
Practical, General Parser Combinators

Anastasia Izmaylova Ali Afroozeh Tijs van der Storm
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{anastasia.izmaylova, ali.afroozeh, tijs.van.der.storm}@cwi.nl

Abstract

Parser combinators are a popular approach to parsing where context-
free grammars are represented as executable code. However, con-
ventional parser combinators do not support left recursion, and can
have worst-case exponential runtime. These limitations hinder the
expressivity and performance predictability of parser combinators
when constructing parsers for programming languages.

In this paper we present general parser combinators that support
all context-free grammars and construct a parse forest in cubic
time and space in the worst case, while behaving nearly linearly
on grammars of real programming languages. Our general parser
combinators are based on earlier work on memoized Continuation-
Passing Style (CPS) recognizers. First, we extend this work to
achieve recognition in cubic time. Second, we extend the resulting
cubic CPS recognizers to parsers that construct a binarized Shared
Packed Parse Forest (SPPF).

Our general parser combinators bring the best of both worlds:
the flexibility and extensibility of conventional parser combinators
and the expressivity and performance guarantees of general parsing
algorithms. We used the approach presented in this paper as the
basis for Meerkat, a general parser combinator library for Scala.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Syntax; D.3.4 [Program-
ming Languages]: Processors—Parsing

Keywords Parser combinators, general parsing, left recursion,
continuation-passing style, memoization, higher-order functions

1. Introduction

Parsing is a well-researched topic in computer science. However,
there is no “one size fits all” solution for all parsing problems. In
particular, all solutions have to find a balance among trade-offs such
as expressivity, performance, ease of use, and flexibility. Syntax
of programming languages has traditionally been specified using
context-free grammars. In parser generators, a grammar is written
in a (E)BNF-like notation, which is transformed to parse tables or
code. In parser combinators [9, 10], on the other hand, a grammar is
encoded using higher-order functions in a programming language,
and thus is directly executable.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive version was published in the following publication:

PEPM’16, January 18–19, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-4097-7/16/01...
http://dx.doi.org/10.1145/2847538.2847539

Parser combinators are higher-order functions used to define gram-
mars in terms of constructs such as sequence and alternation. The
seamless integration with the host programming language makes
parser combinators flexible and extensible, compared to parser gen-
erators that use a fixed notation for syntax definition. The language
developer can define custom combinators using the features of the
host programming language. It is also possible to perform data-
dependent tasks, such as parsing network protocols and indentation-
sensitive languages, by allowing composition of functions that pro-
duce parsers based on the result of the previous parse. Monadic
parser combinators [9, 10] are often used for this.

Conventional parser combinators are recursive-descent like, and
thus have an intuitive execution model, which makes them easy to
debug. However, recursive-descent parsers fail to terminate in face
of left recursion, and can have worst-case exponential runtime if
implemented naively. The lack of support for left recursion is a major
problem in expressing natural syntax of programming languages.
Most notably, expression grammars, when written in their natural
form, are left-recursive.

Grammars of most programming languages do not fit determin-
istic classes of context-free grammars, such as LR(k) or LL(k),
and transforming a grammar to such forms is a tedious process.
In addition, maintenance and evolution of deterministic grammars
is difficult. There has been extensive research in general parsing
algorithms [4, 21, 24], which accept the full class of context-free
grammars and deliver all derivation trees in form of a parse forest.
There exist worst-case cubic general parsers which are near linear
on near-deterministic grammars. Therefore, it is practical to build
parsers for programming languages using general parsing, especially
in areas where more expressivity is needed, e.g., for developing
domain-specific languages (DSLs) and source code analysis.

For decades, general parsing algorithms, more specifically Gener-
alized LR (GLR), have been used in parser generators. Besides stan-
dalone GLR parser generators, such as SGLR (used in ASF+SDF
Meta-Environment [26]) and Elkhound [15], the popular GNU Bi-
son has also a GLR mode. However, general parsing has not become
popular in the world of parser combinators. The main reason is
the technical difficulty in realizing general parsers in a combinator
style. The underlying machinery of traditional parsing algorithms
such as GLR is not composable using the sequence and alternation
operators: GLR parsers operate on LR automaton, and each LR state
corresponds to multiple positions in grammar rules, and therefore,
parsers cannot be directly defined using sequence and alternation.

