
RERconverge Analysis Walkthrough

February 28, 2024

Contents
Overview 2

Data Input Requirements and Formatting . 2

Analysis Walkthrough 2
Installing and loading RERconverge . 2
Reading in gene trees with readTrees . 3
Estimating relative evolutionary rates (RER) with getAllResiduals 3
Binary Trait Analysis . 10
Generating paths using tree2Paths or foreground2Paths . 19
Correlating gene evolution with binary trait evolution using correlateWithBinaryPhenotype . . . 19
Continuous Trait Analysis . 23

Enrichment Walkthrough 26
Extract Results from RERconverge Correlation Analysis . 26
Deriving a ranked gene list . 27
Import Pathway Annotations . 27
Format Pathway Annotations . 28
Calculate Enrichment Using fastwilcoxGMTall . 29
Further Analysis and Visualization . 29

Conclusion 29

References 29

1

This walkthrough provides instructions for implementing the RERconverge package to identify genes whose
evolutionary rates shift in association with change in a trait. For information on how to download and install
RERconverge, see the wiki. Source code and a quick start guide are available on github.

Overview
The following document describes the steps necessary to perform a standard RERconverge analysis to identify
genomic elements with convergent rates of evolution in phenotypically convergent species using a binary
trait or a continuous trait.

Output is a the list of genomic elements with statistics that represent the strength and directon of the
relationship between the genomic element’s evolutionary rate and the phenotype. These statistics can be
used to make inferences about the genomic elements’ importances to the phenotype. Genomic elements
that evolve more slowly for a given phenotype may be under increased evolutionary constraint because
their function is important for the development of the convergent phenotype, for example. On the other
hand, genomic elements that evolve more quickly for a given phenotype may either be under decreased
evolutionary constraint due to loss of function or relatively decreased functional importance or, conversely,
undergoing directional selection to increase or alter functionality. The ranked gene list can be further used as
input for functional enrichment methodologies to find pathways or other functional groups under convergent
evolutionary pressures.

Data Input Requirements and Formatting
The analysis requires two sources of data as input:

1. Phylogenetic trees for every genomic element with branch lengths that represent element-specific
evolutionary rates

• Trees should be in Newick format with tip labels and no node labels
• Tree topologies must all be subsets of the same master tree topology

2. Species-labeled phenotype values
• Species labels must match tree tip labels
• For continuous traits:

– a named numeric vector of trait values
• For binary traits:

– a vector of foreground species names OR
– a Newick tree with branch lengths 0 for background branches and values between 0 and 1 for

foreground branches (for a basic analysis, set all foreground branches to 1) OR
– the user can specify foreground branches (which will be set to 1) using an interactive tool (see

below)

We now provide tools for users to estimate approximate maximum likelihood trees from nucleotide or amino
acid alignments using the pml and optim.pml functions from the phangorn package (Schliep 2011).

When choosing a dataset to work with, consider the availability and accuracy of both genomic and phenotypic
data, and be sure to select a valid convergent phenotype that is observed in multiple independent clades in
your phylogeny, and at high and low levels for continuous traits.

For a more detailed description of data formatting requirements and examples, please see the relevant sections
of the walkthrough.

Analysis Walkthrough
Installing and loading RERconverge
Note: Prior to running the vignette, be sure to follow all the steps for installation on the wiki, up to the
“Install from Github” step.

2

https://github.com/nclark-lab/RERconverge/wiki/install
https://github.com/nclark-lab/RERconverge
https://cran.r-project.org/web/packages/phangorn/index.html
https://github.com/nclark-lab/RERconverge/wiki/install

In R, load the RERConverge library.
if (!require("RERconverge", character.only=T, quietly=T)) {

require(devtools)
install_github("nclark-lab/RERconverge", ref="master")
#"ref" can be modified to specify a particular branch

}
library(RERconverge)

This should also download all the files we will be working with to your computer, in the directory where your
R library lives. If you’d like to visualize or work with any of these files separately, this is where you can find
them:
rerpath = find.package('RERconverge') #If this errors, there is an issue with installation
print(rerpath)

[1] "/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library/RERconverge"

Reading in gene trees with readTrees

To run RERconverge, you will first need to supply a file containing gene trees for all genes to be included
in your analysis. This is a tab delimited file with the following information on each line:

Gene_name Newick_tree

An example file is provided in inst/extdata/subsetMammalGeneTrees.txt, which you can view in any text
editor.

Now in R, read in the gene trees. The readTrees function takes quite a while to read in trees for all genes,
so we will limit ourselves to the first 200 using max.read (this will still take a minute or so, so be patient):
toytreefile = "subsetMammalGeneTrees.txt"
toyTrees=readTrees(paste(rerpath,"/extdata/",toytreefile,sep=""), max.read = 200)

Read 500 items

max is 62

Rotating trees

estimating master tree branch lengths from 32 genes

Naming columns of paths matrix

First, the code tells us that there are 500 items, or gene trees, in the file. Since we have set max.read = 200,
it will only read the first 200 of these. Then it says that the maximum number of tips in the gene trees is 62
and, later, it reports that it will use the 32 genes in this set that have data for all 62 species to estimate a
master tree. The master tree will be used for subsequent analyses.

RERconverge is intended to be used on genome-scale datasets, containing a large number of gene trees with
data present for all species. It thus has a minimum number of such gene trees required for readTrees to use
to estimate a master tree; this is set with the minTreesAll option and is 20 by default. If your dataset is
smaller, you may adjust this or supply your own master tree using the option masterTree (this should be a
phylo object generated using ape’s read.tree); however, we recommend interpreting results with caution in
this case.

Estimating relative evolutionary rates (RER) with getAllResiduals

The next step is to estimate relative evolutionary rates, or RERs, for all branches in the tree for each
gene. Intuitively, a gene’s RER for a given branch represents how quickly or slowly the gene is evolving on
that branch relative to its overall rate of evolution throughout the tree.

3

Briefly, RERs are calculated by normalizing branch lengths across all trees by the master branch lengths.
Branch lengths are then corrected for the heteroskedastic relationship between average branch length and
variance using weighted regression. For a more detailed description of how RERs are computed, see (Chikina,
Robinson, and Clark 2016) and (Partha et al. 2017).

We will use the getAllResiduals function to calculate RERs. This uses the following input variables (all
the options set here are also the defaults):

• useSpecies: a vector that can be used to specify a subset of species to use in the analysis. Here we
will use the species in our AdultWeightLog vector that will be used for continuous trait analysis. Note
that these are also the same species used for binary trait analysis. These species should be a subset of
species included in toyTrees$masterTree$tip.label.

• transform: the method used to transform the raw data. By transforming the raw data, we reduce the
heteroscedasticity (relationship between mean and variance) and the influence of outliers. Here we will
use a square-root transform (“sqrt”), which has performed the best at reducing heteroskedasticity in our
datasets. Also available are “none” (no transformation) and “log” (natural logarithm transformation).

• weighted: whether to use a weighted regression to estimate RER. Weighting allows further correction
for the relationship between mean and variance, which can be directly estimated from the data.

• scale: whether to scale the individual branches of the gene trees to account for variance across trees.
This scales the variance, though not the mean, of each branch length, using the R function scale.

The useSpecies input variable can be provided to most RERconverge functions. Excluding one or more
species from this vector will exclude them from the analyses.

