 
sought to model current propensity to cycle – i.e. the current proportion of commuters who 
cycle to work. We did this using OD data from the 2011 Census, and modelling cycling 
commuting as a function of route distance and route hilliness. We modelled cycling at 
baseline using logistic regression applied at the individual level, modelling the relationship 
between the proportion of commuters cycling (the dependent variable) and the fastest-
route distance and route gradient (the two explanatory variables). Our equations included 
squared and square-root terms for distance to capture the non-linear impact of distance on 
the likelihood of cycling, and included ‘interaction’ terms to capture the fact that the impact 
of trip distance varies according to the level of hilliness. We also developed equations to 
estimate commuting mode share among groups with no fixed workplace. 

This model of baseline propensity to cycle formed the basis of three of the five scenarios 
(Government Target (Equality), Go Dutch and Ebikes), as described in more detail in the next 
section. Because this model of propensity to cycle relies only on distance and hilliness, we 
refer to it as “route-based baseline propensity to cycle” 

ii. Why focus on distance and hilliness? 

In modelling route-based baseline propensity to cycle, we focused on the two characteristics 
of distance and hilliness as both are strong predictors of the probability of cycling a trip, and 
as both are likely to continue to have some effect on cycling propensity in all cycling futures. 
For example, even in high-cycling places like the Netherlands, people are much more likely 
to cycle a 2 km trip than a 10 km trip. By contrast, other possible predictors of current 
propensity to cycle, such as sex or age, may be more amenable to change.  For example, 
although cycling in England and Wales is concentrated among younger males, in the 
Netherlands cycling is more common among women than among men, and is common 
across all age groups (see Manual C3ii). We did not include such individual-level 
characteristics in this model as we wanted to generate some scenarios that did not assume 
that future cyclists in England and Wales would have the same characteristics as current 
cyclists. 

iii. Why focus on more direct ‘fast’ routes? 

In measuring trip distance and hilliness, we focused on the ‘fastest’ (i.e. more direct) routes 
presented by CycleStreets.  We did this despite the fact that many cyclists currently choose 
to take a quieter route at the cost of extra time because often the fast route involves sharing 
with motor traffic on busy roads. However, the aim of the PCT is not to predict exactly where 
people are currently cycling, rather we are trying to prioritise where to put new 
infrastructure. 

We believe that in general the fastest route should be considered as the first choice for 
creating good cycling routes. This is particularly the case if one is seeking to encourage 
cycling among groups currently underrepresented, such as women and older people.  This is 
important for 2 reasons.  First, these groups are more likely to be put off cycling on direct 
routes in the absence of high quality infrastructure.  A systematic review found that most 
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people find cycling with busy traffic is hugely off-putting, and this is particularly true of 
women and probably also older people and those riding with children [3]. Second, these 
groups are also more likely to be put off by cycling longer distances, which alternative 
‘quieter’ routes may involve. For example, analysis of the National Travel Survey indicates 
that if a quieter route creates a detour such that a 2-mile trip becomes effectively a 3-mile 
trip, younger men’s propensity to cycle the route will decrease by 11%. But for younger 
women, the decline is 19%, and for older adults (60+) the propensity would decrease by 
35%. 

Thus, for utility trips, improving direct routes will reduce safety and time disincentives to 
cycling. So, while a good proportion of current cyclists may use the ‘quieter’ route, a big 
increase in capacity will likely necessitate substantial improvements to the fastest route, 
which will then carry many more riders from a wider demographic. 

iv. Technical details 
For all within-LSOA and between-LSOA OD pairs in England and Wales with a fastest-route 
distance of <30km, we modelled the relationship between the proportion of commuters 
cycling (the dependent variable) and the fastest-route distance and route gradient (the two 
explanatory variables).  We did this using an individual-level logit model, with the 
observations being the ~19 million commuters in our synthetic population with OD pair type 
1 or 2 (see Table 1). The effect of distance was modelled using linear, square-root and 
square terms (Equation 1A5). The ‘gradient’ variable was entered as the original gradient 
derived from CycleStreet.net minus 0.78%, which is the estimated average route gradient in 
the Netherlands.  By centring our gradient measure on the estimated Dutch average in this 
way, we facilitated the subsequent addition of ‘Go Dutch’ parameters to the baseline 
equation (see Section C3ii).  Interaction terms were included to capture the fact that the 
deterrent effect of a steeper slope appeared to be stronger for individuals travelling 
intermediate distances. The resulting equation6 for baseline propensity to cycle was: 
 
Equation 1A:   logit (pcycle) = -4.018 + (-0.6369 * distance) + (1.988 * distancesqrt) + (0.008775 * 
distancesq) + (-0.2555 * gradient) + (0.02006 * distance*gradient) + (-0.1234 * distancesqrt *gradient) 
  pcycle  = exp ([logit (pcycle)]) / (1 + (exp([logit(pcycle)]) 
 

Where ‘pcycle’ is the proportion of cyclists expected; ‘distance’ is the fastest-route distance 
in km, ‘distancesqrt’ and ‘distancesq’ are, respectively the square-root and square of distance; 
and ‘gradient’ is the fastest-route gradient (centred on 0.78%).  Equation 1A showed good fit 
to the observed data with respect to both distance and hilliness (Figure 2).  
  

 
5 Equation 1A and Equation 2A were initially generated using MSOA OD pairs.  
6 The equation parameters differ very slightly from those published in Lovelace 2017 because a) they are based 
on models at the LSOA not MSOA level and 2) they used data from a December 2018 national build that drew 
on an updated version of CycleStreets with a slightly refined algorithm for estimating hilliness. 
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Figure 2: Observed versus predicted prevalence of cycling to work among 18,882,504 English and Welsh 
commuters travelling <30km to work (OD pair types 1 and 2), according to a) route distance and b) route 
gradient 

 
 
For commuters with no fixed workplace, we modelled propensity to cycle as a function of 
the average propensity to cycle among commuters living in the same LSOA and commuting 
<30km.  The resulting equation for route-based baseline propensity to cycle among those 
with no fixed workplace was: 
 

Equation 2A:   logit (pcycle) = -6.530 + (132.2 * meanpropensitysq) + (11.47 * meanpropensitysqrt) 
  pcycle  = exp (logit(pcycle)) / (1 + (exp(logit(pcycle)) 
 

where ‘meanpropensitysq’ is the square of the mean propensity to cycle among commuters 
in type 1 and type 2 OD pairs in the home LSOA in question, and ‘meanpropensitysqrt’ is the 
square root term.  
 
Finally, we did not model baseline propensity to cycle among individuals living more than 
30km from their place of work or commuting outside England or Wales.  Instead, given the 
considerable uncertainties about where the cycling reported by these individuals was taking 
place, we assumed no increase in cycling levels among these commuters in our scenarios.   
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2B. Modelling “multi-characteristic baseline propensity to cycle”, using distance, 
hilliness, and individual characteristics  
 
To generate the Government Target (Near Market) scenario, we again first sought to model 
baseline (i.e. current) propensity to cycle.  As in the previous section, we estimated propensity 
to cycle among the 19 million commuters with OD pair type 1 or 2 (see Table 1) by fitting logit 
regression models with cycling as the outcome.  We again included the same predictor 
variables to capture the effect of distance and gradient, and used similar methods to estimate 
commuting mode share among groups with no fixed workplace. 
 
The difference was that in this model we took account of a wider range of variables, such that 
we refer to this measure of cycling potential as “multi-characteristic baseline propensity to 
cycle”. Specifically, as well as trip distance and hilliness we additionally took account of: 

1. Region (11 regions: the 10 standard regions of England and Wales, subdividing 

London into Inner and Outer London) 

2. Sex (binary) 

3. Age category (16 to 24; 25 to 34; 35 to 49; 50 to 64; 65 to 74; 75+) 

4. Non-White ethnicity (binary) 

5. Having a household car (binary) 

6. Fifth of income deprivation 

7. Urban-rural status (Urban major conurbation; Urban minor conurbation; Urban city 

and town; Rural town and fringe; Rural village and dispersed) 

8. A sparsity index, identifying the sparsest 5% of areas in terms of population (binary). 

We took account of these variables by (i) stratifying by region, sex, and broad age band (16 

to 49, and 50+) and then (ii) entering the other variables into the model as predictors.  In 

total, therefore, we modelled baseline propensity to cycle through 44 regression models (11 

regions * male/female * 2 age categories). Further details and the coefficients for all the 

regression equations in all the 44 strata are shown in Appendix 2 in Table 5 - Table 8. 

This process of stratification allowed us to take account of the fact the importance of some 

predictor variables vary according to age, sex, or region. For example, the deterrent effect of 

longer distance is greater in women and in older people than in young men; and car 

ownership is less strongly associated with cycling in London than in other regions of England 

and Wales (further details in Appendix 2) 
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3. Modelling cycling across scenarios 
 
Five scenarios were developed to explore possible cycling futures in England and Wales. 
These can be framed in terms of the removal of different infrastructural, cultural, and 
technological barriers that currently prevent cycling being the natural mode of choice for 
trips of short to medium distances. 
 
The scenarios are not predictions of the future. They are snapshots indicating how the 
spatial distribution of cycling may shift as cycling grows based on current travel patterns. At 
a national level, the Government Target (Equality), Government Target (Near Market) and 
Gender Equality scenarios could be seen as shorter-term and the Go Dutch and Ebikes 
scenarios as longer term more ambitious. The choice of scenarios was informed by an 
Government target to double the number of cycle trips in England and evidence from 
overseas about which trips could be made by cycling.  
 
Each scenario is described below, with both a plain language overview and an account of the 
technical details. The accounts of the technical details can be complemented by the 
summary of the scenario generation rules presented in Table 2. 
 
Table 2: Summary of scenario generation rules7 

Scenario Baseline no. 
cyclists (A) 

Initial estimation of scenario no. 
cyclists (B1) 

Additional processing of 
scenario no. cyclists (B2) 

Scenario 
increase in no. 
cyclists (C) 

Government 
Target 
(Equality) 

Recorded no. in 
Census 2011, OD 
pair types 1-4. 

Column A +  (Route-based baseline 
propensity to cycle [Equations 
1A+2A] in OD pair types 1-3 * no. 
commuters) 

• Cap Column B1 at 100%. Column B2 – 
Column A 

Government 
Target (Near 
Market) 

Recorded no. in 
Census 2011, OD 
pair types 1-4. 

Column A +  (Multi-characteristic 
baseline propensity to cycle 
[Section 2B/Appendix 2] in OD pair 
types 1-3 * no. commuters) 

• Cap Column B1 at 100%. Column B2 – 
Column A 

Go Dutch Recorded no. in 
Census 2011, OD 
pair types 1-4. 

‘Go Dutch’ propensity to cycle 
[Equations 1B+2B, with ‘dutch’=1 
and ‘ebike’=0] in OD pair types 1-3 
* no. commuters. 

• Set Column B1 as equal to 
Column A if B1 is less than A. 

Column B2 – 
Column A 

Ebikes Recorded no. in 
Census 2011, OD 
pair types 1-4. 

‘Ebikes’ propensity to cycle 
[Equations 1B+2B, with ‘dutch’=1 
and ‘ebike’=1] in OD pair types 1-3 
* no. commuters. 

• Set Column B1 as equal to 
Column A if B1 is less than A. 

Column B2 – 
Column A 

Gender 
Equality 

Recorded no. in 
Census 2011, OD 
pair types 1-4. 

Apply Equation 3 in OD pair types 
1-3. 

• Set Column B1 as equal to 
Column A if number of males 
in the OD pair is zero, or if B1 is 
less than A. 