Earley [4] and Generalized LL (GLL) parsing [21] are different
from GLR in the sense that the parser directly operates on grammar
rules, rather than an automaton. In particular, GLL parsing has a
close relationship with the grammar, similar to recursive-descent
parsing. Using Earley’s algorithm or GLL, it is possible to define a
grammar in a combinator style, and then interpret such a grammar.
Such interpretive version of Earley parsing is provided in [20]. In
an earlier work [2], we provided an interpretive formulation of GLL

1

parsing. Such formulations of context-free grammars provide a deep
embedding, as the grammar is represented by an algebraic data type.

Deep embedding can benefit from under-the-hood transforma-
tions and optimizations. For example, it is possible to calculate
first/follow sets and use these information for pruning the search
space. However, such parser combinators still have the flavor of a
parser generator. Moreover, an extension to such parser combinators
may also require modification to the underlying parsing algorithm,
for example, the modified Earley sets [11] and modified GLL algo-
rithm [2] to support data dependency. In contrast, parser combinators
that provide shallow embedding enable directly executable parsers,
as grammars are represented directly as functions. Although certain
optimizations are difficult and require access to meta-syntax of the
host language, shallow embedding is attractive, since it eases exten-
sion and modification through seamless integration with the host
programming language.

In this paper we present general parser combinators that combine
the expressivity and performance guarantees of state-of-the-art
general parsing algorithms with the flexibility and ease of use of
conventional parser combinators. Our general parser combinators
support the full class of context-free grammars and produce a parse
forest in O(n3) time and space. One key distinction of our approach,
compared to interpreter-based general parsing solutions, is that in
our approach, like in conventional parser combinators, parsers are
directly executable. We believe such a model is a more natural
generalization of conventional parser combinators.

The main contribution of this paper is a technique for realizing
general parser combinators as a direct embedding in a programming
language. We base our general parser combinators on earlier work
on memoized Continuation-Passing Style (CPS) recognizers by
Johnson [13]. Johnson’s approach is a functional formulation of
recursive-descent parsing which also provides an elegant solution to
the problem of left recursion.

More specifically, our contributions are:

• We modify Johnson’s CPS recognizers [13] to obtain the worst-
case cubic complexity (Section 2). We show that Johnson’s
original formulation may require unbounded polynomial time in
Appendix A.

• We extend cubic CPS recognizers to fully general parsers by
constructing binarized SPPFs [21, 22] (Section 3). These parsers
are cubic in time and space, which we prove in Appendix B.

• We evaluate the performance of the resulting parsers using a
highly ambiguous grammar and the grammar of Java 7 [8].
The results show worst-case cubic runtime performance on the
highly-ambiguous grammar and near linear runtime performance
on the grammar of Java (Section 4).

Our general parser combinators are implemented as part of the
Meerkat parser combinator library1. The Meerkat library provides
combinators for lexical disambiguation, layout (whitespace and
comment) insertion, EBNF, operator precedence, and execution of
semantic actions. Figure 1 shows how an expression grammar can
be written very naturally using the Meerkat library. The grammar
is disambiguated using declarative disambiguation combinators
for operator precedence, such as |>, left, and right. In addition,
semantic actions for AST generation are defined using the & and ^
combinators. In this paper, however, we do not discuss how Meerkat
can be used but instead focus on the underlying parsing technique.