Here is the basic method, with the recommended settings:
data("logAdultWeightcm")
mamRERw = getAllResiduals(toyTrees,useSpecies=names(logAdultWeightcm),

transform = "sqrt", weighted = T, scale = T)

Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values

(0
.0

04
,0

.0
38

]
(0

.0
89

,0
.1

23
]

(0
.1

55
,0

.1
84

]
(0

.2
13

,0
.2

4]
(0

.2
65

,0
.2

9]
(0

.3
15

,0
.3

4]
(0

.3
65

,0
.3

93
]

(0
.4

23
,0

.4
59

]
(0

.5
06

,0
.5

73
]

(0
.6

75
,2

.0
1]

−15

−10

−5

0

lo
g

va
r

Before

(0
.0

04
,0

.0
38

]
(0

.0
89

,0
.1

23
]

(0
.1

55
,0

.1
84

]
(0

.2
13

,0
.2

4]
(0

.2
65

,0
.2

9]
(0

.3
15

,0
.3

4]
(0

.3
65

,0
.3

93
]

(0
.4

23
,0

.4
59

]
(0

.5
06

,0
.5

73
]

(0
.6

75
,2

.0
1]

−5

0

5

After

cutres

lo
g

va
r

bins

The first output of this function tells you that the cutoff is set to 3.2e-05. Any branches shorter than this will

4

be excluded from the analysis. It then prints out i= 1 . . . 200, showing the progress as it calculates relative
evolutionary rates for sets of gene trees.

The plots generated by this function show the log variance of the RERs resulting from the original method (on
the left) and the variance after transformation and weighted regression (on the right). Notice the heteroscedas-
ticity (positive trend between values and their variance) that is present before the new transformation method
is applied, is now gone. The x-axis displays bins of branch lengths on the tree, and the y-axis is the (log-scaled)
variance in these branch lengths across trees. As you can see by comparing the right plot to the left plot,
transforming and performing a weighted regression reduces the relationship between the mean branch length
(x-axis) and the variance in branch length (y-axis). You can alter values for transform, scale, and weighted
to attempt to optimize heteroskedasticity correction.

If you wish to save this RER object for later, you can use R’s saveRDS function. This will allow you to load
it later with readRDS, using a different name, if you wish.
saveRDS(mamRERw, file="mamRERw.rds")
newmamRERw = readRDS("mamRERw.rds")

Now that we have RERs, we can visualize these for any given gene using the plotRers function. Here is an
example.
#make average and gene tree plots
noneutherians <- c("Platypus","Wallaby","Tasmanian_devil","Opossum")
par(mfrow=c(1,2))
avgtree=plotTreeHighlightBranches(toyTrees$masterTree, outgroup=noneutherians,

hlspecies=c("Vole","Squirrel"), hlcols=c("blue","red"),
main="Average tree") #plot average tree

bend3tree=plotTreeHighlightBranches(toyTrees$trees$BEND3, outgroup=noneutherians,
hlspecies=c("Vole","Squirrel"), hlcols=c("blue","red"),
main="BEND3 tree") #plot individual gene tree

5

Average tree

Platypus

Opossum
Tasmanian devil

Wallaby

Armadillo

Aardvark

Tenrec
Cape golden mole

Elephant shrew

Manatee
Elephant

Star nosed mole

Hedgehog
Shrew

Cat
Dog

Panda

Ferret
Seal
Walrus

Megabat
Flying fox

Brown bat

Myotis bat
Microbat

Rhinoceros
Horse

Alpaca
Bactrian camel

Pig

Dolphin
Killer whale

Cow

Tibetan antelope
Sheep
Goat

Chinese tree shrew

Pika
Rabbit

Jerboa
Rat
Mouse

Vole
Golden hamster

Chinese hamster
Squirrel

Naked mole rat
Guinea pig
Chinchilla
Brush tailed rat

Bushbaby
Squirrel monkey
Marmoset
Green monkey

Baboon

Rhesus macaque
Crab eating macaque

Gibbon
Orangutan
Gorilla

Chimp
Human

BEND3 tree

Opossum
Tasmanian devil
Wallaby

Armadillo

Aardvark

Tenrec
Cape golden mole

Elephant shrew

Manatee
Elephant

Star nosed mole

Hedgehog
Shrew

Cat
Dog

Panda

Ferret
Seal
Walrus

Megabat
Flying fox

Brown bat

Myotis bat
Microbat

Rhinoceros
Horse

Alpaca
Bactrian camel

Dolphin
Killer whale

Cow

Tibetan antelope
Sheep
Goat

Chinese tree shrew

Pika
Rabbit

Jerboa
Rat
Mouse

Vole
Golden hamster

Chinese hamster
Squirrel

Naked mole rat
Guinea pig
Chinchilla
Brush tailed rat

Bushbaby
Squirrel monkey

Marmoset
Green monkey

Baboon

Rhesus macaque
Crab eating macaque

Gibbon
Orangutan
Gorilla

Chimp
Human

The left plot is a tree with branch lengths representing the average rates across all genes. The right plot is
the same tree, but with branch lengths representing rates specifically for the BEND3 gene.
#plot RERs
par(mfrow=c(1,1))
phenvExample <- foreground2Paths(c("Vole","Squirrel"),toyTrees,clade="terminal")
plotRers(mamRERw,"BEND3",phenv=phenvExample) #plot RERs

6

Opossum

Tasmanian_devil

Wallaby

Armadillo

Aardvark

Tenrec

Elephant_shrew

Manatee

Elephant

Star_nosed_mole

Hedgehog

Shrew

Cat

Dog

Panda

Ferret

Seal

Walrus

Brown_bat

Myotis_bat

Microbat

Rhinoceros

Horse

Alpaca

Bactrian_camel

Killer_whale

Cow

Sheep

Goat

Chinese_tree_shrew

Pika

Rabbit

Jerboa

Rat

Mouse

Vole

Golden_hamster

Chinese_hamster

Squirrel

Naked_mole_rat

Guinea_pig

Chinchilla

Brush_tailed_rat

Bushbaby

Squirrel_monkey

Marmoset

Rhesus_macaque

Gorilla

Chimp

Human

−2 0 2 4 6
relative rate

B
ra

nc
he

s
BEND3: rho = 0.0021, p = 0.9802

This plot represents the estimated RERs for terminal branches (labeled with species names along the y-axis)
and internal branches (plotted in a single row at the base of the y-axis). The foreground branches (set
here using foreground2Paths) are highlighted in red; these are currently only terminal branches, but if any
internal branches were included, there would be a red point or points among the RER points at the base of
the y-axis. Notice how the RER for vole is negative; this is because the branch leading to vole in the BEND3
tree is shorter than average. On the other hand, the RER for squirrel is positive because the branch leading
to squirrel in the BEND3 tree is longer than average.