Column B2 – 
Column A 

 
  

 
7 We considered two different approaches for implementing our scenarios: (1) Switch a fraction of every non-

cycling commuter to cycling in a deterministic manner (comparable to the previous implementation of the 
PCT); or (2) Switch some whole individuals from not cycling to cycling in a probabilistic manner (more similar to 
the Impacts of Cycling Tool). We decided to adopt the first to facilitate comparisons with the previous 
implementation of the PCT, and in order to reduce the role of random variation when examining impacts at the 
small-area or route level. See Appendix 3 for a further discussion of this point. 
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i. Government Target (Equality) and Government Target (Near Market) scenarios 

Plain language overview  
The Government Target (Equality) and Government Target (Near Market) scenarios both 
model a doubling of cycling nationally, corresponding to the proposed target in the English 
Department for Transport’s draft Cycling Delivery Plan to double cycling in England between 
2013 to 2025 [4]. They differ in that the Government Target (Equality) scenario models the 
increase as occurring solely as a function of trip distance and hilliness, i.e. equitably across 
age, sex, and other socio-demographic groups.  By contrast the Government Target (Near 
Market) scenario models the increase as occurring as a function of trip distance and hilliness, 
plus a number of sociodemographic and geographical characteristics (including age, sex, 
ethnicity, car ownership, income deprivation). 

The result in both scenarios is that cycling overall doubles at the national level, but at the 
local level this growth is not uniform, in absolute or relative terms. Areas with many short, 
flat trips and a below-average current rate of cycling are projected to more than double in 
both scenarios. Similarly, the Government Target (Near Market) scenario, areas with many 
younger men but a below-average current rate of cycling are projected to more than double. 

Although the doubling in the scenarios is substantial in relative terms, the rate of cycling 
under these two scenarios (rising from 3% to 6% of commuters) remains low compared with 
countries such as the Netherlands and Denmark. 

Technical details  
The Government Target (Equality) scenario was generated by adding together a) the 
observed number of cyclists in the 2011 Census, and b) the modelled number of cyclists, as 
estimated using the route-based baseline propensity to cycle equations described in Section 
2A. The Government Target (Near Market) scenario was generated by adding together a) the 
observed number of cyclists in the 2011 Census, and b) the modelled number of cyclists, as 
estimated using the multi-characteristic baseline propensity to cycle equations described in 
Section 2B and Appendix 2. 

As only non-cyclists were switched to cycling, we set commuter cyclists to have a scenario 
increase in cycling of zero. To compensate for this, we scaled up the propensities among non-
cycling commuters, such that the total scenario increase in cycling in an LSOA OD pair was 
equal to the sum of the scenario propensities. For each non-cycling commuter, the scenario 
increase in cycling was therefore calculated as equal to: 
 
Scenario propensity to cycle  * (sum of scenario propensities to cycle in the LSOA OD pair  / 
 sum of scenario propensities to cycle among non-cycling commuters in the LSOA OD pair) 

 
This is equivalent to what we did in the previous aggregate implementation of the PCT, 
although the calculation could be presented more simply in that previous implementation 
because it was applied at the aggregate (OD pair) level. 
 
The scenario increase in cycling for each OD pair (and higher aggregations) was calculated by 
summing the scenario increase in cycling across all constituent commuters.  The scenario 
number of cyclists for each OD pair was calculated by adding the scenario increase in cycling 
to the observed number of cyclists in Census 2011. 
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This is illustrated by the following example. Take an OD pair of 5 commuters containing 2 
cyclists in the 2011 Census.  The 3 non-cycling commuters have modelled scenario 
propensities to cycle of 0.052, 0.014, and 0.018.   The two cyclists have modelled scenario 
propensities to cycle of 0.052 and 0.074.  Given these latter two values need to be set to 
nought, the scaling factor used is (0.052 + 0.014 + 0.018 + 0.052 + 0.074)/(0.052 + 0.014 + 
0.018) = 2.5 Thus the model scenario propensities for the 3 non-cycling commuters become 
0.052 * 2.5 = 0.13; 0.014 * 2.5 = 0.035; and 0.018 * 2.5 = 0.045. The two cycling commuters 
have individual scenario increase in cycling of zero.  In the OD pair, the scenario increase in 
the number of cyclists is 0.13 +0.035 + 0.045 + 0 + 0=0.21.  The scenario number of cyclists is 
2+ 0.21 = 2.21. 
 
 
This illustrates how the Government Target (Equality) and Government Target (Near Market) 
scenarios lead to a doubling of cyclists in England and Wales as a whole, but not necessarily 
of each OD pair (e.g. In the above example the increase in the number of cyclists was only 
from 2 to 2.21). Note the reported ‘baseline’ number of cyclists directly influences the total 
number of cyclists in the scenario (column B2 in Table 2), but does not influence the scenario 
increase in the number of cyclists (Column C).  
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ii. Go Dutch and Ebikes scenarios 

Plain language overview  
While the Government Target (Equality) and Government Target (Near Market) scenarios 
model relatively modest increases in cycle commuting, the Go Dutch and Ebikes scenarios 
are an ambitious vision for what cycling in England and Wales could look like. People in the 
Netherlands make 28.4% of trips by bicycle, fifteen times higher than the figure of 1.6% in 
England and Wales. In addition, cycling in England and Wales is skewed towards younger, 
male cyclists (illustrated in Figure 3 with reference to England). By contrast in the 
Netherlands cycling remains common into older age, and women are in fact slightly more 
likely to cycle than men (Figure 3, right-hand side). 
 
This means that the difference between England and the Netherlands is particularly large for 
women and older people. For example, whereas the cycle mode share is ‘only’ six times 
higher in the Netherlands than in England for men in their thirties, it is over 20 times higher 
for women in their thirties or men in their seventies and eighties. For women in their 
seventies and eighties, the cycle mode share is over 60 times higher in the Netherlands than 
in England.   

Figure 3: Proportion of trips cycled in England versus the Netherlands stratified by age and sex 

 

The Go Dutch scenario represents what would happen if English and Welsh people were as 
likely as Dutch people to cycle a trip of a given distance and level of hilliness. This scenario 
thereby captures the proportion of commuters that would be expected to cycle if all areas of 
England and Wales had the same infrastructure and cycling culture as the Netherlands (but 
retained their hilliness and commute distance patterns). The scenario was generated by 
taking the route-based baseline propensity to cycle (see Section 2A) and applying Dutch 
scaling factors calculated through analysis of the English/Welsh and Dutch National Travel 
Surveys. The Go Dutch scaling factors comprised two parameters which boost the rate of 
cycling for each OD pair above the baseline model, with one fixed and one distant-
dependent term - the latter takes into account the fact that the "Dutch multiplier" is greater 
for shorter trips compared to longer trips.  
 
Note that the level of cycling under the Go Dutch scenario is unaffected by the current level 
of cycling but is instead purely a function of trip distance and hilliness. This means that a few 
lines or areas show a decrease in cycling under the Go Dutch scenario as compared to 
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baseline; this might happen in a very high-cycling area, where cycle commuting in the 2011 
Census is similar to or even higher than the average for the Netherlands. For example, 
Cambridge, the highest cycling region in England and Wales, shows only a modest overall 
increase under the Go Dutch scenario for this reason.  Planners in Cambridge might 
therefore want to consider creating a bespoke alternative scenario, e.g. “Go Groningen”, 
using cycling propensity from Groningen, the highest-cycling province in the Netherlands.  
 

The Ebikes scenario models the additional increase in cycling that would be achieved 
through the widespread uptake of electric cycles ('ebikes'). This scenario is built as an 
extension of the Go Dutch scenario, making the further assumption that all cyclists in the Go 
Dutch scenario own an ebike.  It builds on the Go Dutch scenario by applying three 
additional Ebikes scaling factors to account for the increased willingness of ebike users to 
cycle long distance, hilly and simultaneously long distance and hilly routes. These scaling 
factors were generated by analysing the impact of ebike ownership based on the Swiss 
National Household Travel Survey and the Dutch National Travel Survey, weighted to be 
representative of English and Welsh commuters.  This scenario may be particularly suitable 
for examining cycling potential in hilly areas and/or where trip distances are longer (e.g. in 
rural areas). 

 

Technical details  
For the Go Dutch and Ebikes scenarios, our approach was to start from the Equations 
estimating baseline propensity to cycle (Equation 1A and 2A) and add additional parameters.  
Here we provide an overview of the methods and input datasets used: full details can be 
found in Lovelace et al [1] (but note that the Go Dutch and Ebikes scaling parameters have 
been updated since publication using more recent data).  In calculating the scenario increase 
in cycling, we deterministically switched fractions of non-cyclist commuters to cycling in a 
manner comparable to that described for the Government Target (Equality) and 
Government Target (Near Market) scenarios.  
 
The Go Dutch scenario required us to model the increase in propensity to cycle that would 
be observed if English and Welsh commuters became as likely to cycle a given trip as Dutch 
commuters.  We estimated this using trip-level analysis of the English/Welsh and Dutch 
National Travel Surveys, restricting the analysis to commute trips of less than 30km.  In 
estimating the increased propensity to cycle among Dutch people, we included both a main 
effect term and an interaction term with distance (as a linear term).  We introduced the 
interaction term to reflect the fact that Dutch propensities to cycle exceed English and 
Welsh propensities by a greater amount for short distances (e.g. Dutch people are 5.6 times 
more likely to cycle a trip of 0-4.9km versus 3.6 times more likely to cycle a trip 10-14.9km).  
As hilliness data was not available in the Dutch survey, we weighted the data so that the 
English and Welsh sample of commuters lived in areas with the same hilliness profile as the 
Dutch commuters.  
 
The Ebikes scenario builds on the Go Dutch scenario and models the further increase in 
propensity to cycle that would be observed if all Dutch cyclists acquired an ebike.  To 
generate the relevant parameters, we restricted our analysis to the Dutch National Travel 
Survey 2013-2016, the only years that measured ebikes as a separate mode.  We further 
restricted our analysis to commute trips made by adults who owned a bicycle.  We then 
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compared propensity to cycle between the population of ebike owner trips (N = 4838) with 
the full population of all bicycle-owner trips (N = 50,990).  This analysis therefore takes into 
account the fact that some ebike owners are already present in the ‘Go Dutch’ scenario, and 
captures only the extra cycling that would occur if everyone with a traditional bicycle 
acquired an ebike.  
 
In estimating the extent to which this would increase propensity to cycle in the Ebikes 
scenario, we included interaction terms with distance (as a linear and squared term).  We did 
this to capture the fact that owning an ebike increases propensity to cycle more for long 
trips than for short trips (e.g. Dutch ebike owners are 1.1 times more likely than all Dutch 
bicycle owners to cycle a trip 0-4.9km versus 2.3 times more likely to cycle a trip 10-14.9km).  
Because we did not have data on hilliness in the Dutch National Travel Survey we could not 
estimate the magnitude of any interaction between ebike ownership and hilliness in this 
dataset.  We therefore instead estimated the interaction term between ebike use and 
average route gradient using data from the Swiss National Household Travel Survey 2010.   
 
Adding these ‘Go Dutch’ and ‘Ebikes’ parameters together, we derived the following 
propensity to cycle equation: 
 
Equation 1B:    logit(pcycle) =  Equation 1A + Dutch parameters + Ebikes parameters  
 
  logit(pcycle) =   = -4.018 + (-0.6369 * distance) + (1.988 * distancesqrt) + (0.008775 * 
distancesq) + (-0.2555 * gradient) + (0.02006 * distance*gradient) + (-0.1234 * distancesqrt *gradient) +  (2.550 * 
dutch) +  (-0.08036 * dutch * distance) + (0.05509 * ebike * distance) + (-0.0002950 * ebike * distancesq) + (0.1812 
* ebike * gradient). 

 
where ‘pcycle’ is the proportion of cyclists expected; ‘distance’ is the fastest-route distance 
in km, ‘distancesqrt’ and ‘distancesq’ are, respectively the square-root and square of distance; 
‘gradient’ is the fastest-route gradient (centred on 0.78%); ‘Dutch’ is a binary variable that 
takes the value ‘0’ for the Government Target (Equality) scenario and ‘1’ for the Go Dutch or 
the Ebikes scenario; and ‘ebike’ is a binary variable that takes the  value ‘0’ for the 
Government Target (Equality) and Go Dutch scenario and ‘1’ for the Ebikes scenario.  
 