The rest of this paper is organized as follows. Section 2 intro-
duces Johnson’s CPS recognizers, and our extension that makes
them cubic. In Section 3 we introduce binarized SPPFs, and extend
the cubic CPS recognizers to parsers that construct binarized SPPFs

1 https://github.com/meerkat-parser

val E
= syn (right(E ~ "^" ~ E) & { case x~y => Pow(x,y) }

|> "-" ~ E & { Neg(_) }
|> left (E ~ "*" ~ E & { case x~y => Mul(x,y) }
| E ~ "/" ~ E & { case x~y => Div(x,y) })
|> left (E ~ "+" ~ E & { case x~y => Add(x,y) }
| E ~ "-" ~ E & { case x~y => Sub(x,y) })
| "(" ~ E ~ ")"
| "[0-9]".r ^ { s => Num(toInt(s)) })

Figure 1. A natural expression grammar directly encoded in Scala
using the Meerkat library.

in cubic time and space. In Section 4 we present the performance
results of CPS parsers using a highly ambiguous grammar and the
grammar of Java. Section 5 provides a discussion of related work,
and Section 6 concludes.

2. General Cubic CPS Recognizers

2.1 Basic Recursive-Descent Recognizers

In this section we introduce basic recursive-descent recognizers that
use a simple backtracking strategy: the alternatives of a nonterminal
are tried in order, and the next alternative is tried only if the current
one fails. Figure 2 shows such a formulation2. We use basic Scala
to explain the semantics of parser combinators as it is expressive
enough to enable a concise, executable specification.

A basic recognizer is a function of type Recognizer, which is
defined as a type alias to function type Int => Result[Int] (using
the type keyword) with Int as a parameter type and Result[Int]
as a return type. Result[T] is a generic type instantiated with
Int to represent the result of a recognizer. In essence, a basic
recognizer is a partial function: it takes an input position and either
succeeds, returning the next input position, or fails. Partiality of basic
recognizers can be implemented using Scala’s monadic Option[T]:

type Result[T] = Option[T]
def success[T](t: T): Result[T] = Some(t)
def failure[T](): Result[T] = None

Result[T] is defined as a type alias to Option[T], and two functions,
parameterized with type parameter T, are provided to compute
success and failure. This way, success with the next position i
is represented by the value constructor Some, which takes a value
of type T and creates a value of type Option[T], e.g., Some(i), and
failure by the value constructor None.

Basic recognizers can be composed with four combinators
(higher-order functions): terminal, epsilon, seq and rule (Figure 2).
The first two combinators construct basic recognizers for terminals
and e , respectively. For example, terminal returns a closure (defined
using the => notation) that takes an input position i and reports
success with the next input position i + t.length if terminal t
matches a substring of the input string starting from i, otherwise
reports failure. For the sake of presentation, we assume that input
is globally visible instead of being passed as an argument.

The combinator seq is used to encode sequential composition
of multiple recognizers. The resulting recognizer chains the given
recognizers as long as each of them produces a result, and if any of
them fails, the entire composition also fails. The asterisk (*) next to
the Recognizer type permits a variable number of arguments, and
therefore, rs refers to a sequence of recognizers. seq invokes the
method reduceLeft on the sequence rs to reduce this sequence to a

2 The code snippets used in this paper are available at: https://github.
com/meerkat-parser/cps-parsers

2

https://github.com/meerkat-parser
https://github.com/meerkat-parser/cps-parsers
https://github.com/meerkat-parser/cps-parsers

type Recognizer = Int => Result[Int]

def terminal(t: String): Recognizer
= i => if(input.startsWith(t, i)) success(i + t.length)

else failure

def epsilon: Recognizer = i => success(i)

def seq(rs: Recognizer*): Recognizer
= rs.reduceLeft((cur, r) => (i => cur(i).flatMap(r)))

def rule(nt: String, alts: Recognizer*): Recognizer
= alts.reduce((cur, alt) => (i => cur(i).orElse(alt(i)))

Figure 2. Combinator-style recognizers.

new recognizer. At each step, reduceLeft applies a binary operator,
passed to reduceLeft as a closure, to the recognizers in the sequence.
For example, reduceLeft called on a sequence of three elements
a1, a2, a3 with some binary operator f is semantically equivalent
to f (f (a1,a2),a3). The binary operator in the definition of seq
takes two recognizers, cur and r, and returns a new recognizer.
This recognizer takes an input position i and first calls cur at i.
Then, if cur succeeds at i, e.g., by returning a value Some(j) with
the next input position j, the recognizer calls r at j returning the
result, otherwise the recognizer fails returning None. The flatMap
method defined in type Option[T] enables such composition of basic
recognizers, systematically accounting for partiality.