We can also save all RERs for a given gene using the returnRersAsTree function. If we include plot=TRUE,
this function will also generate a cladogram for the gene tree with branches labeled with their RERs.
#plot RERs as tree
par(mfrow=c(1,1))
bend3rers = returnRersAsTree(toyTrees, mamRERw, "BEND3", plot = TRUE,

phenv=phenvExample) #plot RERs

7

Opossum
Tasmanian devil
Wallaby

Armadillo

Aardvark

Tenrec
Cape golden mole

Elephant shrew

Manatee
Elephant

Star nosed mole

Hedgehog
Shrew

Cat
Dog

Panda

Ferret
Seal
Walrus

Megabat
Flying fox

Brown bat

Myotis bat
Microbat

Rhinoceros
Horse

Alpaca
Bactrian camel

Dolphin
Killer whale

Cow

Tibetan antelope
Sheep
Goat

Chinese tree shrew

Pika
Rabbit

Jerboa
Rat
Mouse
Vole

Golden hamster
Chinese hamster

Squirrel
Naked mole rat

Guinea pig
Chinchilla
Brush tailed rat

Bushbaby

Squirrel monkey
Marmoset

Green monkey

Baboon

Rhesus macaque
Crab eating macaque

Gibbon
Orangutan

Gorilla
Chimp
Human

NA

NA

1.275

−0.854

2.638

0.062

−0.73

0.567

−1.665

0.251

1.757

0.045
−0.773

0.911
NA

NA
NA

−0.632

0.062
0.302

−2.208
−1.08

0.404
−0.385

0.619
−0.739
−0.33

−0.47

0.531

NA

1.845

−0.811

−1.743
−1.63
−0.616

−0.545

0.63
−0.425

0.041
0.643

0.668
−0.303

NA

−0.215
NA

−0.204

−0.564
−0.96

−0.208

−0.665

−1.42
0.561

0.433
−0.806
0.886

−1.663
NA
NA

−0.854
−0.523

−0.997

0.512

1.505
−0.673

1.04

1.305
−0.753
−2.437

−1.563

−1.474
0.551

2.247
1.496

−0.455

−0.149

0.524

−0.043

NA
−0.533

0.856
NA

−0.373
0.272

−1.059
−0.249

5.68

1.032

−0.66
−0.7

1.837
−0.393
0.826

−2.364

−1.262
0.864
0.461

0.385

−0.922
1.069
0.211

0.085
0.006

−1.145
−2.324
2.941

−0.265
NA

NA

NA
NA
1.55

NA
NA

NA
0.263

−1.001
0.396

Here we can see by inspecting the branch labels that the RER for the terminal branch leading to squirrel is a
large positive value (5.68), and the RER for the terminal branch leading to vole is a large negative value
(-2.364).

This function also returns a tree whose branch lengths represent the RERs for this gene. We can print or
save the tree using the ape package function write.tree:
strwrap(gsub(":",write.tree(bend3rers),replacement=": "))

[1] "(((((((((((((Aardvark: -0.772901163,((Cape_golden_mole: NA,Tenrec: NA):"
[2] "NA,Elephant_shrew: -0.6319150881): 0.9107871023):"
[3] "0.04450767607,(Elephant: 0.3020873549,Manatee: -2.208494036):"
[4] "0.06228605514): 1.75697314,Armadillo: -1.080159105):"
[5] "0.2513799251,(Opossum: -0.3853210769,(Tasmanian_devil:"
[6] "-0.7390694418,Wallaby: -0.3302797099): 0.618648797): 0.403637805):"
[7] "-1.665131653,((((((Alpaca: -1.630164966,Bactrian_camel: -0.616372635):"
[8] "-1.74284876,((Cow: -0.4248438251,((Goat: 0.6680167833,Sheep:"

8

[9] "-0.303306151): 0.6433736448,Tibetan_antelope: NA): 0.0412454544):"
[10] "0.6304769683,(Dolphin: NA,Killer_whale: -0.2038751706): -0.2149383164):"
[11] "-0.5446577331): -0.8108364886,(Horse: -0.9603730297,Rhinoceros:"
[12] "-0.2079734468): -0.5638444601): 1.844886075,((Brown_bat:"
[13] "0.5614759796,(Microbat: -0.8061174542,Myotis_bat: 0.8859062157):"
[14] "0.4331358477): -1.419731873,(Flying_fox: NA,Megabat: NA): -1.66280716):"
[15] "-0.6652905499): NA,(Cat: -0.5234598585,(Dog: 0.512457132,((Ferret:"
[16] "1.039715189,(Seal: -0.7529535484,Walrus: -2.437232254): 1.305136139):"
[17] "-0.6733796329,Panda: -1.562778374): 1.505246607): -0.9968289192):"
[18] "-0.8543925179): 0.5309002963,((Hedgehog: 2.247416284,Shrew:"
[19] "1.49636385): 0.5513410295,Star_nosed_mole: -0.454803983):"
[20] "-1.474498251): -0.4700958206): 0.5672648802,(((((((Brush_tailed_rat:"
[21] "-0.3729530647,Chinchilla: 0.2720817699): NA,Guinea_pig: -1.05860932):"
[22] "0.8561136369,Naked_mole_rat: -0.2494834422): -0.5328674185,Squirrel:"
[23] "5.68003212): NA,((((Chinese_hamster: -0.3933090818,Golden_hamster:"
[24] "0.8262536632): 1.836711178,Vole: -2.363819782): -0.7003967847,(Mouse:"
[25] "0.8635871912,Rat: 0.4613863601): -1.262274778): -0.6602931093,Jerboa:"
[26] "0.3854019665): 1.031588863): -0.04257838007,(Pika: 1.068916501,Rabbit:"
[27] "0.2105874859): -0.9215070493): 0.5241627888,Chinese_tree_shrew:"
[28] "0.08536326449): -0.1489048028): -0.7295714186,Bushbaby:"
[29] "0.005684441225): 0.06150118138,(Marmoset: -2.323552425,Squirrel_monkey:"
[30] "2.940934638): -1.144954008): 2.638013047,((Baboon:"
[31] "NA,(Crab_eating_macaque: NA,Rhesus_macaque: 1.550447589): NA):"
[32] "NA,Green_monkey: NA): -0.2650410725): -0.8544241823,Gibbon: NA):"
[33] "1.275102831,Orangutan: NA): NA,Gorilla: 0.2626488364): NA,Chimp:"
[34] "-1.00135553,Human: 0.3963351921);"
write.tree(bend3rers, file='BEND3RER.nwk')

The function returnRersAsTreesAll will produce an object of class “multiPhylo”, with each element
containing a named gene tree with branch lengths representing RERs for that gene. This can then be used
for further analysis or customized plotting, and it can be saved to a file using write.tree.
multirers = returnRersAsTreesAll(toyTrees,mamRERw)
write.tree(multirers, file='toyRERs.nwk', tree.names=TRUE)

Another useful function for visualizing RERs for a given tree is treePlotRers. When called with type =
label, it will produce the same plot as shown above, i.e., a cladogram with the branches labeled by RER.
Alternatively, when called with type = color, it will produce a cladogram with RERs displayed as a color
heatmap on the branches.
#visualize RERs along branches as a heatmap
newbend3rers = treePlotRers(treesObj=toyTrees, rermat=mamRERw, index="BEND3",

type="c", nlevels=9, figwid=10)

9

Opossum
Tasmanian devil

Wallaby

Armadillo

Aardvark

Tenrec
Cape golden mole

Elephant shrew

Manatee
Elephant

Star nosed mole

Hedgehog
Shrew

Cat

Dog

Panda

Ferret
Seal

Walrus

Megabat

Flying fox

Brown bat

Myotis bat

Microbat

Rhinoceros

Horse

Alpaca
Bactrian camel

Dolphin
Killer whale

Cow

Tibetan antelope

Sheep

Goat

Chinese tree shrew

Pika

Rabbit

Jerboa

Rat

Mouse

Vole

Golden hamster

Chinese hamster
Squirrel

Naked mole rat
Guinea pig

Chinchilla

Brush tailed rat

Bushbaby

Squirrel monkey

Marmoset

Green monkey

Baboon

Rhesus macaque

Crab eating macaque

Gibbon

Orangutan
Gorilla

Chimp
Human

−2.437

−1.223

−0.784

−0.545

−0.26

0.085

0.461

0.668

1.305

5.68
RER

The heatmap has 9 colors, corresponding to nlevels=9. The breaks are determined by quantiles of the
RER distribution, with separate quantiles computed for values below and above zero. Dashed lines indicate
lineages that have been excluded (edge.length = NA). When using a different device, you may need to adjust
the figwid variable to display the full phylogeny with optimal aesthetics. For more information on options
that can be passed to this function, see the documentation for treePlotNew.