 Figure 4 shows the distribution of cycling propensity generated by Equation 1B, according to 
distance and hilliness. 
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Figure 4: Prevalence of cycling to work at baseline among 18,882,504 English and Welsh commuters 
travelling <30km to work, and modelled prevalence of cycling to work in Go Dutch and Ebikes scenarios, 
according to a) route distance and b) route gradient 

 
 
For commuters with no fixed workplace, we similarly started with Equation 2A, and 
extended this as follows. 
 
Equation 2B:   logit(pcycle) =  Equation 2A + mean Dutch parameter + mean Ebikes parameter  
    = --6.530 + (132.2 * meanpropensitysq) + (11.47 * meanpropensitysqrt)  +   
(dutch * meandutch) + (ebike *  meanebike) 

 
where ‘meanpropensitysq’ is the square of the mean propensity to cycle among type 1 and 
type 2 OD pairs in the home LSOA in question, and ‘meanpropensitysqrt’ is the square root 
term; ‘meandutch’ is the average value of the Equation 1B Dutch parameters for commuters 
living in the same home LSOA; and ‘meanebike’ is the average value of the Equation 1B 
Ebikes parameters for commuters living in the same home LSOA. 
 

iii. Gender Equality  

Plain language overview 
In the 2011 Census, women accounted for 48% of all English and Welsh commuters but only 
27% of all cycle commuters.  This gender disparity is seen across the country, with no local 
authority having a proportion of female cyclists greater than 50%. However, in places such as 
the Netherlands where cycling accounts for a high proportion of trips, women cycle at least 
as much as men [5, 6]. Places in England and Wales with higher overall levels of commuter 
cycling also tend to have smaller gender inequalities in commuter cycling [5, 6]. 
 
The ‘Gender Equality’ scenario seeks to capture a situation in which these gender disparities 
are eliminated.  In this respect, it differs somewhat from the preceding four scenarios, as it 
does not use distance and hilliness data to model propensity to cycle.  Instead it assumes 
that male propensity to cycle remains unchanged – i.e. there is no change in the number of 
male cycle commuters – and that female propensity to cycle rises to match male propensity.  
This scenario has the greatest relative impact in areas where the rate of cycling is highly 
gender-unequal. 
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Technical details  
The Gender Equality scenario assumes that male propensity to cycle remains unchanged – 
i.e. there is no change in the number of male cycle commuters – and that female propensity 
to cycle rises to match male propensity in each LSOA-level OD pair.  We estimated this 
number of cyclists in the OD pair in the scenario using the following equation: 
 
Equation 3:      SNcyclists       =   BNcyclistsm    *  ( 1  +  (BNcommutersf / BNcommutersm) ) 

 
Where ‘SNcyclists’ is number of cycle commuters in the Gender Equality scenario, 
‘BNcyclistsm’ is the recorded number of male cycle commuters at baseline, and 
‘BNcommutersf’ and ‘BNcommutersm’ are the total numbers of females and males in the OD 
pair respectively.   
 
To illustrate how this method works in practice, imagine an OD pair in which 50 from a total 
of 500 people commute by cycle, 35 males (BNcyclistsm = 35) and 15 females (BNcyclistsf = 15). 
300 of the total trips in the OD pair are made by males (BNcommutersm =300) and 200 by 
females (BNcommutersf =200). Applying Equation 3: 
 

 SNcyclists    =   BNcyclistsm    *  ( 1  +  (BNcommutersf / BNcommutersm) ) 
 SNcyclists    =   35  *  ( 1 +  (200 / 300) ) 
         =   58.3 
 

All these extra 8.3 cyclists are female, giving a new total of 15 + 8.3 = 23.3 female cyclists 
(and still 35 male cyclists). Gender Equality in cycling has been reached, such that 11.7% of 
commute trips are made by cycling among both men (35/300) and women (23.3/200).  
These additional 8.3 cyclists expected at the OD pair are distributed deterministically across 
all females who are non-cyclists at baseline.  In this worked example, the number of females 
who were non-cyclists at baseline is 200-15=185, meaning each is given a scenario increase 
in cycling of 8.3/185=0.045 (with the scenario increase in cycling among mailers all females 
who were already cycling at baseline being 0). 
 
Equation 3 was applied to commuters with ‘no fixed workplace’ in the same way. As in other 
scenarios we assumed no change among commuters travelling >30km or outside England 
and Wales. 
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4. Estimating mode shift, health impacts and reductions in carbon emissions 

i. Modelling scenario mode shift in walking, car driving and public transport 
To estimate the health impacts of our scenarios, we needed to estimate the number of new 
cyclists who had previously commuted on foot.  Similarly, to estimate the carbon impacts of 
our scenarios, we needed to estimate the number of new cyclists who had previously 
commuted as car drivers. We also estimated changes in numbers of car passengers, 
motorcyclists and public transport users, as we believed these would be of interest to some 
users. We assumed that within any given OD pair commuters were equally likely to shift to 
cycling from any baseline mode, and therefore the mode shift was proportional to mode 
share at baseline.   
 
For example, take an OD pair containing 220 commuters at baseline, of whom 20 cycle, 80 
walk, 50 are car drivers and 70 use other modes of transport. If the ‘Government Target 
(Equality)’ scenario number of cyclists rose to 50 in this OD pair, this would mean that the 
number of non-cyclists decreased to 170, giving a ratio of change among non-cyclists of 170 
/ 200 = 0.85.  We assumed this 0.85 scenario relative decrease applies to all modes, and (as 
when calculating the scenario increase in cycling) we applied the scenario levels of walking 
and driving deterministically at the level of the individual.  Thus, for example, each of the 80 
individuals who walked to work at baseline have a scenario level of walking value of 0.85, 
giving an aggregate scenario level of walking across the OD pair of 0.85*80 = 68 walking 
commuters. 
 
For the purposes of estimating health and carbon impacts of the current level of cycling 
relative to a ‘no cycling’ counterfactual, we made the same assumption.  For example, again 
take the OD pair containing 220 commuters at baseline, of whom 20 cycle, 80 walk, 50 are 
car drivers and 70 use other modes of transport. In a ‘no cyclists’ counterfactual, the number 
of non-cyclists would increase to 220, giving a ratio of change among non-cyclists of 220 / 
200 = 1.1.  Thus in the ‘no cyclists’ counterfactual, the scenario level of walking among 
former pedestrians would also be 1.1, giving an aggregate scenario number of walkers of 80 
* 1.1 = 88, and so on.  When estimating mode split in the ‘no cyclists’ counterfactual in the 
small number of OD pairs that at baseline consisted entirely of cyclists, we assumed a mode 
split of 31% walking, 35% car drivers, 4% car passengers, 2% motorbike, and 28% other 
modes.  These percentages correspond to the observed mode split among the 974 MSOA OD 
pairs in which 70-99% of individuals cycled in the 2011 Census. 
 

ii. Estimating the physical activity health benefits  

An approach based on the DfT TAG was used to estimate the number of a) premature deaths 
and b) Years of Life Lost (YLLs) that were avoided due to increased physical activity[7]. In this 
Manual we provide an overview of our methods, with a table of our input parameters in 
Appendix 5.  Further details can be found in [1] and [8]. 

Trip duration was estimated as a function of the 'fastest' route distance and average cycling 
speed, with the latter being calculated as a function of gradient (see Appendix 4).  In 
additional, the marginal METs per hour of cycling were also estimated to vary as a function 
of gradient (see Appendix 4).  Trip duration and mMET/hour were combined to estimate the 
total mMETs per week for each new cyclist (further details in [1]).  These mMET/week with 
then compared to reference TAG values (Appendix 5), and used to estimate relative 
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reductions in background mortality.  Specifically, we took the reference TAG mortality 
relative reduction value of 0.9 and scaled it by the power of the observed weekly mMETs 
versus the reference weekly mMET value of 8.75, i.e. relative reduction in mortality =  0.9 
^(observed weekly mMETs / 8.75).  

The risk of death varies by sex and region, and increases rapidly with age. This was 
accounted for using age and sex-specific background mortality rates for each local authority 
in England and Wales. Note that as our update of the PCT with an individual-level synthetic 
population means we can now assign a mortality rate to each individual based on their own 
age and sex, rather than relying on the average age and sex distribution of commuter cyclists 
in their local authority. 

To allow for the fact that cycling would in some cases replace walking trips, TAG estimates of 
the increase in premature deaths due to the reduction in walking were also calculated. The 
net change in the number of deaths avoided for each OD pair was estimated as the number 
of deaths avoided due to cycle commuting minus the number of additional deaths due to 
reduced walking. Note that for a trip of a given distance, walking involves more physical 
activity than cycling. This means that the observed health benefits can be negative in some 
areas or on some routes if a high proportion of new cyclists previously walked. This is 
particularly common in very short trips, and in these cases health (dis)benefits are presented 
in red. 

We then converted our estimate of the net number of deaths avoided into an estimate of 
the net number of YLLs avoided.  We did this by using Global Burden of Disease data from 
2017 in England and Wales to estimate the average YLL loss per death, as previously 
described in [8]. This was done separately by age group, sex and region.  As recommended in 
UK appraisal methods future benefits were discounted by 1.5% per year. This means 
discounting both premature deaths avoided in the future, and the on-going stream of 
benefits (YLLs saved) from each death avoided. We provide the YLLs per death already 
discounted.  

The monetary value of the mortality impact was calculated by multiplying the number of 
YLLs avoided by £57,965, which is the value of a statistical life year used by DfT, converted 
into 2010 prices. Note that this is the present, single-year value (although as noted above 
the YLLs saved from a death in one year occur over many years in the future). Users might 
want to implement a discounting method to sum the value across multiple years into the 
future.  See https://cdn.rawgit.com/npct/pct-
shiny/master/regions_www/www/static/03a_manual/pct-bike-eng-user-manual-c1-yll-
discounting.xlsx for a spreadsheet template that allows users to do this while simultaneously 
specifying how many years it will take to achieve the scenario and how long the effects are 
expected to last for. 

iii. Estimating the economic value of reduced sickness absence  

We estimated the economic value of reduced sickness absence using an approach similar to 
that used to estimate the reduction in mortality. We used an identical approach to calculate 
the increase in weekly cycling mMETs and the decrease in weekly walking mMETs.  These 
mMET/week were then compared to reference TAG values of a 0.25 relative reduction in 
short-term sickness absence associated with 8.75 mMETs/week (see Appendix 5). We scaled 

https://cdn.rawgit.com/npct/pct-shiny/master/regions_www/www/static/03a_manual/pct-bike-eng-user-manual-c1-yll-discounting.xlsx
https://cdn.rawgit.com/npct/pct-shiny/master/regions_www/www/static/03a_manual/pct-bike-eng-user-manual-c1-yll-discounting.xlsx
https://cdn.rawgit.com/npct/pct-shiny/master/regions_www/www/static/03a_manual/pct-bike-eng-user-manual-c1-yll-discounting.xlsx
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these values by the observed weekly mMETs as follows: relative reduction in sickness 
absence = 0.75  ^(observed weekly mMETs / 8.75). 

Average hours of sickness absence are a function of sickness absence rate (the proportion of 
hours taken off sick) and total working hours. Both of these factors vary by sex, age and 
region.8  We therefore calculated age and sex-specific average annual hours of sickness 
absence for regions in England and for Wales. The range was from 8.2 hours/year for men 
aged 16-24 in the East Midlands to 69.9 hours/year for men aged 50-64 in Wales (see 
Appendix 5 for details).   

These average sickness hours were multiplied by the relative reduction in sickness absence.  
As when calculating the mortality impact, we calculated the reduction in sickness absence 
due to increased cycling and then subtracted the increase in sickness absence due to 
decreased walking.  This generated the net change in annual sickness hours, which we 
converted to sickness days by dividing by 7.5. 

Finally we multiplied the net change in annual sickness hours by mean hourly salary costs 
provided by TAG [[9], tab A1.3.1]. We used the market price ‘average of all working persons’, 
which was £19.27 using 2010 values.  We scaled this figure to vary by region, defining scaling 
ratios using 2018 median salaries. This resulted in average salaries ranging from £17.16 in 
the North East to £24.15 in London. 