The combinator rule is used to define a nonterminal with head nt
and alternatives alts. To recognize a nonterminal at an input position
using basic recognizers, the alternatives of the nonterminal are
tried at the input position until one of them succeeds. rule invokes
the method reduce on a sequence of recognizers, alts, to reduce
alternatives to a new recognizer by applying an associative binary
operator at each step. The binary operator takes two recognizers,
cur and alt, and returns a recognizer that given an input position i,
first calls cur at i, and if it succeeds, returns its result, otherwise,
calls alt at i. This semantics of handling failure is provided by the
orElse method defined in type Option[T]. The orElse method uses
the call-by-name evaluation strategy in its argument so that if cur
succeeds at i, the expression alt(i) is not evaluated.

Given the combinators of Figure 2, a recognizer for A ::= a can
be directly defined as follows:

val A = rule("A", terminal("a")) // A ::= a

where A is a variable to which the resulting recognizer is assigned.
This formulation, however, can be problematic when recursive
definitions are required. For example, consider the grammar S ::=
aSb |aS |s defined as follows:

val S = rule("S",
seq(terminal("a"), S, terminal("b")), // S ::= a S b
seq(terminal("a"), S), // | a S
terminal("s")) // | s

In a programming language with strict evaluation, this recursive
definition is not well-defined: when the defining expression on the
right-hand side of the assignment, which recursively uses variable S,
is evaluated, S is unbound. One way to solve this problem is to use a
fix-point combinator fix, defined as:

def fix[A,B](f: (A=>B)=>(A=>B)): A=>B =
{ lazy val p: A=>B = f(t => p(t)); p }

Here we use the definition of fix that can be used in languages with
strict evaluation. This is also reflected in the type signature. Using
fix, the recognizer for S can be defined as:

type Result[T] <: MonadPlus[T, Result]
def success[T](t: T): Result[T]
def failure[T]: Result[T]

trait MonadPlus[T, M[_] <: MonadPlus[_, M]] {
def map[U](f: T => U): M[U]
def flatMap[U](f: T => M[U]): M[U]
def orElse(r: => M[T]): M[T]

}

Figure 3. Monadic Result[T].

val p = fix(S => rule("S",
seq(terminal("a"), S, terminal("b")), // S ::= a S b
seq(terminal("a"), S), // | a S
terminal("s"))) // | s

The resulting recognizer is the fix point of the function passed to
fix as a closure. This way, the recursive structure of S is encoded as
an anonymous recursive function that is assigned to variable p. The
use of S in the body of the closure replaces the recursive uses of the
recognizer in the previous definition.

As illustrated, recognizers are directly constructed using combi-
nators, resembling the grammar. In the next section, we generalize
this framework to allow results other than Option[Int]. In particular,
we reuse the definitions of Figure 2 as is to obtain continuation-
passing style recognizers, and later parsers.

2.2 Full Backtracking Using Continuation-Passing Style

The first problem with basic recursive-descent recognizers is that
backtracking is local to a nonterminal. As a result, the order
of alternatives may influence the recognition of a sentence. For
example, a recognizer for the grammar A ::= a |ab reports failure
when recognizing the input string "ab", although it is apparent that
the second alternative matches "ab". The reason for failure is that
the first alternative reports success, and the second alternative is
never tried, while there is an unmatched b left. The second problem
is that basic recognizers only return a single derivation of the input
string, which depends on the order of alternatives. The grammar
S ::= aSb |aS |s, for example, can derive "aasb" in two different
ways, corresponding to the following leftmost derivations:

1. S)aSb)aaSb)aasb

2. S)aS)aaSb)aasb

However, basic recognizers can only deliver one. To support the full
class of context-free grammars, basic recursive-descent recognizers
require exhaustive search, and therefore, need full backtracking. In
such a setting, a recognizer can potentially succeed multiple times
at the same input position. To introduce full backtracking into basic
recursive-descent recognizers, the recognition functions have to be
adapted to produce multiple values.

