1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Primitives for object and array transmutation.
//!
//! The functions in this module are very unsafe and their use is not
//! recommended unless you *really* know what you are doing.


use self::super::guard::{SingleValueGuard, PermissiveGuard, SingleManyGuard, Guard};
use self::super::error::Error;
use core::mem::size_of;
#[cfg(feature = "alloc")]
use core::mem::forget;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::slice;


/// Convert a byte slice into a single instance of a `Copy`able type.
///
/// The byte slice must have at least enough bytes to fill a single instance of
/// a type, extraneous data is ignored.
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
///   the slice data must be properly aligned for accessing the value of type `T`.
/// - The byte data needs to correspond to a valid `T` value.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Errors
///
/// An error is returned if the slice does not have enough bytes for a single
/// value `T`.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::from_bytes;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
///     assert_eq!(from_bytes::<u32>(&[0x00, 0x00, 0x00, 0x01])?, 0x0100_0000);
/// # */
/// #   assert_eq!(from_bytes::<u32>(&[0x00, 0x00, 0x00, 0x01].le_to_native::<u32>()).unwrap(), 0x0100_0000);
/// }
/// # }
/// ```
pub unsafe fn from_bytes<T: Copy>(bytes: &[u8]) -> Result<T, Error<u8, T>> {
    SingleManyGuard::check::<T>(bytes)?;
    Ok(slice::from_raw_parts(bytes.as_ptr() as *const T, 1)[0])
}

/// Convert a byte slice into a single instance of a `Copy`able type.
///
/// The byte slice must have exactly the expected number of bytes to fill a
/// single instance of a type, without trailing space.
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
///   the slice data must be properly aligned for accessing the value of type `T`.
/// - The byte data needs to correspond to a valid `T` value.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Errors
///
/// An error is returned if the slice's length is not equal to the size of a
/// single value `T`.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::from_bytes_pedantic;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
///     assert_eq!(from_bytes_pedantic::<u32>(&[0x00, 0x00, 0x00, 0x01])?, 0x0100_0000);
/// # */
/// #   assert_eq!(
/// #       from_bytes_pedantic::<u32>(&[0x00, 0x00, 0x00, 0x01].le_to_native::<u32>()).unwrap(),
/// #       0x0100_0000
/// #   );
/// }
/// # }
/// ```
pub unsafe fn from_bytes_pedantic<T: Copy>(bytes: &[u8]) -> Result<T, Error<u8, T>> {
    SingleValueGuard::check::<T>(bytes)?;
    Ok(slice::from_raw_parts(bytes.as_ptr() as *const T, 1)[0])
}

/// View a byte slice as a slice of an arbitrary type.
///
/// The required byte length of the slice depends on the chosen boundary guard.
/// Please see the [Guard API](../guard/index.html).
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
///   the slice data must be properly aligned for accessing vlues of type `T`.
/// - The byte data needs to correspond to a valid contiguous sequence of `T`
///   values. Types `T` with a `Drop` implementation are unlikely to be safe
///   in this regard.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Errors
///
/// An error is returned if the data does not comply with the policies of the
/// given guard `G`.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::transmute_many;
/// # use safe_transmute::SingleManyGuard;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
///     assert_eq!(
///         transmute_many::<u16, SingleManyGuard>(&[0x00, 0x01, 0x00, 0x02])?,
/// # */
/// #   assert_eq!(transmute_many::<u16, SingleManyGuard>(&[0x00, 0x01, 0x00, 0x02].le_to_native::<u16>()).unwrap(),
///         &[0x0100, 0x0200]
///     );
/// }
/// # }
/// ```
pub unsafe fn transmute_many<T, G: Guard>(bytes: &[u8]) -> Result<&[T], Error<u8, T>> {
    G::check::<T>(bytes)?;
    Ok(slice::from_raw_parts(bytes.as_ptr() as *const T, bytes.len() / size_of::<T>()))
}