 

iv. Estimating reductions in transport carbon dioxide emissions from car driving 
 
When comparing each scenario to baseline, we estimated the reduction in transport carbon 
dioxide (CO2) emissions as follows: 
 
Change in CO2-equivalent emissions (in kg) per year 
 = Change in no. car drivers * former distance travelled by former car drivers * mean cycle commute 
trips per cyclist per week * 52.2 * CO2-equivalent emissions (in kg) per kilometre 

 
The change in the number of car drivers was estimated using the mode shift calculations 
described in Section 4i. Note that we specifically focus on car drivers, not car passengers, as 
the standard practice in estimating transport CO2 emissions is to attribute all emissions to 
the car driver, to avoid double-counting.  Their average former distance was assumed to be 
equal to the new ‘fastest-route’ distance travelled by the cycle commuters.  The mean cycle 
commute trips per cyclist per week was estimated, stratified by age and sex, from the 
National Travel Survey.  The average CO2-equivalent emission per kilometre car driving was 
taken as 0.182kg, which is the 2017 value for an ‘average’ car of ‘unknown’ size in the UK 
government’s carbon conversion factors [10]. 
 
 

 
8 Note that these two factors sometimes offset each other. For example, in the Annual Population Survey 2016-
2018 women had a 50% higher sickness absence rate than men but also worked 25% fewer hours, such that 
their total annual hours of sickness absence was only 12% higher 
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5. Aggregate estimates to provide zone-level estimates and to form the Route 
Network 

v. Aggregating OD pairs to give zone-level results, and to give bidirectional lines 
 
Our synthetic population contains directional OD data, i.e. distinguishing between travel 
from origin A to destination B, and another for travel from origin B to destination A.   After 
performing the modelling stages described above, we aggregated the values for individuals 
to the zone level by summing our outcome variables across all OD pairs with the same home 
LSOA.  This gave us LSOA-level estimates of the total number of cycle, foot and car 
commuters living in each LSOA in each scenario, plus the total change in mortality and in CO2 
emissions resulting from behaviour change among residents of that LSOA.  Equivalent 
aggregations were done for MSOA zones. 
 
In addition, we aggregated individuals to generate bidirectional OD pairs at the a) LSOA and 
b) MSOA level by adding up the values in both directions between a given pair of locations 
(e.g. adding individuals making the A-to-B commute with individuals making the B-to-A 
commute).  These bidirectional totals are what we present in our visualisation tool.   
 
Note that the MSOA-level lines are therefore generated from the LSOA-level synthetic 
population. However, the distance and hilliness values assigned to each MSOA straight-line, 
fast route or quiet route are calculated directly at the MSOA level from CycleStreets, based 
on the population-weighted centroids of the MSOAs in question. 
 

vi. The Route Network layer 

Information about the aggregate cycling potential on the road network is shown in the 
Route Network (LSOA) layer. This layer was generated by aggregating overlapping LSOA-level 
'fast' routes, and summing the level of cycling for each scenario using a new function, 
overline2, which has been published in the R package stplanr [11]. This layer therefore 
relates to the capacity that infrastructure may need to handle.   

This layer is available in three complementary formats: 

1. Online 'clickable' route network: Available in the Map tab. Users can click each line 
and see the estimated number of cyclists. This clickable version can be slow to load in 
large regions. In the largest regions, we only present segments of the route network 
above a certain minimum number of cyclists - see Region stats tab. 

2. Online 'image' route network: Available in the Map tab. The route segments are 
colour-coded to show the banded number of cyclists (e.g. 10-49).  This is much faster 
to load than the 'clickable' route network, and includes all segments with no 
minimum number of cyclists. 

3. Downloadable route network files:  Available from the Region data and National data 
tabs. This is the equivalent of the online 'clickable' route network, but with no 
minimum number of cyclists. Users can download this for their own analyses. 

Note that more confidence can be placed in the relative rather than the absolute size of the 
numbers presented for the Route Network: i.e. one can say with more confidence that “the 
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number of commuters increases approximately 5-fold under this scenario” than that “there 
are 1200 cycle commuters using this route under this scenario”.  The absolute numbers need 
to be treated with some caution because they are underestimates as the Route Network 
layer excludes within-zone commuters, commuters travelling over 30km and commuters 
with no fixed workplace. Of course, in reality the total number of cyclists would also include 
people travelling for non-commuting purposes. 
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Appendix 1: Creating a synthetic population 
 
A1.1 Probabilistically assigning information on car ownership 
 
Our initial dataset of age * sex * travel to work load is available at the LSOA layer. Based on 
the home and work LSOAs, we assigned home and work MSOAs. 
 
For each MSOA-level OD pair, some data is available on car ownership: 

1. Selected MSOA OD pairs: number of car owners by travel mode. Only available for 

OD pairs containing 10+ commuters. (Dataset ‘CT0599’ available as a safeguarded 

dataset from https://wicid.ukdataservice.ac.uk/).   

2. All MSOA OD pairs: number of car owners in total. (Dataset ‘wu09buk_msoa_v1’ 

available as a safeguarded dataset from https://wicid.ukdataservice.ac.uk/). 

We used these data to probabilistically assign car ownership to individual commuters, such 
that the total number of people owning no car in each MSOA OD pair * mode combination 
was correct. For OD pairs where the number of car owners by mode was not available, we 
probabilistically assigned car ownership such that the total number of people owning no car 
in each OD pair was correct.  Around 1% of commuters did not live in private households so 
were not eligible to be asked this question – here and below, they were treated as having no 
car. 
 
The probabilistic assignment was done as a function of home region, age, sex, and mode.  
The probabilities used were calculated by combining the two 5% individual-level samples 
from the Census 2011 (available on the UK Data Archive, dataset IDs 7605 and 7682). We 
pooled these two datasets together to increase power, although note that because the 
samples are overlapping they will double count 1 in 40 of the individuals included. Among 
2,675,558 commuters in these datasets, we estimated the probability of having no car in the 
household as a function of sex, age (categories: 16-24; 25-34; 35-49; 50-64; 65+) and mode 
of travel to work (categories: bicycle; walking; car driver; car passenger or motorcycle; train 
or underground; bus; taxi or other).  We did this by fitting logistic regression models with 
“no car” as the outcome and with sex, age, and mode as the predictor variables. We ran 
these regression models stratified by 11 regions (10 standard regions plus London split into 
Inner and Outer London) to allow for geographical variation in the relationship between car 
ownership, sex, age, and mode of travel to work. 
 
We then probabilistically assigned car ownership, with the probability of any individual being 
assigned the status of “no car in household” being proportional to the estimated probability 
of not owning a car for their age-sex-mode combination.  For example, consider an OD pair 
in North-West England containing two commuters, of whom one is known to have no car in 
their household.  Of the two commuters, one is a male cyclist age 50-64 (modelled 
probability of not owning a car 23.7% in regression analyses), and the other a female bus 
commuter age 25-34 (modelled probably of not owning a car 47.8%).  One of these two 
individuals would probabilistically be assigned the status of not owning a car, with the 
female bus commuter being approximate twice as likely to get this as the male cyclist. 
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A1.2 Probabilistically assigning information on ethnicity 
 
We categorised ethnicity as a binary variable: “White” (White British, White Irish and Other 
White) and “non-White” (including Asian, Black, Mixed ethnicity and Other ethnic groups).  
We chose this categorisation because all the non-White ethnic groups had a considerably 
lower odds of cycling to work than White ethnic groups in adjusted analyses (Table 3).    
 
Table 3: Odds ratios for cycling to work among commuters in Census 2011 (N=2,078,441 individuals) 

Ethnic group  N Adjusted odds 
ratio (95%CI) 

White British 1,692,751 1 
White: Irish 20,103 1.02 (0.95, 1.09) 
White: Other White 116,665 0.93 (0.90, 0.96) 

Mixed: White + Black Carib./ African 14,127 0.69 (0.63, 0.76) 
Mixed: White + Asian/Other mixed 16,254 0.82 (0.76, 0.89) 

Asian/Asian British: Indian 59,603 0.25 (0.23, 0.27) 
Asian/Asian British: Pakistani 26,775 0.15 (0.13, 0.17) 
Asian/Asian British: Bangladeshi 10,798 0.13 (0.11, 0.16) 
Asian/Asian British: Chinese 13,058 0.60 (0.54, 0.66) 
Asian/Asian British: Other Asian 30,963 0.43 (0.40, 0.47) 

Black/Black British: African 30,122 0.28 (0.26, 0.31) 
Black/Black British: Carib./Other Black 30,390 0.43 (0.39, 0.46) 

Other ethnic group: Any other ethnic group 16,832 0.44 (0.40, 0.48) 

Analyses adjust for distance to work, sex, age, household car ownership, and region of England and Wales.  The 
analyses include all individuals in the two anonymised 5% datasets who have no missing data for these 
variables and who travelled <40km to work. 

 
We assigned ethnicity to individuals in MSOA OD pairs using a very similar procedure to that 
used for car ownership. Again, for each MSOA-level OD pair, some data was available on 
ethnicity: 

1. Selected MSOA OD pairs: number of non-white individuals by mode.  Only for OD 

pairs containing 5+ white commuters and 5+ non-white commuters. (Dataset ‘CT600’ 

available as a safeguarded dataset from https://wicid.ukdataservice.ac.uk/). 

2. All MSOA OD pairs: number of non-white individuals in total. (Dataset 

‘wu08cew_msoa_v1’ available as a safeguarded dataset from 

https://wicid.ukdataservice.ac.uk/). 

Again, we used this data to probabilistically assign ethnicity to individual commuters, such 
that the total number of non-white individuals in each MSOA OD pair * mode combination is 
correct. For OD pairs where ethnicity by mode is not available, we probabilistically assigned 
ethnicity such that the total number of non-white individuals in each OD pair was correct.  
The probabilistic assignment was done as a function of home region, age, sex, mode, and car 
ownership.  The probabilities used were calculated by combining the two 5% individual-level 
samples that have been made available from the Census.   
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A1.3 Comparison of synthetic population with true Census data 
 
We conducted tests in Greater Manchester comparing the cycling, walking, and driving 
mode share of our simulated population with the true Census data.  True Census data on 
total mode according to car ownership and ethnicity was extracted from cross tabs available 
at the level of local the local authority (datasets DC7201EWla and DC7401EWla available 
from https://www.nomisweb.co.uk/census/2011).  As shown in Table 4, the mode share in 
our simulated population generally showed a close match to the true Census data for both 
car ownership and ethnicity. As illustrated in in relation to ethnicity, there was also a good 
match for the patterning by age and sex, as judged against the 5% anonymized sample 
available for Greater Manchester. 
 
Table 4: Commute mode share for cycling, walking, and driving among commuters in Greater Manchester: 
comparison of the true Census data to our simulated population 

Group Mode 
share 

True Census 
data 

Our simulated 
population 

N  1,124,157 / 
1,119,467† 

1,124,157 

No household  Bicycle 4.81% 4.67% 
car Foot 27.2% 27.5% 
 Car driver 16.1% 15.6% 

One or more  Bicycle 1.81% 1.82% 
household cars Foot 7.96% 7.93% 
 Car driver 71.4% 71.4% 

White Bicycle 2.35% 2.35% 
 Foot 10.8% 10.7% 
 Car driver 64.3% 64.6% 

Non-white Bicycle 1.47% 1.50% 
 Foot 11.4% 12.0% 
 Car driver 54.7% 52.5% 

 † Car ownership data missing for 0.4% (4960/1124157) of commuters in Greater Manchester 
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Figure 5: Prevalence of cycling to work by age, sex, and ethnicity: comparison of our simulated population and 
the true Census data (N= 58,972 commuters from the anonymized 5% local authority sample) 
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Appendix 2. Modelling baseline propensity to cycle as a function of individual, area, 
and trip characteristics, as an input for the Government Target (Near Market) 
scenario 
A2.1 Modelling baseline propensity to cycle for within-LSOA flows or between-LSOA flows 
<30km 
 
To generate the Government Target (Near Market) scenario, we again first sought to model 
current (baseline) propensity to cycle.  As in the previous section, we estimated propensity 
to cycle among these 19 million commuters by fitting logit regression models with cycling as 
the outcome.  We again included the same predictor variables to capture the effect of 
distance (linear, square-root and square terms), gradient (centred on the LSOA? mean of 
0.78%), and the interaction between distance and gradient.  
 