One way to approach this is to use Continuation-Passing Style
(CPS). In fact, to transform basic recognizers into CPS recogniz-
ers, it is sufficient to only redefine Result[T] and accompanying
functions success and failure. Indeed, the combinators of Figure 2
can be used with any Result[T] that defines how to compose two
functions via flatMap and how to combine two results via orElse,
so that the details specific to Result[T], such as partiality of basic
recognizers, are systematically managed by flatMap and orElse.

The MonadPlus trait in Figure 3 specifies a monadic interface:
map, flatMap and orElse. The type constraint, expressed using <:,
requires Result[T] to define the methods of the interface. Note
that =>, used before the parameter type in orElse, indicates call-
by-name evaluation in its argument. This can also be achieved by
explicitly constructing a closure. In addition, success defines how to

3

type K[T] = T => Unit // Continuation type

trait Result[T] extends (K[T] => Unit)
with MonadPlus[T, Result] {

def map[U](f: T => U): Result[U]
= result(k => this(t => k(f(t))))

def flatMap[U](f: T => Result[U]): Result[U]
= result(k => this(t => f(t)(k)))

def orElse(r: => Result[T]): Result[T]
= { lazy val v = r;

return result(k => { this(k); v(k) }) }
}

def success[T](t: T): Result[T] = result(k => k(t))
def failure[T](): Result[T] = result(k => {/*do nothing*/})

def result[T](f: K[T] => Unit): Result[T]
= new Result[T]{ def apply(k: K[T]) = f(k) }

Figure 4. Result[T] for CPS recognizers.

lift a value to the one of type Result[T] (basic computation) while
failure defines zero (computation with no value).

A CPS recognizer is a function of the same type as in Figure 2,
but with Result[T] in Figure 4, i.e., defined as the continuation
monad [27]. In Figure 4, K[T] represents a continuation type defined
as a type alias to T => Unit3. Now, Result[T] is a function type,
a subtype of K[T] => Unit, which also defines the methods of the
MonadPlus interface (we discuss them later).

The helper method result (on the bottom of Figure 4) is used
to define values of type Result[T] using ordinary functions of type
K[T] => Unit. In Scala, a type can extend a function type, and a
function is an object that has an apply method, e.g., if f is of type
Int => Int, f(0) is equivalent to f.apply(0). Given a function f
of type K[T] => Unit, the result method creates an instance of
Result[T], say g, such that the result of g(k) is equal to the result
of f(k).

A CPS recognizer takes an input position and returns a function
of type Result[Int]. The returned function takes a continuation
of type K[Int] and returns Unit. A continuation is a function, now
additionally passed to recognizers, that represents the “rest” of
the recognition process. Instead of directly returning a value, a
recognizer “returns” success by calling its continuation with the next
input position, as in success, and fails by not calling its continuation,
as in failure. For example, given a CPS recognizer for a terminal
val f: Recognizer = terminal("a") and an initial continuation
val k0: K[Int] = i => println("success: " + i), the result of
evaluating f(0)(k0) is either "success: 1", printed to the console
if the input string starts with "a", where 1 is the next input position,
or nothing otherwise.