Binary Trait Analysis
Now we will associate variation in these RERs with variation in a binary trait across the tree. To do so, we
first need to provide information about which branches of the tree have the trait of interest (foreground
branches). There are several possible ways to do this:

1) Provide a binary trait tree file. This should be a file in Newick format with branch lengths zero for
background branches and one (or weights between zero and one) for foreground branches. Setting any
branches to NA will exclude these branches from the analysis. An example binary tree file is provided in
inst/extdata/MarineTreeBinCommonNames.txt. This tree must have the same topology as the master
tree or a subset of the master tree.

10

marineb=read.tree(paste(rerpath,"/extdata/MarineTreeBinCommonNames_noCGM.txt",sep=""))
marinebrooted = root(marineb,outgroup=noneutherians)
par(mfrow=c(1,2))
plot(marinebrooted, main="Trait tree from file (1)")
#alternative way of representing the tree
mb1 = marineb
mb1$edge.length = c(rep(1,length(mb1$edge.length)))
binplot1=plotTreeHighlightBranches(mb1, outgroup=noneutherians,

hlspecies=which(marineb$edge.length==1), hlcols="blue",
main="Foreground branches highlighted (1)")

Trait tree from file (1)

Aardvark
Tenrec
Elephant shrew
Elephant Manatee
Armadillo
OpossumTasmanian devil
Wallaby
Platypus

AlpacaBactrian camel
Tibetan antelopeGoat
SheepCow

DolphinKiller whale
PigHorse
Rhinoceros
Brown bat
Microbat
Myotis bat
Flying fox
MegabatCat
DogFerret

Seal
Walrus

Panda
HedgehogShrew
Star nosed mole

Brush tailed rat
Chinchilla
Guinea pigNaked mole rat
SquirrelChinese hamster
Golden hamster
Vole
Mouse
Rat
Jerboa
Pika
Rabbit
Chinese tree shrew

Bushbaby
Marmoset
Squirrel monkey

Baboon
Crab eating macaque
Rhesus macaque
Green monkey

GibbonOrangutan
Gorilla
ChimpHuman

Foreground branches highlighted (1)

Aardvark
Tenrec
Elephant shrew

Elephant
Manatee

Armadillo
Opossum

Tasmanian devil
Wallaby

Platypus

Alpaca
Bactrian camel

Tibetan antelope
Goat
Sheep

Cow
Dolphin
Killer whale

Pig
Horse
Rhinoceros
Brown bat

Microbat
Myotis bat

Flying fox
Megabat

Cat
Dog

Ferret
Seal
Walrus

Panda
Hedgehog
Shrew

Star nosed mole

Brush tailed rat
Chinchilla

Guinea pig
Naked mole rat

Squirrel
Chinese hamster
Golden hamster

Vole
Mouse
Rat

Jerboa
Pika
Rabbit

Chinese tree shrew

Bushbaby

Marmoset
Squirrel monkey

Baboon
Crab eating macaque
Rhesus macaque

Green monkey

Gibbon
Orangutan

Gorilla

Chimp
Human

The plot on the left shows the tree you provided, with branch lengths 0 for all background lineages and
branch lengths 1 for foreground lineages. The plot on the right displays the tree with all branch lengths 1 and
the foreground lineages highlighted in blue. This binary tree represents the following as foreground lineages:
all terminal branches leading to extant marine species, plus the branch leading to the common ancestor of
the killer whale and the dolphin.

2) Generate a binary tree from a vector of foreground species using foreground2Tree. This uses the
following input variables (all the options set here are also the defaults):

11

• clade: which of the branches within a foreground clade to keep as foreground. Options are “ancestral”
to keep only the inferred transition branch, “terminal” to keep only terminal branches, and “all” to
keep all branches.

• transition: whether to allow only transitions to the foreground state (“unidirectional”, the default)
or both to and from the foreground state (“bidirectional”). Since we are considering transitions to a
marine environment, which has only occurred in one direction within mammals, we use “unidirectional”
(the default) here.

• weighted: whether to distribute the “weight” of the foreground specification across all branches within
each independent clade (default: FALSE).

• useSpecies: a vector that can be used to specify a subset of species to use in the analysis. These
should be the same species used to estimate RER.

We can visualize how several possible choices influence the output binary phenotype tree, as follows:

2a) clade = "ancestral": Use maximum parsimony to infer where transitions from background to foreground
occurred in the tree, and set those transition lineages to foreground.
marineextantforeground = c("Walrus","Seal","Killer_whale","Dolphin","Manatee")
marineb2a = foreground2Tree(marineextantforeground, toyTrees, clade="ancestral",

useSpecies=names(logAdultWeightcm))

Species from master tree not present in useSpecies: Cape_golden_mole

12

Clade: ancestral
Transition: unidirectional

Weighted: FALSE

Platypus

Opossum
Tasmanian devil
Wallaby

Armadillo

Aardvark
Tenrec
Elephant shrew

Manatee
Elephant

Star nosed mole

Hedgehog
Shrew

Cat
Dog

Panda

Ferret
Seal
Walrus

Megabat
Flying fox

Brown bat

Myotis bat
Microbat

Rhinoceros
Horse

Alpaca
Bactrian camel

Pig

Dolphin
Killer whale

Cow

Tibetan antelope
Sheep
Goat

Chinese tree shrew

Pika
Rabbit

Jerboa
Rat
Mouse
Vole

Golden hamster
Chinese hamster

Squirrel
Naked mole rat

Guinea pig
Chinchilla
Brush tailed rat

Bushbaby

Squirrel monkey
Marmoset

Green monkey

Baboon

Rhesus macaque
Crab eating macaque

Gibbon
Orangutan

Gorilla
Chimp
Human

The output first indicates that there is one species in the master tree that is not in the list of species we
requested to be included using useSpecies: the cape golden mole. This species will be excluded from our
analysis.

The plot shows that the branch leading to the common ancestor of killer whale and dolphin, as well as the
branch leading to the common ancestor of walrus and seal, are foreground, along with the terminal branch
leading to the manatee.

2b) clade = "terminal": Set only terminal lineages leading to foreground species as foreground.
marineb2b = foreground2Tree(marineextantforeground, toyTrees, clade="terminal",

useSpecies=names(logAdultWeightcm))

Species from master tree not present in useSpecies: Cape_golden_mole

13

Clade: terminal
Transition: unidirectional

Weighted: FALSE

Platypus

Opossum
Tasmanian devil
Wallaby

Armadillo

Aardvark
Tenrec
Elephant shrew

Manatee
Elephant

Star nosed mole

Hedgehog
Shrew

Cat
Dog

Panda

Ferret
Seal
Walrus

Megabat
Flying fox

Brown bat

Myotis bat
Microbat

Rhinoceros
Horse

Alpaca
Bactrian camel

Pig

Dolphin
Killer whale

Cow

Tibetan antelope
Sheep
Goat

Chinese tree shrew

Pika
Rabbit

Jerboa
Rat
Mouse
Vole

Golden hamster
Chinese hamster

Squirrel
Naked mole rat

Guinea pig
Chinchilla
Brush tailed rat

Bushbaby

Squirrel monkey
Marmoset

Green monkey

Baboon

Rhesus macaque
Crab eating macaque

Gibbon
Orangutan

Gorilla
Chimp
Human

Here the each terminal branch leading to a marine species is foreground, but no internal branches are
foreground.