The differences were that: 

1. We additionally included the following predictors: age category (16 to 24; 25 to 34; 

35 to 49; 50 to 64; 65 to 74; 75+); non-White ethnicity (binary); having a household 

car (binary); fifth of income deprivation; urban-rural status (Urban major 

conurbation; Urban minor conurbation; Urban city and town; Rural town and fringe; 

Rural village and dispersed); and a sparsity index, identifying the sparsest 5% of areas 

in terms of population (binary).  

2. We stratified the regression models by sex and into two broad age categories (16 to 

49, and 50+).  We did these because age and sex show interactions with several of 

the other predictive models. For example, as illustrated in Figure 6, the deterrent 

effect of distance and of hilliness is stronger in women than in men, and in older 

people than in younger people.  We also stratified the regression model by region 

(the 10 standard regions of England and Wales, subdividing London into Inner and 

Outer London).  We did this because there exists regional variation with respect to 

how strongly our predictor variables are associated with cycle commuting. For 

example, car ownership is less strongly associated with cycling in London than in 

other regions of England and Wales. Specifically, in Inner London non-car owners are 

1.1 times more likely to cycle than car owners (8.0% versus 7.0% mode share) and in 

outer London non-car owners are 1.5 times more likely to cycle; whereas in all other 

regions of England and Wales non-car owners are 2.2-3.3 times more likely to cycle.  

In total, therefore, we parameterised the Government Target (Near Market) scenario 

by running 44 regression models (male/female * 2 age categories * 11 regions).  The 

sample size across these analyses ranged from 91,475 to 1,056,721 commuters. The 

coefficients for all the regression equations in all the 44 strata are shown in the 

Appendix in Table 5 - Table 8. 
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Figure 6: Effect of distance and hilliness on relative probability of commuter cycling, stratified by age and sex 
(N=18,882,504 English and Welsh commuters travelling <30km to work) 

 
 
A2.2 Modelling baseline propensity to cycle for other types of commuters 
 
For commuters with no fixed workplace, we modelled propensity to cycle as a function of 
the average propensity to cycle among commuters living in the same LSOA and commuting 
<30km.  Specifically, we modelled it as a function of a) the square of the mean propensity to 
cycle among type 1 and type 2 OD pairs in the home LSOA in question, and b) the square 
root term of that propensity.  This is equivalent to what we did for route-based propensity to 
cycle. We stratified by region in running these models: regression coefficients can be found 
in the Appendix in Table 9. 
 
Finally, as in the Government Target (Equality) scenario, we did not model baseline 
propensity to cycle among individuals living more than 30km from their place of work or 
commuting outside England or Wales.  Instead, given the considerable uncertainties about 
where the cycling reported by these individuals was taking place, we assumed no increase in 
cycling levels among these commuters in our scenarios.   
 
A2.3 Applying scaling factors to facilitate comparisons with the Government Target (Equality) 
scenario 
 
Like Government Target (Equality) scenario, the Government Target (Near Market) scenario 
models and approximate doubling of cycling nationally, corresponding to the proposed 
target in the UK government's draft Cycling Delivery Plan to double cycling between 2013 to 
2025 [4]. The Government Target (Equality) scenario models a doubling of cycling across 
England and Wales as a whole by adding “observed cycling” to “expected cycling”.  In any 
given region, however, cycling may more than double or less than double. For example, 
cycling more than doubled in regions like the West Midlands which had observed cycling 
levels that were below what were expected.  By contrast, because the initial Government 
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Target (Near Market) baseline propensities were generated in models stratified by region, 
adding “observed cycling” to “expected cycling” would double cycling within each region (as 
well as doubling cycling nationally). This would complicate comparisons between the two 
scenarios.  For example, if scenario levels of cycling in Solihull were lower in the Government 
Target (Near Market) than in the Government Target (Equality) scenario, this might be 
because Solihull had comparatively few "near market" individuals, but it would also partly 
reflect the fact that the overall level of cycling in the West Midlands increases less in the 
Government Target (Near Market) scenario (increasing 2-fold) than the Government Target 
(Equality) scenario (increasing 2.3-fold).  
 
 To correct this, we applied regional scaling factors to the propensities generated from the 
44 logistic regression models such that the overall increase in cycling in each region was the 
same in the Government Target (Near Market) scenario as in the Government Target 
(Equality) scenario.  For example, the scenario increase in cycling in the West Midlands was 
2.86% in the Government Target (Equality) scenario but initially only 2.07% in the 
Government Target (Near Market) scenario. The scaling factor for the West Midlands was 
2.86/2.07=1.38: a full list of scaling factors is given in the Appendix in Table 10.  
 
The scenario captured by the Government Target (Near Market) scenario can therefore be 
described as one in which: 

• Cycling doubles overall nationally. 

• The cycling increase in each region is a function of that region’s distance and hilliness 

(i.e. the regional increase is the same as in the Government Target (equality) 

scenario, because of the application of scaling factors). 

• Within regions, the cycling increase in each area and in each flow is a function of the 

age, sex, ethnicity, and car ownership of the constituent commuters; the income 

deprivation, urban-rural status, and population sparsity of their home LSOA; and the 

distance and hilliness of their commute trip. 
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Table 5: Regression coefficients of the Government Target (Near Market) propensity models for male commuters age 16 to 49, stratified by region (analysis restricted to 
commuters travelling within LSOA or <30 km) 
  

North 
East 

North 
West 

York-
shire & 
Humber 

East 
Mid-
lands 

West 
Mid-
lands 

East of 
England 

Inner 
London 

Outer 
London 

South 
East 

South 
West Wales 

Age 16 to 24 0 0 0 0 0 0 0 0 0 0 0 
 25 to 34 0.292 0.264 0.249 0.161 0.245 0.282 0.468 0.481 0.245 0.325 0.400 
 35 to 49 0.524 0.464 0.450 0.347 0.433 0.387 0.517 0.676 0.392 0.482 0.626 

Ethnicity White 0 0 0 0 0 0 0 0 0 0 0 
 Non-White -0.931 -0.918 -0.984 -0.927 -1.174 -0.567 -0.931 -1.192 -0.644 -0.435 -0.365 

Any car in Yes 0 0 0 0 0 0 0 0 0 0 0 
household No 0.758 0.788 0.801 0.880 0.884 0.934 0.014 0.391 0.753 0.564 0.781 

Income  Fifth 1 (poorest) 0 0 0 0 0 0 0 0 0 0 0 
deprivation Fifth 2 -0.050 0.073 0.077 -0.045 0.031 0.082 0.167 0.154 0.007 0.112 -0.026 
 Fifth 3 0.035 0.048 0.125 0.050 0.068 0.255 0.121 0.205 0.107 0.101 0.027 
 Fifth 4 0.031 0.103 0.227 0.097 0.016 0.247 -0.107 0.302 0.145 0.236 0.178 
 Fifth 5 (richest) 0.094 0.038 0.325 0.156 0.017 0.500 -0.242 0.468 0.170 0.305 0.164 

Urban- Urban major conurbation 0 0 0 0 0 0 0 0 0 - - 
rural status Urban minor conurbation  - - 0.104 -0.121 - - - - - - - 
 Urban city and town -0.095 0.281 0.568 -0.246 0.378 0.665 - -0.577 0.283 0 0 
 Rural town and fringe -0.226 0.384 0.187 -0.381 0.319 0.400 - -0.198 0.146 -0.276 -0.021 
 Rural village and dispersed -0.458 0.225 0.212 -0.494 0.304 0.296 - -0.458 0.196 -0.401 -0.261 

Sparse No 0 0 0 0 0 0 0 0 0 0 0 
population Yes 0.386 0.140 0.183 -0.122 -0.171 0.181 - - - -0.042 0.386 

Fast-route Linear term -0.652 -0.644 -0.751 -0.708 -0.766 -0.832 -0.612 -0.376 -0.708 -0.767 -0.705 
distance Square root term 2.083 2.089 2.327 2.192 2.367 2.564 2.510 1.430 2.202 2.400 2.385 
 Squared term 0.009 0.008 0.011 0.010 0.011 0.012 0.005 0.003 0.010 0.011 0.009 

Gradient Linear term -0.224 -0.197 -0.397 -0.143 -0.101 -0.322 0.210 -0.286 -0.266 -0.256 -0.002 

Distance* Distance* gradient 0.000 0.030 -0.009 0.049 0.039 0.017 0.081 0.006 -0.006 -0.003 0.044 
gradient 
interactions 

Square root distance* 
gradient -0.015 -0.141 0.078 -0.231 -0.189 -0.122 -0.473 -0.010 -0.019 0.053 -0.267 

Constant  -4.517 -4.553 -4.705 -3.666 -4.555 -4.772 -4.580 -4.317 -4.171 -4.064 -4.945 

Gradient entered as a term centred on 0.78.  Cells marked ‘-‘ are empty, for example there are no ‘urban minor conurbations’ in the North East. 
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Table 6: Regression coefficients of the Government Target (Near Market) propensity models for female commuters age 16 to 49, stratified by region (analysis restricted 
to commuters travelling within LSOA or <30 km) 
  

North 
East 

North 
West 

York-
shire & 
Humber 

East 
Mid-
lands 

West 
Mid-
lands 

East of 
England 

Inner 
London 

Outer 
London 

South 
East 

South 
West Wales 

Age 16 to 24 0 0 0 0 0 0 0 0 0 0 0 
 25 to 34 0.522 0.439 0.487 0.379 0.466 0.462 0.632 0.803 0.466 0.545 0.554 
 35 to 49 0.557 0.452 0.667 0.533 0.496 0.428 0.519 0.769 0.444 0.490 0.365 

Ethnicity White 0 0 0 0 0 0 0 0 0 0 0 
 Non-White -0.414 -0.584 -0.756 -0.972 -0.970 -0.501 -1.036 -1.291 -0.611 -0.338 -0.176 

Any car in Yes 0 0 0 0 0 0 0 0 0 0 0 
household No 0.635 0.803 0.725 0.725 0.775 0.927 0.011 0.552 0.815 0.555 0.732 

Income  Fifth 1 (poorest) 0 0 0 0 0 0 0 0 0 0 0 
deprivation Fifth 2 0.054 0.144 0.090 0.056 0.196 0.303 0.146 0.257 0.159 0.141 0.041 
 Fifth 3 0.234 0.074 0.164 0.151 0.333 0.551 0.085 0.328 0.38 -0.012 0.054 
 Fifth 4 0.283 0.191 0.368 0.199 0.249 0.528 -0.070 0.392 0.417 0.211 0.730 
 Fifth 5 (richest) 0.476 0.142 0.537 0.124 0.209 0.881 -0.220 0.689 0.433 0.271 0.499 

Urban- Urban major conurbation 0 0 0 0 0 0 0 0 0 - - 
rural status Urban minor conurbation  - - 0.312 0.040 - - - - - - - 
 Urban city and town -0.213 0.270 1.093 -0.090 0.604 1.369 - -0.724 0.557 0 0 
 Rural town and fringe -0.280 0.251 0.538 -0.266 0.374 0.964 - -0.567 0.123 -0.504 -0.266 
 Rural village and dispersed -0.489 0.305 0.439 -0.243 0.706 0.938 - -0.306 0.245 -0.390 -0.324 

Sparse No 0 0 0 0 0 0 0 0 0 0 0 
population Yes 0.371 0.828 0.183 -0.199 0.215 0.356 - - - 0.207 0.606 

Fast-route Linear term -0.924 -0.777 -0.975 -0.842 -0.86 -1.016 -0.891 -0.486 -0.961 -1.044 -1.151 
distance Square root term 2.633 2.409 2.668 2.268 2.386 2.950 3.395 1.857 2.766 2.975 3.694 
 Squared term 0.016 0.011 0.018 0.014 0.014 0.016 0.010 0.003 0.016 0.018 0.016 