/// View a mutable byte slice as a slice of an arbitrary type.
///
/// The required byte length of the slice depends on the chosen boundary guard.
/// Please see the [Guard API](../guard/index.html).
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
///   the slice data must be properly aligned for accessing vlues of type `T`.
/// - The byte data needs to correspond to a valid contiguous sequence of `T`
///   values. Types `T` with a `Drop` implementation are unlikely to be safe
///   in this regard.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Errors
///
/// An error is returned if the data does not comply with the policies of the
/// given guard `G`.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::transmute_many_mut;
/// # use safe_transmute::SingleManyGuard;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
///     assert_eq!(
///         transmute_many_mut::<u16, SingleManyGuard>(&mut [0xFF, 0x01, 0x00, 0x02])?,
/// # */
/// #   assert_eq!(transmute_many_mut::<u16, SingleManyGuard>(&mut [0xFF, 0x01, 0x00, 0x02].le_to_native::<u16>()).unwrap(),
///         &mut [0x01FF, 0x0200]
///     );
/// }
/// # }
/// ```
pub unsafe fn transmute_many_mut<T, G: Guard>(bytes: &mut [u8]) -> Result<&mut [T], Error<u8, T>> {
    G::check::<T>(bytes)?;
    Ok(slice::from_raw_parts_mut(bytes.as_mut_ptr() as *mut T, bytes.len() / size_of::<T>()))
}

/// View a byte slice as a slice of an arbitrary type.
///
/// The resulting slice will have as many instances of a type as will fit,
/// rounded down. The permissive guard is a no-op, which makes it possible for
/// this function to return a slice directly. It is therefore equivalent to
/// `transmute_many::<_, PermissiveGuard>(bytes).unwrap()`.
///
/// # Safety
///
/// - This function does not perform memory alignment checks. The beginning of
///   the slice data must be properly aligned for accessing vlues of type `T`.
/// - The byte data needs to correspond to a valid contiguous sequence of `T`
///   values. Types `T` with a `Drop` implementation are unlikely to be safe
///   in this regard.
///
/// Failure to fulfill any of the requirements above may result in undefined
/// behavior.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::transmute_many_permissive;
/// # include!("../tests/test_util/le_to_native.rs");
/// # fn main() {
/// // Little-endian
/// unsafe {
/// # /*
///     assert_eq!(
///         transmute_many_permissive::<u16>(&[0x00, 0x01, 0x00, 0x02]),
/// # */
/// #   assert_eq!(transmute_many_permissive::<u16>(&[0x00, 0x01, 0x00, 0x02].le_to_native::<u16>()),
///         &[0x0100, 0x0200]
///     );
/// }
/// # }
/// ```
pub unsafe fn transmute_many_permissive<T>(bytes: &[u8]) -> &[T] {
    transmute_many::<_, PermissiveGuard>(bytes).expect("permissive guard should never fail")
}

/// Transform a vector into a vector of another element type.
///
/// The vector's allocated byte buffer (if already allocated) will be reused.
///
/// # Safety
///
/// Vector transmutations are **exceptionally** dangerous because of
/// the constraints imposed by
/// [`Vec::from_raw_parts()`](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.from_raw_parts).
///
/// Unless *all* of the following requirements are fulfilled, this operation
/// may result in undefined behavior:
///
/// - The target type `T` must have the same size and minimum alignment as the
///   type `S`.
/// - The vector's data needs to correspond to a valid contiguous sequence of
///   `T` values. Types `T` with a `Drop` implementation are unlikely to be
///   safe in this regard.
///
/// # Examples
///
/// ```
/// # use safe_transmute::base::transmute_vec;
/// unsafe {
///     assert_eq!(
///         transmute_vec::<u8, i8>(vec![0x00, 0x01, 0x00, 0x02]),
///         vec![0x00i8, 0x01i8, 0x00i8, 0x02i8]
///     );
/// }
/// ```
#[cfg(feature = "alloc")]
pub unsafe fn transmute_vec<S, T>(mut vec: Vec<S>) -> Vec<T> {
    let ptr = vec.as_mut_ptr();
    let capacity = vec.capacity() * size_of::<S>() / size_of::<T>();
    let len = vec.len() * size_of::<S>() / size_of::<T>();
    forget(vec);
    Vec::from_raw_parts(ptr as *mut T, len, capacity)
}