2c) clade = "all": Use maximum parsimony to infer where transitions from background to foreground
occurred in the tree, and set those transition lineages, along with all daughter lineages, to foreground.
marineb2c = foreground2Tree(marineextantforeground, toyTrees, clade="all",

useSpecies=names(logAdultWeightcm))

Species from master tree not present in useSpecies: Cape_golden_mole

14

Clade: all
Transition: unidirectional

Weighted: FALSE

Platypus

Opossum
Tasmanian devil
Wallaby

Armadillo

Aardvark
Tenrec
Elephant shrew

Manatee
Elephant

Star nosed mole

Hedgehog
Shrew

Cat
Dog

Panda

Ferret
Seal
Walrus

Megabat
Flying fox

Brown bat

Myotis bat
Microbat

Rhinoceros
Horse

Alpaca
Bactrian camel

Pig

Dolphin
Killer whale

Cow

Tibetan antelope
Sheep
Goat

Chinese tree shrew

Pika
Rabbit

Jerboa
Rat
Mouse
Vole

Golden hamster
Chinese hamster

Squirrel
Naked mole rat

Guinea pig
Chinchilla
Brush tailed rat

Bushbaby

Squirrel monkey
Marmoset

Green monkey

Baboon

Rhesus macaque
Crab eating macaque

Gibbon
Orangutan

Gorilla
Chimp
Human

Here the foreground branches are all those inferred to be transitional from 2a, as well as the terminal branches.
If we had a case in which some branches daughter to the transition branches were not terminal, those would
be included in the foreground as well.

2d) clade = "all" and weighted = TRUE: Infer transition and daughter branches as in 2c, but spread a
weight of 1 evenly across all branches within each independent foreground clade.
marineb2d = foreground2Tree(marineextantforeground, toyTrees, clade="all", weighted = TRUE,

useSpecies=names(logAdultWeightcm))

Species from master tree not present in useSpecies: Cape_golden_mole

15

Clade: all
Transition: unidirectional

Weighted: TRUE

Platypus

Opossum
Tasmanian devil
Wallaby

Armadillo

Aardvark
Tenrec
Elephant shrew

Manatee
Elephant

Star nosed mole

Hedgehog
Shrew

Cat
Dog

Panda

Ferret
Seal
Walrus

Megabat
Flying fox

Brown bat

Myotis bat
Microbat

Rhinoceros
Horse

Alpaca
Bactrian camel

Pig

Dolphin
Killer whale

Cow

Tibetan antelope
Sheep
Goat

Chinese tree shrew

Pika
Rabbit

Jerboa
Rat
Mouse
Vole

Golden hamster
Chinese hamster

Squirrel
Naked mole rat

Guinea pig
Chinchilla
Brush tailed rat

Bushbaby

Squirrel monkey
Marmoset

Green monkey

Baboon

Rhesus macaque
Crab eating macaque

Gibbon
Orangutan

Gorilla
Chimp
Human

1

0.333
0.333
0.333

0.333
0.333
0.333

Here all branches in the cetacean and pinniped clades have length 1/3, whereas the terminal branch leading
to the manatee has length 1. This is a way of distributing the weight given to each independent convergence
event evenly across clades, rather than across lineages.

If you plot all the resulting trees, you can see how the different choices for clade influence the resulting
branch lengths.
par(mfrow=c(2,2))
plot(marineb2a,cex=0.6,main="ancestral")
plot(marineb2b,cex=0.6,main="terminal")
plot(marineb2c,cex=0.6,main="all unweighted", x.lim=c(0,2.5))
labs2c = round(marineb2c$edge.length,3)
labs2c[labs2c==0] = NA
edgelabels(labs2c, col = 'black', bg = 'transparent', adj = c(0.5,-0.5),cex = 0.4,frame='n')
plot(marineb2d,cex=0.6,main="all weighted", x.lim=c(0,2.5))
labs2d = round(marineb2d$edge.length,3)
labs2d[labs2d==0] = NA
edgelabels(labs2d, col = 'black', bg = 'transparent', adj = c(0.5,-0.5),cex = 0.4,frame='n')

16

ancestral

Platypus
OpossumTasmanian devilWallaby

Armadillo

AardvarkTenrecElephant shrew
ManateeElephant

Star nosed mole
HedgehogShrew

CatDog

Panda
Ferret SealWalrus

MegabatFlying fox

Brown bat
Myotis batMicrobat
RhinocerosHorse

AlpacaBactrian camel

Pig
DolphinKiller whale

Cow

Tibetan antelopeSheepGoat

Chinese tree shrew
PikaRabbit
JerboaRatMouseVoleGolden hamsterChinese hamsterSquirrelNaked mole ratGuinea pigChinchillaBrush tailed rat

Bushbaby
Squirrel monkeyMarmoset

Green monkey

Baboon
Rhesus macaqueCrab eating macaque
GibbonOrangutanGorillaChimpHuman

terminal

Platypus
OpossumTasmanian devilWallaby

Armadillo

AardvarkTenrecElephant shrew
ManateeElephant

Star nosed mole
HedgehogShrew

CatDog

Panda
Ferret SealWalrus

MegabatFlying fox

Brown bat
Myotis batMicrobat
RhinocerosHorse

AlpacaBactrian camel

Pig
DolphinKiller whale

Cow

Tibetan antelopeSheepGoat

Chinese tree shrew
PikaRabbit
JerboaRatMouseVoleGolden hamsterChinese hamsterSquirrelNaked mole ratGuinea pigChinchillaBrush tailed rat

Bushbaby
Squirrel monkeyMarmoset

Green monkey

Baboon
Rhesus macaqueCrab eating macaque
GibbonOrangutanGorillaChimpHuman

all unweighted

Platypus
OpossumTasmanian devilWallaby

Armadillo

AardvarkTenrecElephant shrew
ManateeElephant

Star nosed mole
HedgehogShrew

CatDog

Panda
Ferret SealWalrus

MegabatFlying fox

Brown bat
Myotis batMicrobat
RhinocerosHorse

AlpacaBactrian camel

Pig
DolphinKiller whale

Cow

Tibetan antelopeSheepGoat

Chinese tree shrew
PikaRabbit
JerboaRatMouseVoleGolden hamsterChinese hamsterSquirrelNaked mole ratGuinea pigChinchillaBrush tailed rat

Bushbaby
Squirrel monkeyMarmoset

Green monkey

Baboon
Rhesus macaqueCrab eating macaque
GibbonOrangutanGorillaChimpHuman

1

1 1
1

1 1
1

all weighted

Platypus
OpossumTasmanian devilWallaby

Armadillo

AardvarkTenrecElephant shrew
ManateeElephant

Star nosed mole
HedgehogShrew

CatDog

Panda
Ferret SealWalrus

MegabatFlying fox

Brown bat
Myotis batMicrobat
RhinocerosHorse

AlpacaBactrian camel

Pig
DolphinKiller whale

Cow

Tibetan antelopeSheepGoat

Chinese tree shrew
PikaRabbit
JerboaRatMouseVoleGolden hamsterChinese hamsterSquirrelNaked mole ratGuinea pigChinchillaBrush tailed rat

Bushbaby
Squirrel monkeyMarmoset

Green monkey

Baboon
Rhesus macaqueCrab eating macaque
GibbonOrangutanGorillaChimpHuman

1

0.333 0.333
0.333

0.333 0.333
0.333

None of these are the same as the binary tree that you specified in (1)!
plot(marineb,main="Manually specified binary tree (1)")