Gradient Linear term -0.911 -0.494 -1.048 -0.590 -0.418 -0.422 0.148 -0.321 -0.333 -0.439 -0.236 

Distance* Distance* gradient -0.062 0.045 -0.097 0.033 0.031 0.053 0.086 0.013 0.005 -0.023 0.088 
gradient 
interactions 

Square root distance* 
gradient 0.401 -0.190 0.505 -0.142 -0.106 -0.360 -0.503 -0.068 -0.100 0.164 -0.378 

Constant  -6.601 -6.411 -6.414 -4.988 -6.336 -6.755 -5.958 -6.149 -6.076 -5.516 -7.285 

Gradient entered as a term centred on 0.78. Cells marked ‘-‘ are empty, for example there are no ‘urban minor conurbations’ in the North East. 
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Table 7: Regression coefficients of the Government Target (Near Market) propensity models for male commuters age 50+, stratified by region (analysis restricted to 
commuters travelling within LSOA or <30 km) 

  

North 
East 

North 
West 

York-
shire & 
Humber 

East 
Mid-
lands 

West 
Mid-
lands 

East of 
England 

Inner 
London 

Outer 
London 

South 
East 

South 
West Wales 

Age 50 to 64 0 0 0 0 0 0 0 0 0 0 0 
 65 to 74 -0.625 -0.609 -0.600 -0.592 -0.627 -0.487 -0.751 -0.776 -0.549 -0.708 -0.612 
 75+ -0.336 -0.376 -0.445 -0.176 -0.374 -0.482 -0.457 -0.393 -0.402 -0.481 -0.249 

Ethnicity White 0 0 0 0 0 0 0 0 0 0 0 
 Non-White -1.234 -1.071 -0.871 -1.063 -1.212 -0.612 -1.089 -1.312 -0.626 -0.456 -0.360 

Any car in Yes 0 0 0 0 0 0 0 0 0 0 0 
household No 1.084 1.085 1.099 1.185 1.210 1.291 0.126 0.682 1.083 0.865 1.059 

Income  Fifth 1 (poorest) 0 0 0 0 0 0 0 0 0 0 0 
deprivation Fifth 2 0.027 0.122 0.031 0.110 0.062 0.147 0.256 0.071 0.042 0.083 -0.105 
 Fifth 3 0.074 0.113 0.127 0.127 0.144 0.224 0.324 0.247 0.157 0.168 0.013 
 Fifth 4 0.084 0.165 0.187 0.239 0.131 0.226 0.242 0.329 0.234 0.223 0.189 
 Fifth 5 (richest) 0.215 0.178 0.407 0.277 0.205 0.467 0.053 0.488 0.213 0.293 0.258 

Urban- Urban major conurbation 0 0 0 0 0 0 0 0 0 - - 
rural status Urban minor conurbation  - - 0.234 0.215 - - - - - - - 
 Urban city and town -0.059 0.397 0.846 0.133 0.486 0.684 - -0.456 0.308 0 0 
 Rural town and fringe -0.131 0.557 0.49 -0.108 0.453 0.44 - -0.265 0.062 -0.199 -0.003 
 Rural village and dispersed -0.271 0.373 0.262 -0.314 0.257 0.315 - 0.031 -0.069 -0.386 -0.296 

Sparse No 0 0 0 0 0 0 0 0 0 0 0 
population Yes 0.406 0.257 0.129 0.196 0.156 0.488 - - - -0.215 0.351 

Fast-route Linear term -0.595 -0.593 -0.752 -0.628 -0.763 -0.766 -0.561 -0.449 -0.643 -0.713 -0.537 
distance Square root term 1.851 1.739 2.052 1.645 2.101 2.115 2.228 1.421 1.792 1.950 1.520 
 Squared term 0.008 0.008 0.013 0.009 0.011 0.012 0.005 0.005 0.010 0.011 0.008 

Gradient Linear term -0.310 -0.301 -0.617 -0.355 -0.254 -0.365 0.133 -0.402 -0.327 -0.273 -0.278 

Distance* Distance* gradient 0.024 0.022 -0.034 0.030 0.038 -0.009 0.023 0.000 0.009 0.008 0.014 
gradient 
interactions 

Square root distance* 
gradient -0.079 -0.080 0.204 -0.106 -0.132 -0.04 -0.296 0.014 -0.054 0.004 -0.064 

Constant  -4.273 -4.164 -4.321 -3.380 -4.181 -4.151 -4.342 -3.852 -3.661 -3.344 -3.878 

Gradient entered as a term centred on 0.78. Cells marked ‘-‘ are empty, for example there are no ‘urban minor conurbations’ in the North East. 
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Table 8: Regression coefficients of the Government Target (Near Market) propensity models for female commuters age 50+, stratified by region (analysis restricted to 
commuters travelling within LSOA or <30 km) 
  

North 
East 

North 
West 

York-
shire & 
Humber 

East 
Mid-
lands 

West 
Mid-
lands 

East of 
England 

Inner 
London 

Outer 
London 

South 
East 

South 
West Wales 

Age 50 to 64 0 0 0 0 0 0 0 0 0 0 0 
 65 to 74 -0.279 0.014 -0.228 -0.149 -0.036 -0.136 -0.629 -0.638 -0.13 -0.253 -0.478 
 75+ 0.510 0.496 0.379 0.421 0.768 0.291 -0.296 -0.045 0.518 0.525 0.705 

Ethnicity White 0 0 0 0 0 0 0 0 0 0 0 
 Non-White -1.170 -0.556 -0.914 -1.332 -0.963 -0.704 -1.178 -1.433 -0.659 -0.490 -0.364 

Any car in Yes 0 0 0 0 0 0 0 0 0 0 0 
household No 0.496 0.717 0.550 0.668 0.576 0.736 0.080 0.642 0.770 0.431 0.711 

Income  Fifth 1 (poorest) 0 0 0 0 0 0 0 0 0 0 0 
deprivation Fifth 2 0.071 0.098 0.052 0.098 0.092 0.144 0.444 0.381 0.125 0.167 -0.063 
 Fifth 3 0.004 0.077 0.000 0.148 0.266 0.316 0.571 0.439 0.254 0.050 -0.119 
 Fifth 4 0.044 0.192 0.115 0.242 0.232 0.211 0.534 0.613 0.330 0.248 0.318 
 Fifth 5 (richest) 0.220 0.214 0.215 0.181 0.282 0.465 0.379 1.062 0.352 0.342 0.323 

Urban- Urban major conurbation 0 0 0 0 0 0 0 0 0 - - 
rural status Urban minor conurbation  - - 0.614 1.082 - - - - - - - 
 Urban city and town 0.008 0.755 1.550 1.249 0.932 1.355 - -0.293 0.500 0 0 
 Rural town and fringe -0.008 0.695 1.221 1.271 1.074 1.356 - -0.028 0.352 -0.116 0.261 
 Rural village and dispersed -0.023 1.119 0.955 1.109 1.075 1.228 - -1.017 0.421 -0.070 -0.270 

Sparse No 0 0 0 0 0 0 0 0 0 0 0 
population Yes 0.615 0.511 0.194 0.146 0.198 0.698 - - - -0.159 0.736 

Fast-route Linear term -0.882 -0.602 -0.857 -0.778 -0.765 -0.809 -0.746 -0.626 -0.759 -0.815 -0.78 
distance Square root term 2.497 1.442 1.969 1.723 1.666 1.852 2.764 1.778 1.733 1.746 2.043 
 Squared term 0.015 0.011 0.018 0.015 0.014 0.016 0.009 0.009 0.014 0.016 0.012 

Gradient Linear term -0.781 -0.792 -1.291 -0.910 -0.680 -0.579 -0.487 -0.615 -0.610 -0.768 -0.717 

Distance* Distance* gradient 0.007 -0.006 -0.096 0.011 0.032 0.021 -0.150 0.024 0.013 -0.034 0.03 
gradient 
interactions 

Square root distance* 
gradient 0.023 0.056 0.543 0.000 -0.051 -0.185 0.377 -0.071 -0.048 0.271 0.002 

Constant  -6.004 -5.288 -5.191 -5.054 -5.112 -4.928 -5.662 -5.300 -4.441 -3.705 -5.426 

Gradient entered as a term centred on 0.78 Cells marked ‘-‘ are empty, for example there are no ‘urban minor conurbations’ in the North East. 
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Table 9: Regression coefficients of the Government Target (Near Market) propensity models for commuters with no fixed workplace 
  

North 
East 

North 
West 

York-
shire & 
Humber 

East 
Mid-
lands 

West 
Mid-
lands 

East of 
England 

Inner 
London 

Outer 
London 

South 
East 

South 
West Wales 

Mean propensity  Squared term 351.2 -509.1 7.3 -178.9 182.5 66.5 -178.4 83.5 118.2 -93.0 114.6 
in the LSOA† Square root term 18.33 26.06 10.74 19.14 8.37 5.79 28.68 19.06 7.65 15.50 14.82 

Constant  -7.350 -8.131 -6.321 -7.612 -5.982 -5.708 -9.639 -7.453 -5.982 -7.140 -6.878 

†‘Mean propensity in the LSOA’ is the average modelled propensity to cycle among within-LSOA commuters or commuters travelling less than 30 km 

 

 

Table 10: Regional scaling factors applied to Government Target (Near Market) propensities, to generate the same scenario increase in cycling at the regional level as in 
the Government Target (equality) scenario 

 Scenario increase in 
cycling (%), 

Government Target 
(equality) scenario 

(A) 

Scenario increase in 
cycling (%), 

Government Target 
(Near Market) 

scenario, before 
scaling (B) 

Scaling factor applied 
to Government 

Target (Near Market) 
propensities (A/B) 

North East 3.12% 1.80% 1.731 
North West 3.43% 2.21% 1.550 
Yorkshire and Humber 2.72% 2.64% 1.032 
East Midlands 2.99% 2.87% 1.040 
West Midlands 2.86% 2.07% 1.382 
East of England 3.03% 3.68% 0.824 
Inner London 4.30% 7.27% 0.592 
Outer London 3.29% 2.34% 1.406 
South East 2.86% 3.15% 0.906 
South West 2.48% 3.73% 0.665 
Wales 2.08% 1.47% 1.422 
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Appendix 3: Modelling mode shift: a consideration of two possible approaches 

 
We considered two choices in how to model an increase in cycling: 

1. Switch a fraction of every non-cycling commuter to cycling in a deterministic 
manner.  This gives the average expected impact of each scenario.  For example, a 
certain flow might have a modelled increase of 0.3 cyclists, of which 0.06 cyclists 
were young white women, 0.01 were young non-white women etc. This is 
comparable to what we have done previously in the PCT (and was the only approach 
feasible in previous versions, which were based on aggregate data in which OD pairs 
with the units of analysis). 

2. Switch some whole individuals from not cycling to cycling in a probabilistic 
manner. This takes the average expected impact of each scenario and 
probabilistically applies it to individuals.  For example, a certain flow with an 
expected increase of 0.3 cyclists, would be probabilistically given an actual increase 
of 0 or 1 cyclists (or possibly more).  Any new cyclists would have their own individual 
age, sex, ethnicity, and car ownership characteristics.  This is similar to the approach 
used in the Impacts of Cycling Tool 

 
One advantage of the first approach is that it is comparable to what we have done 
previously in the PCT, and so provide continuity over time. It also may lend itself better to 
flow-level and small-area-level comparisons, as at these small scales the random influence of 
probabilistic assignment might sometimes be large.  On the other hand, the second 
approach may be more intuitive to some users, since it deals with the switching of whole 
individuals. The second approach might also facilitate the implementation of more 
sophisticated health calculations in the future (health and carbon calculations we are 
currently implementing in the PCT are compatible with both approaches).  
 