Similar to basic recognizers, CPS recognizers can be composed
using the combinators of Figure 2, but now defined in terms of
flatMap and orElse of Figure 4. In the definition of seq, given
two CPS recognizers, cur and r, the result of their composition
using flatMap is a CPS recognizer that given an input position i,
first calls cur at i, as before, but now returns a function of type
Result[Int]. This function, given a continuation k, first creates a
new continuation t => r(t)(k) and then passes this continuation to
the result of cur(i), so that the second recognizer, r, is called via this
continuation when the recognizer cur succeeds at i with a new input

3 Unit is equivalent to type void in other programming languages, e.g., Java.

1 def memo[T](f: Int => Result[T]): Int => Result[T] = {
2 val table: Map[Int, Result[T]] = HashMap.empty
3 return i => table.getOrElseUpdate(i, memo_result(f(i)))
4 }

6 def memo_result[T](res: => Result[T]): Result[T] = {
7 val Rs: MutableList[T] = MutableList.empty
8 val Ks: MutableList[K[T]] = MutableList.empty
9 return result(k =>
10 if (Ks.isEmpty) { // Called for the first time
11 Ks += k
12 val k_i: K[T] = t => if (!Rs.contains(t)) {
13 Rs += t
14 for (kt <- Ks) kt(t)
15 }
16 res(k_i)
17 } else { // Has been called before
18 Ks += k
19 for (t <- Rs) k(t)
20 })
21 }

Figure 5. Memo functions for CPS recognizers.

position. In other words, seq now constructs a continuation-passing
chain of function calls, one for each given recognizer.

In the definition of rule, given two CPS recognizers, cur and alt,
a new CPS recognizer, returned by the binary operator, sequentially
calls cur and alt at an input position i and combines the results
of cur(i) and alt(i) using orElse, so that when the new CPS
recognizer is called at i with a continuation, say k, k is passed to
both results, i.e., cur(i)(k) and alt(i)(k). This way, rule tries all
the alternatives. Note that in the definition of orElse, the use of
variable v with keyword lazy ensures that the argument to orElse is
(lazily) evaluated once.

CPS recognizers support full backtracking as the rule combina-
tor always tries all of its arguments. The runtime behavior of such
recognizers is exponential in the worst case. Furthermore, these rec-
ognizers will fail to terminate in face of left-recursive rules. Since
Norvig’s work on memoization in top-down parsing [18], it is known
that memoizing recognizers brings down the exponential runtime
performance to polynomial. However, this type of memoization
does not solve the problem of left recursion. In the next section we
introduce Johnson’s approach on memoized CPS recognizers [13]
that solves the problem of left recursion.

2.3 Support for Left Recursion

Neither the basic recognizers of Section 2.1, nor the CPS recognizers
of Section 2.2 support left-recursive rules. Consider the following
left-recursive recognizer:

val A = fix(A => rule("A",
seq(A, terminal("a")), terminal("a"))) // A ::= A a | a

The call to A at input position 0 leads to unbounded number of
recursive calls at the same input position, as the recursive calls do
not change the function’s state and never reach a base case.

The memo functions of Figure 5 turn an arbitrary CPS recognizer
into a memoized CPS recognizer. The memo function, when applied
to a recognizer, returns a new recognizer that consults the memo
table each time it is called at an input position i. If the memoized rec-
ognizer has not been yet called at i, the result of calling the original,
unmemoized recognizer, f, at i is memoized, memo_result(f(i)),
and returned after updating the memo table. Due to the call-by-name
nature of memo_result (=> before the parameter type), f(i) is not
evaluated at this moment. This ensures that f is called at i at most
once. If the memoized recognizer has been called at i before, its

4

def rule(nt: String, alts: Recognizer*): Recognizer
= memo(alts.reduce((cur, alt) =>

i => cur(i).orElse(alt(i))))

Figure 6. Memoizing CPS recognizers.

result is taken from the table. Note that the getOrElseUpdate method
uses the call-by-name evaluation strategy in its second argument, so
that it is not evaluated if the key is found.