17

Manually specified binary tree (1)

AardvarkTenrec
Elephant shrewElephant ManateeArmadillo
OpossumTasmanian devil
WallabyPlatypusAlpacaBactrian camel
Tibetan antelopeGoat
SheepCow

DolphinKiller whale
PigHorseRhinocerosBrown batMicrobat
Myotis batFlying foxMegabatCat
DogFerret SealWalrusPanda
HedgehogShrewStar nosed moleBrush tailed ratChinchilla
Guinea pigNaked mole rat
SquirrelChinese hamsterGolden hamster
VoleMouseRatJerboaPikaRabbitChinese tree shrew
BushbabyMarmoset
Squirrel monkeyBaboon
Crab eating macaqueRhesus macaqueGreen monkeyGibbon
OrangutanGorilla
ChimpHuman

Note that, in this tree, the branch representing the ancestor of the killer whale and the dolphin has a branch
length of 1, whereas the branch representing the ancestor of seal and walrus has a branch length of 0. This
shows that providing a binary trait tree file (1) allows you to specify which branches should be foreground
with more flexibility than providing a set of foreground species to foreground2Tree.

3) Use the interactive branch selection tool. The following should open a plot of the master tree. When
the GUI opens, select the marine foreground branches (Walrus, Seal, Killer whale, Dolphin, Killer
whale-Dolphin ancestor, and Manatee), and click ‘End selection.’ Do not click ‘New category’.

marineb3=click_select_foreground_branches(toyTrees$masterTree)

You can double check that the tree you created by manual selection (3) matches the binary tree you provided
in (1) (it should) using the following code:
marineb3rooted=root(marineb3,outgroup=c("Platypus", "Wallaby","Tasmanian_devil","Opossum"))
par(mfrow=c(1,2))
plot(marinebrooted, main = "Provided binary tree (1)")
plot(marineb3rooted, main = "Trait tree from manual selection (3)")

18

Generating paths using tree2Paths or foreground2Paths

Some of the genes (like BEND3 above) may not have data for all species, meaning that their phylogeny will
be a subset of the full phylogeny. To plot RERs for these genes and to correlate them with trait evolution,
we run one of two functions that determine how the trait would evolve along all/many possible subsets of
the full phylogeny, generating a set of paths. The function tree2Paths takes a binary tree as input, and
the function foreground2Paths takes a set of foreground species as input. foreground2Paths has the same
arguments as foreground2Tree described above (see option 2 in Reading in or generating trait trees).

Important note: If you are using a binary tree to create paths, it must have the same topology as the
master tree or a subset of the master tree (see previous section for how this is generated).
phenvMarine=tree2Paths(marineb, toyTrees)
phenvMarine2=foreground2Paths(marineextantforeground, toyTrees, clade="all")
phenvMarine2b=tree2Paths(marineb2b, toyTrees)

Correlating gene evolution with binary trait evolution using correlateWithBinaryPhenotype

Now that we have estimates for the RERs for all genes of interest, as well as a representation of how the trait
of interest evolves across the tree, we can use correlateWithBinaryPhenotype to test for an association
between relative evolutionary rate and trait across all branches of the tree.

This uses the following input variables (all the options set here are also the defaults):

• min.sp: the minimum number of species in the gene tree for that gene to be included in the analysis.
The default is 10, but you may wish to modify it depending upon the number of species in your master
tree.

• min.pos: the minimum number of independent foreground (non-zero) lineages represented in the gene
tree for that gene to be included in the analysis. The default is 2, requiring at least two foreground
lineages to be present in the gene tree.

• weighted: whether to perform a weighted correlation where branch lengths represent weights. This
can be used with the weighted=TRUE option in foreground2Tree or foreground2Paths to distribute
phenotype weights across multiple lineages in a clade. The default is “auto”, which will use weighted
correlation if any branch lengths are between 0 and 1, and will use standard correlation otherwise.

corMarine=correlateWithBinaryPhenotype(mamRERw, phenvMarine, min.sp=10, min.pos=2,
weighted="auto")

The text displayed shows which correlation method is used to test for association. Here it uses the default for
binary traits: the Kendall rank correlation coefficient, or Tau.

The correlateWithBinaryPhenotype function generates a table with the following output for each gene:

1) Rho: the correlation between relative evolutionary rate and trait across all branches

2) N: the number of branches in the gene tree

3) P: an estimate of the P-value for association between relative evolutionary rate and trait.

4) p.adj: an estimate of the P-value adjusted for multiple comparisons using the Benjamini-Hochberg
procedure (i.e., an estimate of the false discovery rate, or FDR).

Let’s take a look at some of the top genes within this set.
head(corMarine[order(corMarine$P),])

Rho N P p.adj
ANO2 0.2604946 106 0.001138448 0.1575810
AK124326 -0.3064213 68 0.002292048 0.1575810
BDH1 0.2423160 102 0.002997042 0.1575810
BMP10 -0.2367746 103 0.003561152 0.1575810

19

ATP2A1 0.2312257 101 0.004832241 0.1710613
ASB15 0.2136137 107 0.007338788 0.1977725

Because we might expect different sets of genes to be in the positively or negatively correlated groups, it
can be helpful to sort the table by the log-transformed p-values that carry the sign of Rho. Examining the
extreme top or bottom of this sorting shows top positively and negatively correlated genes. This can be
done as below in which we examine the top positively correlated genes; for negative correlations change
decreasing = FALSE.

corMarine$stat = -log10(corMarine$P) * sign(corMarine$Rho)
head(corMarine[order(corMarine$stat, decreasing = TRUE),])

Rho N P p.adj stat
ANO2 0.2604946 106 0.001138448 0.1575810 2.943687
BDH1 0.2423160 102 0.002997042 0.1575810 2.523307
ATP2A1 0.2312257 101 0.004832241 0.1710613 2.315851
ASB15 0.2136137 107 0.007338788 0.1977725 2.134376
TTN 0.1778351 119 0.018469789 0.2971957 1.733538
ABCB4 0.1658190 107 0.037416063 0.3595490 1.426942

ANO2 and BMP10 are two of the top genes in the positive and negative directions, respectively. Let’s
examine their RER plots.
plotRers(mamRERw,"ANO2",phenv=phenvMarine)

20

Opossum

Tasmanian_devil

Armadillo

Aardvark

Tenrec

Elephant_shrew

Manatee

Elephant

Star_nosed_mole

Hedgehog

Shrew

Cat

Dog

Panda

Ferret

Seal

Walrus

Megabat

Flying_fox

Brown_bat

Myotis_bat

Microbat

Rhinoceros

Horse

Alpaca

Bactrian_camel

Dolphin

Killer_whale

Cow

Tibetan_antelope

Sheep

Goat

Chinese_tree_shrew

Pika

Rabbit

Jerboa

Rat

Mouse

Vole

Golden_hamster

Chinese_hamster

Squirrel

Naked_mole_rat

Guinea_pig

Chinchilla

Brush_tailed_rat

Bushbaby

Squirrel_monkey

Marmoset

Green_monkey

Baboon

Rhesus_macaque

Gibbon

Orangutan

Gorilla

Chimp

Human

−2 0 2
relative rate

B
ra

nc
he

s
ANO2: rho = 0.2605, p = 0.0011

plotRers(mamRERw,"BMP10",phenv=phenvMarine)