On balance, we considered it best to adopt the first approach to enhance continuity over 
time and facilitate local analyses. However, we suggest that the second option might 
become more valuable if the PCT is ever integrated with the impacts of Cycling Tool and/or a 
more sophisticated approach to health calculations is implemented. 
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Appendix 4. Modelling speed and energy expenditure as a function of trip hilliness 
 
We are very grateful to Dr Tessa Strain from the MRC Epidemiology Unit, University of 
Cambridge, for her help in doing this hilliness work. 
 
We sought to estimate the marginal METs (mMETs), and the associated average speed, 
involved in cycling on routes of different average gradient. In doing this we were attempting 
to  generate a plausible distribution of mMET values by hilliness while not making large 
changes to the population average values for mMETs and speeds that are recommended by 
HEAT and TAG, and that PCT had so far been using. In other words, we were seeking to refine 
the PCT approach to be more sensitive to differential effects across areas according to their 
hilliness, while retaining broadly similar overall estimates of health impact. It is for this reason 
that some of our assumptions were made with a view to back-fitting the output values to 
ultimately be consistent with the TAG and HEAT assumptions previously used in PCT. 
 
Below we outline our methods for doing this, and the associated assumptions. These are 
also captured in the spreadsheet posted on GitHub at https://github.com/npct/pct-
inputs/blob/master/02_intermediate/03_hilliness_calculations/EngWales_mmetspeed_hillin
ess.xlsx  

 

Target range of hilliness values  
In the 2011 Census, 99.9% of all commute routes had an average gradient of ≤7%.  We 
therefore focused on estimating mMETs in this range, applying the 7% incline values to the 
very small proportion of commuters travelling on steeper slopes. 
 

Power required in cycling 
We used the equation from di Prampero et al. [12] that calculates the power (in Watts) 
required by a cyclist to move. The equation can be broken up into three parts that we have 
termed road resistance, wind resistance, and gravity. These are then summed. 

• Road resistance  = CoefficientofRollingResistance * Weight * GroundSpeed 

• Wind resistance = CoefficientofAirResistance * BodySurfaceArea *    

   (BarometricPressure/AirTemp) * AirVelocity2 * GroundSpeed 

• Gravity    = Gravity *Weight * SineofAngleofIncline * GroundSpeed 

• Power (watts)   = Road resistance + Wind Resistance + Gravity  

 

 

Speed assumptions 

Uphill moving speed by gradient 
We used the data points in Table 11 to develop a decay function for uphill moving speed with 
incline.  We fit this decay function using linear regression, with speed as the outcome and the 
square root of incline as the predictor.   
  

https://github.com/npct/pct-inputs/blob/master/02_intermediate/03_hilliness_calculations/EngWales_mmetspeed_hilliness.xlsx
https://github.com/npct/pct-inputs/blob/master/02_intermediate/03_hilliness_calculations/EngWales_mmetspeed_hilliness.xlsx
https://github.com/npct/pct-inputs/blob/master/02_intermediate/03_hilliness_calculations/EngWales_mmetspeed_hilliness.xlsx
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Table 11: Input or assumed speeds for uphill movement, used to develop decay function 

Incline (%) 
Speed (km/hr) 
based on data 

Speed (km/hr) 
based on our 

decay function 
Comments on data source 

0 20 20 

In 2015, the average moving speed of rides designated as 
commutes on Strava was 23.7 km/hr9 but these are likely to be 
those going faster, with better bikes, over longer distances. Other 
Strava data from other cities outside the UK also gave average 
speeds of 20-25 km/hr10 – the same caveats apply. We took 
20km/hour to be conservative, and this made it easier for us to 
match the observed NTS data. 

0.75 16 16.3 

0.75% is the average 2-way gradient for Cambridge. Average total 
journey speed when cycling for transport in Cambridge has been 
reported to be 16.1km/hour [13].  16km/hour is approximately 
the uphill moving speed one needs to assume to get this overall 
journey average if a) downhill speed is 20km/hour and b) 15% of 
the journey spent stationary (slightly lower than the assumed 
national average of 20%). 

2.8 12.6 12.9 

A study of 8 sedentary women averaged a speed of 12.6 km/hr on 
a 3% short gradient [14].  As these were sedentary women, we 
expect this slightly to underestimate the average commuter on 
this gradient. 

5.0 9.9 10.4 

A study of 8 sedentary women averaged a speed of 9.9 km/hr on 
a 5% short gradient [14].  As these were sedentary women, we 
expect this slightly to underestimate the average commuter on 
this gradient. 

7.0 8 8.6 
The lowest possible speed for a bike is in the range of 7.2 km/hr11 
but given many cycle up slopes of 10-15%, we expect the speed at 
7% gradient to be higher than this minimum 

 
From these data points we used the following formula for our assumption of uphill moving 
speed as average gradient (as a percentage) increased: 
 
 Speed = 20 – 4.3 * (gradient ^ 0.5) 
 

As shown in the third column of Table 11, this provided a relatively good fit to our input data 
 

Stationary time in each journey 
 
We further assumed there was a proportion of each journey spent stationary (e.g. waiting for 
traffic lights and stuck in traffic) and so speed when moving would be different from total 
journey speed. 
 Total journey speed = speed when moving * proportion of time spent moving 
 
In practice this is a simplification of the reality in which a cyclist spends some time stationary, 
some time travelling slowly e.g. because of traffic, and some time travelling at a steady-state 
speed. 
 

 
9 https://bikmo.com/magazine/results-are-in-strava-reveals-average-british-cycle-commute-length/ 
10 https://www.vox.com/2015/10/8/9480951/bike-commute-data-strava  
11 https://www.cyclist.co.uk/in-depth/682/how-steep-is-too-steep-when-cycling-uphill 
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We assumed the MET value of stationary time was equal to the MET value for steady-speed 
cycling.  We did this to balance out the low energy requirements of waiting stationary at a 
traffic light (plausibly around 2-3 MET) versus the higher energy requirements involved in the 
start-stop nature of cycling when interacting with other road users. 
 
Accelerating requires more energy than holding a constant speed. However, we do not have 
the data to model in detail acceleration and waiting. Thus we assumed that on average the 
lost time was at the average MMET rate as for the whole journey, rather than at a resting rate. 
This also provided a much better fit with observed objective data e.g. Costa than assuming the 
time was spent resting. 
 
We assumed 20% of total journey time could be spent stationary, based on numbers discussed 
in various London cycling blogs of 10-30%.12  We selected 20% within this range as a value that 
gave a fairly close match between average speed in this new method and the average 
previously used of 14km/hour. 
 
It is likely that better cycling infrastructure e.g. under a Go Dutch scenario would reduce this 
time but we lack data to include this in the quantitative model. 
 
 

Other assumptions 

Ground Resistance Coefficient  
We assumed this to be 0.007 because 0.005 is typical for standard road surface with clincher 
tyres13; we assumed a worse road surface and poorly maintained tyres on commuter cyclists 
     

Weight of rider  
We assumed this to be 76.9 kg as an average between the English average male (83.6kg) and 
female (70.2kg).14  
    

Weight of bike and bags 
We assumed this to be 16 kg as a good commuter bike can weigh ~11-12kg15 and we added 
on 3-4kg for a bag and other bike accessories. 
    

Wind Resistance Coefficient  
We assumed this to be 0.5, which indicates no head or tailwind.16   
 

 
12 https://www.londoncyclist.co.uk/how-much-time-do-you-waste-waiting-at-a-traffic-light/ and 

http://www.croydoncyclist.co.uk/time-spent-at-traffic-lights/ 
13 http://theclimbingcyclist.com/gradients-and-cycling-how-much-harder-are-steeper-climbs/  
14 https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/theaveragebriton 
15 https://inews.co.uk/ibuys/sports-and-fitness/best-bikes-commuting-london-electric-road-hybrid-folding-
under-1000/ 
16 http://theclimbingcyclist.com/gradients-and-cycling-how-much-harder-are-steeper-climbs/  
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Frontal Area  
We assumed this to be 0.8 m2 as 0.63 is typical for "tops" position17; we estimate a bit higher 
for upright commuters with non-aerodynamic bags and clothing. This is fractionally higher 
than the value given in theclimbingcyclist blog18 (0.6 m2) but commuter cyclists are more likely 
to sit very upright even when on "tops" and so this rounding up is probably warranted. 
 

Air density and gravity   
These were set at 1.225 kg/m2 (roughly sea level and 15 degrees temperature) and 9.8m/sec2. 
Air density is pressure/air temperature.  

 

Efficiency 
Not all power generated will be transferred to the bike. A well-maintained bike is thought to 
be about 95%.19 The lower end of the range (where we expect commuters to be) is around 
93%;20 this was the value we used. 
 

Conversion from Watts to mMETs 
We used the equation from the Hawley and Noakes (1992) paper showing a very high 
correlation between Max power output (Wmax) and VO2 max to convert Watts to L/min of O2 

[15]. 
 VO2 max = 0.01141 x Wmax + 0.435 
 
We then converted from L/min to kcal/min by multiplying by 5.21  This was then divided by 
bodyweight and multiplied the time spent moving in hours. 
 
Marginal METs were calculated by subtracting 1 MET. 
 

Calculating average METs and speeds for two-way trips 
The PCT is based on average gradients, i.e. a gradient of 1.5% means an average uphill gradient 
of 1.5% in one direction, and average downhill gradient of 1.5% in the other direction.  We 
assumed that energy expenditure and speed when going downhill was equal to energy 
expenditure and speed when travelling on the flat.   
 

Estimating energy expenditure for walking and ebiking 
We assumed the relative effort of walking on a hill was directly proportional to the relative 

effort of cycling on a hill. We therefore multiplied all our cycling mMET values by 0.663, the 

ratio that gave an overall average walking mMET value of 3.6.  This is the value that has been 

reported in the literature, and that we have been using so far in PCT [13]. 

We assumed that having an ebike halved the additional effort required when going uphill, 

which is in line with our previous observation that the deterrent effect of hills for ebike-

owners was around half the size as non-ebike owners [1].  We further assumed that cycling 

 
17 https://www.cyclingpowerlab.com/CyclingAerodynamics.aspx 
18 http://theclimbingcyclist.com/gradients-and-cycling-how-much-harder-are-steeper-climbs/  
19 http://theclimbingcyclist.com/gradients-and-cycling-how-much-harder-are-steeper-climbs 
20 https://www.cyclingpowerlab.com/DrivetrainEfficiency.aspx 
21 https://sites.google.com/site/compendiumofphysicalactivities/help/unit-conversions 
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on the flat was 1.8 mMET less effort on an ebike than on a bicycle. Together this 

approximately generated the average ebiking mMET of 3.5 that has been reported in the 

literature, and that we have been using so far in PCT [16]. 

Estimating speeds for walking and ebiking 
We assumed the relative speed penalty of walking on a hill was directly proportional to the 

relative speed penalty of cycling on a hill.  Thus far in PCT we have been assuming cycling 

speeds of 14 km/hour and walking speeds of 4.8 km/hour, based on HEAT guidance [7, page 

16].22  We multiplied all our newly-calculated cycling speeds values by 4.8/14 = 0.34 to give 

an updated estimate of walking speed by gradient. 

For ebiking, we thought it plausible that the relative speed penalty of travelling on a hill 

would be smaller than for a traditional bike. We had previously been assuming that ebiking 

speed was 1.17 times faster than cycling speed.  This was based on the Dutch NTS 2013-

2016, in which mean cycling speed was 15.0km/hr for bicycle commute trips and 17.5 km/hr 

for ebike commute trips (17.5/15.0=1.17).  We have also estimated that the average route 

gradient in the Netherlands is 0.78%.  We therefore applied this ratio of 1.17 to routes with 

an average gradient of 0.75%.  For lower and higher gradients, we scaled this such that the 

hilliness effect was half that observed for cycling. 

  

 
22 4.8km/hour is also consistent with NTS 2010-2016, in which the mean speed was 4.6 km/hr for commute 
walk trips among those for whom walking is usual main mode and excluding trips with implausible speeds 
(defined as >10km/hr).   
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Results 
Based on the calculations described above, Table 12 presents the average marginal METs and 
speeds assigned for different modes to routes of different gradients.  Note that for the average 
gradient for commuter cyclists in 2011 was 1.5%, i.e. corresponding to: 

• A 2-way speed of 13.9km/hr. This is similar to the HEAT value of 14 km used previously 
in PCT. It is also consistent with NTS 2010-2016, in which the mean speed was 13.6 
km/hr for commute cycle trips among those for whom cycling is usual main mode and 
excluding trips with implausible speeds (defined as <2km/hr or >25km/hr). 

• A mMET value of 5.39. This is similar to the HEAT value of 5.4 used previously in PCT.  
 
Note also that higher gradients are associated with both higher mMET values and slower 
speeds. In other words, on a hilly route one is expending more energy and doing so for a longer 
time than on a flatter route of the same distance. These factors both contribute to a greater 
total energy expenditure for a more hilly commute of a given distance. 
 
Table 12: Average speeds and marginal METs assigned to commute routes of different gradients 

Average  Average 2-way marginal METs Average 2-way speed (km/hr) 

gradient (%) Cycling Walking Ebiking Cycling Walking Ebiking 

0.00 4.89 3.10 3.09 16.0 5.5 17.8 

0.25 5.23 3.31 3.43 15.1 5.2 17.3 

0.50 5.27 3.34 3.47 14.8 5.1 17.1 

0.75 5.37 3.40 3.57 14.5 5.0 17.0 

1.00 5.49 3.48 3.69 14.3 4.9 16.8 

1.25 5.63 3.56 3.83 14.1 4.8 16.7 

1.50 5.76 3.65 3.96 13.9 4.8 16.6 

1.75 5.90 3.73 4.10 13.7 4.7 16.5 

2.00 6.03 3.82 4.23 13.6 4.7 16.4 

2.25 6.17 3.90 4.37 13.4 4.6 16.3 

2.50 6.30 3.99 4.50 13.3 4.6 16.3 

2.75 6.42 4.07 4.62 13.1 4.5 16.2 

3.00 6.54 4.14 4.74 13.0 4.5 16.1 

3.25 6.66 4.22 4.86 12.9 4.4 16.0 

3.50 6.77 4.29 4.97 12.8 4.4 16.0 

3.75 6.88 4.36 5.08 12.7 4.3 15.9 

4.00 6.98 4.42 5.18 12.6 4.3 15.8 

4.25 7.08 4.48 5.28 12.5 4.3 15.8 

4.50 7.17 4.54 5.37 12.4 4.2 15.7 

4.75 7.26 4.60 5.46 12.3 4.2 15.7 

5.00 7.34 4.65 5.54 12.2 4.2 15.6 

5.25 7.42 4.70 5.62 12.1 4.1 15.5 

5.50 7.49 4.74 5.69 12.0 4.1 15.5 

5.75 7.56 4.78 5.76 11.9 4.1 15.4 

6.00 7.62 4.82 5.82 11.8 4.0 15.4 

6.25 7.68 4.86 5.88 11.7 4.0 15.3 

6.50 7.73 4.89 5.93 11.6 4.0 15.3 

6.75 7.78 4.92 5.98 11.5 4.0 15.2 

7.00 + 7.82 4.95 6.02 11.4 3.9 15.2 
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Appendix 5: Updated table of input parameters for health and carbon calculations  
 
Table 13: Input parameters for estimation of health impacts using TAG, and for estimation of carbon impacts 

Parameter 
description 

Used for 
health or 
carbon 
or both? 

Parameter value Parameter source Comment 

Cycling commute 
distance  

Both Variable by OD pair CycleStreets fastest 
route or route 
average - see final 
column of Table 1. 

 

Former walking 
commute 
distance 

Health Variable by OD pair Assumed equal to 
cycling commute 
distance. 

We assumed former pedestrians previously used the 
same route, rather than walking a shorter distance to 
reach the same destination. 

Former driving 
commute 
distance 

Carbon Variable by OD pair Assumed equal to 
cycling commute 
distance. 

We assumed former car drivers previously used the 
same route, rather than driving a longer distance to 
reach the same destination. 

Mean cycle 
commute trips 
per cyclist per 
week 

Carbon 5.46 (men <50);  
5.23 (men 50+);  
4.13 (women <50);  
4.88 (women 50+) 

English and Welsh 
NTS, 2010-2016. 

This is the average number of cycle commute trips 
reported per week among people who say cycling is 
their usual main mode.  It includes respondents who 
said cycling was their usual main commute mode but 
reported no cycle commute trips in the past week. 
Used in calculating car trips/distances and  carbon 
impacts, plus cycling duration impact. 

Mean cycle 
commute trips 
per cyclist per 
week in a typical 
week 

Health 7.24 (men <50);  
7.32 (men 50+);  
6.31 (women <50); 
7.23 (women 50+) 

English and Welsh 
NTS, 2010-2016. 

This is the number of cycle commute trips reported 
per week among people who say cycling is their usual 
main mode, and who reported at least one cycle 
commute trip in the past week.  The latter restriction is 
in place because the TAG input data on mortality risk 
reduction is largely based on studies asking about a 
‘typical week’ – which we assume will include at least 
one cycle commute trip for those who say they use 
cycling as their usual main mode of travel to work. 

Mean cycling 
speed 

Health Variable by trip 
hilliness, range 11-
16 km/hr 

See Appendix 4  

Mean walking 
speed 

Health Variable by trip 
hilliness, range 4-
5.5 km/hr 

See Appendix 4  

Mean ebike 
speed 

Health Variable by trip 
hilliness, range 13-
19 km/hr 

See Appendix 4  

Percent cycle 
trips made by 
ebikes in Go 
Dutch scenario 

Health Variable by OD 
pair, according to 
route distance 

Dutch NTS, 2013-
2016. 

In the Go Dutch scenario, we assumed the percent of 
trips made by ebike corresponded to the recorded 
percentages among all cycle commute trips in the 
Dutch NTS 2013-2016.  The values were 7% cycle trips 
by ebikes for trips <5km, 13% for trips 5-9.9km, 23% 
10-19.9km, 23% for trips 20-30km.  

Percent cycle 
trips made by 
ebikes in Ebikes 
scenario 

Health Variable by OD 
pair, according to 
route distance 

Dutch NTS, 2013-
2016. 

In the Ebikes scenario, we assumed the percent of 
trips made by ebike corresponded to the recorded 
percentages among cycle commute trips made by 
ebike owners in the Dutch NTS 2013-2016.  The values 
were 71% cycle trips by ebikes for trips <5km, 91% for 
trips 5-9.9km and 93% 10-19.9km. We assumed 100% 
for trips 20-30km.  
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Parameter 
description 

Used for 
health or 
carbon 
or both? 

Parameter value Parameter source Comment 

Reference weekly 
cycling and 
walking mMETs 

Health 8.75 min/week Systematic review  
[17] 

Note that 8.75 mMET per week approximately 
corresponds to achieving the World Health 
Organisation guidelines of 150 minutes of moderate-
to-vigorous physical activity per week, or 11.25 METs. 

Mortality 
reduction for 
reference levels 
of cycling and 
walking 

Health 0.9 Systematic review  
[17] 

Reduced relative risk = 1-0.9 = 0.1 or a 10% reduction 
for the reference weekly mMETs or walking or cycling.  
After scaling for the actual observed weekly mMETs, 
this reduced relative risk was capped at a 45% 
reduction for cycling, and 30% for walking. 

Sickness absence 
reduction for 
reference levels 
of cycling and 
walking 

Health 0.75 TAG guidance [9], 
paragraph 3.2.17 

After scaling for the actual observed weekly mMETs, 
this reduced relative risk was capped at a 50% 
reduction. 

Background 
annual mortality 
rate for 
commuters 

Health Variable by age 
category, sex, and 
local authority 

Mortality rate for 
adults aged 16+ in 
England and Wales. 

Calculated using data published by the Office for 
National Statistics on deaths and the mid-year 
population for each local authority in England in 2016 
(downloaded from https://www.nomisweb.co.uk/).  
 
For each local authority, we took mortality rates for 
males and females in five-year age bands and 
weighted these by the age profile of commuters. In 
this way we calculated mortality rates for the age 
categories available in the Census 2011 data (16-24, 
25-34, 35-49, 50-64, 65-74, 75+). 

Discounted, 
average YLL loss 
per death 

Health Variable by age, 
sex and region 

Global Burden of 
Disease Study, 2017 

These are calculated from the Global Burden of 
Disease Study 2017, using results for England and 
Wales. They are then discounted over 100 years using 
a 1.5% discount rate 
 
For males the averages are: 16-24 = 43.0, 25-34 = 39.5, 
35-49 = 33.3, 50-64 = 25.3, 65-74 = 18.2, 75+ = 9.4. 
The females the averages are: 16-24 = 43.1, 25-34 = 
39.4, 35-49 = 33.0, 50-64 = 25.5, 65-74 = 18.2, 75+ = 
8.5. 
 
The values vary only modestly across regions, with a 
range of up to 0.5 years. 

Average sickness 
hours per year 

Health Variable by age, 
sex and region 

Annual Population 
Survey, 2016-201823 

Hours of sickness absence in the past week was 
calculated as the difference between total usual 
working hours and actual working hours, for people 
who said that the difference was due to sickness or 
injury (method described by ONS here24). This was 
then multiplied by 52 to give the average number of 
hours in the past year.  We restricted the analysis to 
commuters, i.e. people with a job who did not work 
from home. The range was from 8.2 hours/year for 
men aged 16-24 in the East Midlands to 69.9 
hours/year for men aged 50-64 in Wales. 

 
23 Available from https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=8489 
24https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/sicknessab
senceinthelabourmarket/2014-02-25 

https://www.nomisweb.co.uk/
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Parameter 
description 

Used for 
health or 
carbon 
or both? 

Parameter value Parameter source Comment 

Change in no. 
cycle commuters 

Both Variable by 
scenario 

Equal to the ‘scenario-
increase in cycling’, 
see Table 2 

 

Change in no. 
former 
pedestrians 

Health Variable by 
scenario 

Mode shift estimation 
described in Section 4 

 

Change in no. 
former car 
drivers 

Carbon Variable by 
scenario 

Mode shift estimation 
described in Section 4 

Note that we specifically focus on car drivers, not car 
passengers, as the standard practice in estimating 
transport CO2 emissions is to attribute all emissions to 
the car driver, to avoid double-counting 

Value of a 
statistical life 
year 

Health £57,965 Provided by DfT The DfT uses £60,000 as the cost of a statistical life 
year in 2012 prices.  In line with TAG guidance, we 
used GDP deflator values to convert this to 2010 
prices, by dividing by 1.0351 

Economic cost 
per hour of 
sickness absence 

Health Variable by region TAG ([9], tab A1.3.1) 
plus regional salary 
data 

We took the TAG average value for all working 
persons in 2010 prices (choosing 2010 in line with TAG 
guidance), and scaled this up or down according to 
regional salary differences in 2018 derived by ONS 
from the Annual Survey of Hours and Earnings.25 

CO2-equivalent 
emissions, kg per 
km 

Carbon 0.182 DEFRA 2017 This is the 2017 value for an ‘average’ car of 
‘unknown’ size and fuel type in the UK 
government’s carbon conversion factors [18]. 

CO2= carbon dioxide; DEFRA=Department for the Environment, Food and Rural Affairs; DfT=Department for 
Transport; mMET=marginal Metabolic Equivalent Task; NTS=National Travel Survey; OD pair =origin-destination 
pair, YLL = Years of Life Lost, TAG 

 
Note that we assumed a single constant value across all individuals for: 

• Average emission factor of a car (DEFRA, 2017) 

• Value of a statistical life year 

Plausibly any of these values may vary by age, sex or region, but DEFRA and DfT do not provide 
values disaggregated by these characteristics. We likewise only included regional variation, 
rather than variation by age or sex, for salaries in the sickness absence calculations. Possibly 
we could make some improvements on this in future iterations. 
 

 
25https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/a
nnualsurveyofhoursandearnings/2018 