21

Opossum

Tasmanian_devil

Wallaby

Armadillo

Aardvark

Tenrec

Elephant_shrew

Manatee

Elephant

Star_nosed_mole

Hedgehog

Shrew

Cat

Dog

Panda

Ferret

Seal

Walrus

Megabat

Brown_bat

Myotis_bat

Microbat

Rhinoceros

Horse

Bactrian_camel

Pig

Dolphin

Killer_whale

Cow

Tibetan_antelope

Sheep

Goat

Chinese_tree_shrew

Pika

Rabbit

Jerboa

Rat

Mouse

Vole

Golden_hamster

Chinese_hamster

Squirrel

Naked_mole_rat

Guinea_pig

Chinchilla

Brush_tailed_rat

Bushbaby

Squirrel_monkey

Marmoset

Green_monkey

Gibbon

Orangutan

Gorilla

Chimp

−2 −1 0 1 2 3
relative rate

B
ra

nc
he

s
BMP10: rho = −0.2368, p = 0.0036

In these RER plots, the marine lineages specified in the foreground are highlighted in red. The terminal
branches are listed in alphabetical order, and internal branches are displayed at the bottom; note the red
point at the bottom of each plot indicating the RER for killer whale-dolphin ancestral branch.

In the ANO2 tree, marine lineages have high RER, leading to a positive Rho and a low p-value. In contrast,
in the BMP10 tree, marine lineages have low RER. This also yields a low p-value, but with a negative Rho.

To see what the overall pattern of association is across all genes in the set, we can plot a p-value histogram.
hist(corMarine$P, breaks=15, xlab="Kendall P-value",

main="P-values for correlation between 200 genes and marine environment")

22

P−values for correlation between 200 genes and marine environment

Kendall P−value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

There appears to be a slight enrichment of low p-values, but since we have only evaluated the first 200 genes
from our ~19,000 gene genome-wide set, we should hold off on drawing conclusions from this.

Continuous Trait Analysis
In addition to supporting binary trait analyses, RERconverge can also calculate correlations between rates of
evolution of genes and the change in a continuous trait. To perform a continuous trait analysis, start with a
named vector in R. Vector names must match the names in the trees read in previously. Here are the first
few entries in the vector we will use for continuous trait analysis:
head(logAdultWeightcm)

Alpaca Dolphin Chinese_tree_shrew Tree_shrew
15.919981 17.609640 7.643856 7.643856
Manatee Pig
18.296701 16.988152

We must convert the trait vector to paths comparable to the paths in the RER matrix. To do that, we can
use the function ‘char2Paths’ as shown here:
charpaths=char2Paths(logAdultWeightcm, toyTrees)

using metric diff, with filtering constant -1

Species not present: Cape_golden_mole

We are using metric diff, which means that branch lengths are assigned to the trait tree based on the
difference in trait values on the nodes connected to that branch.

The function tells us that there is one species in the master tree that is not present in the trait tree: the cape
golden mole.

The char2Paths function creates a paths vector with length equal to the number of columns in the RER
matrix. The phylogenetic relationships represented in the “char2Paths” output are the same as those
represented in the RER matrix.

Finally, we can perform our ultimate analysis to find correlations between the rate of evolution of a genomic
element (encoded in the RER matrix) and the rate of change of a phenotype (encoded in charpaths) using
correlateWithContinuousPhenotype. The final output is the list of input genes with relevant statistics.

23

As input, we provide the RER matrix and trait path. correlateWithContinuousPhenotype is a wrapper
function for continuous trait analysis using the getAllCor function. By default it performs Pearson
correlation. To perfom a rank-based correlation (Spearman) use the getAllCor function with method="s".
For Spearman, Winsorizing extreme values is not necessary.

This function uses the following input variables (all the options set here are also the defaults):

• min.sp: the minimum number of species in the gene tree for that gene to be included in the analysis.
The default is 10, but you may wish to modify it depending upon the number of species in your master
tree.

• winsorizeRER/winsorizetrait: pulls the most extreme N values (default N=3) in both the positive
and negative tails to the value of the N+1 most extreme value. This process mitigates the effect of
extreme outliers before calculating correlations.

res=correlateWithContinuousPhenotype(mamRERw, charpaths, min.sp = 10,
winsorizeRER = 3, winsorizetrait = 3)

head(res[order(res$P),])

Rho N P p.adj
ANKRD18B -0.3434618 80 0.001813809 0.2693473
TTN 0.2721813 119 0.002748442 0.2693473
ABCB4 0.2507133 107 0.009196076 0.4935868
ADH7 0.2825531 79 0.011636013 0.4935868
ATP10A -0.2419800 105 0.012884245 0.4935868
B3GALT1 0.4021305 34 0.018393504 0.4935868

In these results, Rho is the standard statistic for a Pearson correlation, N is the number of branches included
in the analysis, and P is the uncorrected correlation p-value. Since huge numbers of statistical tests are being
performed in these analyses, it is essential to correct p-values using a method such as the Benjamini-Hochberg
correction (p.adj).

Because we might expect different sets of genes to be in the positively or negatively correlated groups, it
can be helpful to sort the table by the log-transformed p-values that carry the sign of Rho. Examining the
extreme top and bottom of this sorting shows top positively and negatively correlated genes. This can be
done as below in which we examine the top positively correlated genes; for negative correlations change
decreasing = FALSE.

res$stat = -log10(res$P) * sign(res$Rho)
head(res[order(res$stat, decreasing = TRUE),])

Rho N P p.adj stat
TTN 0.2721813 119 0.002748442 0.2693473 2.560913
ABCB4 0.2507133 107 0.009196076 0.4935868 2.036397
ADH7 0.2825531 79 0.011636013 0.4935868 1.934196
B3GALT1 0.4021305 34 0.018393504 0.4935868 1.735336
BDH1 0.2153956 102 0.029692553 0.4938339 1.527352
ALG3 0.1951868 97 0.055375586 0.5819799 1.256682

We can also plot a distribution of our uncorrected p-values to allow us to speculate if they will remain
significant after correction. A mostly uniform distribution with an elevated frequency of low p-values indicates
the presence of genomic elements whose rates of evolution are correlated with the phenotype (note that this
trend will also be increasingly distinct when larger numbers of genomic elements are considered).
hist(res$P, breaks=15)

24

Histogram of res$P

res$P

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

One important consideration of the results is the impact of one or a few species on the overall correlation. To
assess this risk, we can examine individual correlation plots as follows:
x=charpaths
y=mamRERw['TTN',]
pathnames=namePathsWSpecies(toyTrees$masterTree)
names(y)=pathnames
plot(x,y, cex.axis=1, cex.lab=1, cex.main=1, xlab="Weight Change",

ylab="Evolutionary Rate", main="Gene TTN Pearson Correlation",
pch=19, cex=1, xlim=c(-2,2))

text(x,y, labels=names(y), pos=4)
abline(lm(y~x), col='red',lwd=3)

25

−2 −1 0 1 2

−
1

0
1

2
3

4

Gene TTN Pearson Correlation

Weight Change

E
vo

lu
tio

na
ry

 R
at

e

PlatypusOpossum Tasmanian_devilWallaby

Armadillo
Aardvark

Tenrec

Elephant_shrew

Manatee
ElephantStar_nosed_mole Hedgehog

Shrew
Cat

Dog

PandaFerret
Seal Walrus

Megabat
Flying_fox
Brown_bat

Myotis_bat

Microbat Rhinoceros

HorseAlpaca
Bactrian_camel

Pig

Dolphin

Killer_whale
Cow

Tibetan_antelope
SheepGoat

Chinese_tree_shrew
Pika

Rabbit

Jerboa

Rat

Mouse

Vole
Golden_hamster

Chinese_hamster
Squirrel

Naked_mole_rat
Guinea_pig

Chinchilla
Brush_tailed_rat

Bushbaby

Squirrel_monkeyMarmoset Green_monkey
Baboon

Rhesus_macaque

Crab_eating_macaque
Gibbon

OrangutanGorilla
Chimp

Human

In this case, we see that the positive correlation is driven by all species and not just a single clade. Note that
labelled points are terminal nodes in the phylogeny and unlabelled points are internal nodes.

Further analyses could include using functional enrichment detection methods to find functionally-related
genomic elements that are experiencing convergent evolutionary rates as a group (see walkthrough below)
and using branch-site models to determine if fast-evolving genes are experiencing relaxation of constraint or
undergoing directional selection.

Enrichment Walkthrough
This section describes how to run pathway enrichment analysis using RERconverge output and functions
included with the RERconverge package. Enrichment analysis detects groups of genes that are evolving
faster or slower with a phenotype of interest. In the RERconverge package, the enrichment function is
implemented as a Wilcoxon Rank-Sum Test on a list of genes ranked based on their correlation statistics. It
detects distribution shifts in groups of genes compared to all genes, and it thereby bypasses the need to set a
foreground significance cutoff like some other enrichment methods.

Input to the enrichment function is the output from RERconverge correlation functions and pathways of
interest with gene symbols (gene names).

Output is enrichment statistics for each pathway, including genes in the pathways and their ranks.

Extract Results from RERconverge Correlation Analysis
Enrichment analysis starts with the results from the correlateWithContinuousPhenotype, correlateWithBina-
ryPhenotype, or getAllCor functions in the RERconverge package. These results include Rho, p-value, and
the Benjamini-Hochberg corrected p-value for the correlation between the relative evolutionary rates of each
gene and the phenotype provided. These statistics are used to calculate enrichments.

In this case, we will start with the data from the continuous trait analysis described above that used adult mass
as the phenotype of interest in mammalian species. This walkthrough assumes that you have already installed

26

RERconverge, and it uses output from the correlateWithContinuousPhenotype function (“RERresults”) that
is included with the RERconverge package.
library(RERconverge)
data("RERresults")

Deriving a ranked gene list
We will perform our enrichment on Rho-signed negative log p-values from our correlation results. The getStat
function converts our correlation results to these values, removes NA values, and returns a named numeric
vector where names correspond to rownames from the correlation results (in this case, gene names).
library(RERconverge)
stats=getStat(RERresults)

Import Pathway Annotations
Now that we have our gene statistics, we need pathway annotations. Download all curated gene sets, gene
symbols (c2.all.v6.2.symbols.gmt) from GSEA-MSigDB as gmtfile.gmt. You must register for an account
prior to downloading. The rest of the vignette expects “gmtfile.gmt” to be in the current working directory.

With the file in the appropriate place, simply use the read.gmt function to read in the annotation data.
annots=read.gmt("gmtfile.gmt")

27

http://software.broadinstitute.org/gsea/downloads.jsp

Format Pathway Annotations

RERconverge enrichment functions expect pathways to be in named pathway-group lists contained within
a list (see diagram above). A pathway-group is a group of similar pathways stored together (for example
KEGG pathways might be one pathway-group and MGI pathways might be another pathway-group). Each
pathway-group list contains a named list called genesets with each element of the list a character vector
of gene names in a particular pathway, and the names of the elements the names of the pathways. The
names of the genesets are also contained as a character vector in the second element of the pathway-group
list named geneset.names. As an example of correctly-formatted annotations, you would have a list called
annotations that contains another list called canonicalpathways. The canonicalpathways list contains a list
named genesets and a vector named geneset.names. Each element of the genesets list is a character vector of
gene names corresponding to a particular pathway, and the names of the elements in genesets are the names
of the pathways. The geneset.names vector contains the names of the elements in genesets.

To convert our gmt file to the correct format, we simply need to put it inside another list; the read.gmt
function automatically reads in gmt files in the format described above.
annotlist=list(annots)
names(annotlist)="MSigDBpathways"

28

Calculate Enrichment Using fastwilcoxGMTall
We can now use annotlist and stats to calculate pathway enrichment. We will use the function fastwilcoxGM-
TAll, which calculates the estimated Wilcoxon Rank-Sum statistics based on the ranks of the genes in stats.
The test essentially measures the distribution shift in ranks of genes of interest (each pathway) compared to
the background rank distribution (ranks of all other genes included in the pathway-group annotations that
are not part of the pathway of interest). We set outputGeneVals to true so the function returns names of the
genes in the pathway and their ranks. num.g specifies the minimum number of genes required to be present
to run the enrichment (10 by default).
enrichment=fastwilcoxGMTall(stats, annotlist, outputGeneVals=T, num.g=10)

25 results for annotation set MSigDBpathways

Note that these results contain statistics for all pathways with the minimum number of genes specified. Very
few pathways have a sufficient number of genes because we only calculated correlation statistics for 200 total
genes.

Further Analysis and Visualization
You may visualize your pathway results in a variety of ways, including using PathView to overlay correlation
colors on KEGG pathways and igraph to make pathway networks based on gene similarity among networks.

You may also calculate permutation p-values based on permuting the phenotype vector and rerunning the
correlation and enrichment analyses many times to filter pathways that always tend to have significant
enrichment values regardless of the phenotype input.

Conclusion
We’ve now walked through the basic workflow for RERConverge. For more information about these methods
and some results relevant to marine and subterranean adaptation, see (Chikina, Robinson, and Clark 2016)
and (Partha et al. 2017).

References
Chikina, Maria, Joseph D Robinson, and Nathan L Clark. 2016. “Hundreds of Genes Experienced Convergent

Shifts in Selective Pressure in Marine Mammals.” Molecular Biology and Evolution 33 (9): 2182–92.
https://doi.org/10.1093/molbev/msw112.

Partha, Raghavendran, Bharesh K Chauhan, Zelia Ferreira, Joseph D Robinson, Kira Lathrop, Ken K
Nischal, Maria Chikina, and Nathan L Clark. 2017. “Subterranean mammals show convergent regression
in ocular genes and enhancers, along with adaptation to tunneling.” eLife 6 (October): e25884. https:
//doi.org/10.7554/eLife.25884.

Schliep, Klaus Peter. 2011. “phangorn: Phylogenetic analysis in R.” Bioinformatics 27 (4): 592–93.
https://doi.org/10.1093/bioinformatics/btq706.

29

https://doi.org/10.1093/molbev/msw112
https://doi.org/10.7554/eLife.25884
https://doi.org/10.7554/eLife.25884
https://doi.org/10.1093/bioinformatics/btq706

	Overview
	Data Input Requirements and Formatting

	Analysis Walkthrough
	Installing and loading RERconverge
	Reading in gene trees with readTrees
	Estimating relative evolutionary rates (RER) with getAllResiduals
	Binary Trait Analysis
	Generating paths using tree2Paths or foreground2Paths
	Correlating gene evolution with binary trait evolution using correlateWithBinaryPhenotype
	Continuous Trait Analysis

	Enrichment Walkthrough
	Extract Results from RERconverge Correlation Analysis
	Deriving a ranked gene list
	Import Pathway Annotations
	Format Pathway Annotations
	Calculate Enrichment Using fastwilcoxGMTall
	Further Analysis and Visualization

	Conclusion
	References