A memoized result, returned when memo_result is applied to the
result of calling an unmemoized recognizer f at an input position i,
has access to two lists: Rs and Ks (lines 7–8). The result list Rs stores
all input positions produced by the unmemoized recognizer when it
succeeds at i, and the continuation list Ks stores all continuations
passed to the memoized recognizer when it is called at i. If the
memoized result is called for the first time (Ks.isEmpty in line
10), the current continuation k is added to Ks, and the original,
unmemoized result, res, is called with a new continuation k_i
(defined in lines 12–15). Note that f(i) is evaluated at this moment
(line 16), and therefore, f can be called at i at most once. Also, k_i
is created only upon the first call to the memoized recognizer at i.
Each time the unmemoized recognizer succeeds at i with an input
position, k_i checks whether this input position has been seen before
and if not (!Rs.contains(t)), first records it in Rs, and then, runs
all the continuations recorded so far in Ks at this input position (for-
loop, line 14). On the other hand, if the memoized result has been
called before (else-branch, lines 17–20), the current continuation k
is added to Ks and is called for each input position recorded in Rs.

To add memoization to CPS recognizers, the rule combinator
needs to be re-defined as in Figure 6. Now, when a memoized
left-recursive CPS recognizer is called at an input position i, its
termination is guaranteed as the respective unmemoized recognizer
(f in the body of memo) will never be called at i more than once.
At the same time, the part of the execution path, which led to a
left-recursive call and can produce new input positions for the left-
recursive recognizer at i, is effectively recorded as continuations.
A continuation is recorded for the left-recursive call, and, in case
of indirect left recursion, for each call to a memoized recognizer
at i that indirectly led to the left-recursive call. Each continuation
captures the next step in the alternative after the current call returns,
and a continuation defined in lines 12–15 is called at the end of each
alternative. These continuations will be run (re-trying the terminated
path) for any input position produced by the left-recursive recognizer
at i, and as long as new input positions are produced.

Intuitively, memoizing CPS recognizers does not reduce the
number of execution paths as all the continuations passed to a
memoized CPS recognizer at an input position will be recorded in
the continuation list, and each of the recorded continuations will be
run for each result produced by the recognizer at this input position.
This follows from the definition of memo_result. In the if-branch, all
recorded continuations are invoked on a newly produced result. In
the else-branch, all existing results are input to a new continuation.

2.4 Memoization on Continuations

In Appendix A.3 we show that the execution of memoized CPS
recognizers of Figure 2 and 6 can require O(nm+1) operations, where
m is the length of the longest rule in the grammar. The reason for
such unbounded polynomial behaviour is that the same continuation
can be called multiple times at the same input position. As illustrated
in Appendix A.3, this happens when the same continuation is
added to different continuation lists that are associated with calls
made to the same recognizer but at different input positions. If the
recognizer produces the same input position starting from different
input positions, duplicate calls are made. The duplicate calls further

def memo_k[T](k: T => Unit): T => Unit = {
val s: Set[T] = HashSet.empty
return t => if(!s.contains(t)) { s += t; k(t) }

}

Figure 7. Memoization on continuations.

trait Result[T] extends (K[T] => Unit)
with MonadPlus[T, Result] {

def map[U](f: T => U)
= result(k => this(memo_k(t => k(f(t)))))

def flatMap[U](f: T => Result[U])
= result(k => this(memo_k(t => f(t)(k))))

def orElse(r: => Result[T])
= { lazy val v = r

return result(k => { this(k); v(k) }) }
}

Figure 8. Result[T] extended with memoization on continuations.

result in adding the same continuations to the same continuation
lists multiple times.

To reduce the worst-case complexity to cubic, the duplicate calls
to continuations need to be eliminated. To achieve this, we extend the
memoization strategy by adding memoization on continuations, as in
Figure 7, and by re-defining Result[T] as in Figure 8. A memoized
continuation consults the set of already passed arguments (Figure 7),
input positions in case of recognizers, and runs the unmemoized
continuation, k, only when it has not been called before with the
current input position. The memoization on continuations prevents
the same execution path to be explored more than once, where an
execution path is identified by a grammar position, the input position
of the parent nonterminal and the current input position. Note that
continuations k_i in Figure 5, lines 12–15, have been already defined
with the memoization semantics.

In the next section we explain how CPS recognizers can be
extended to parsers that construct binarized SPPFs. In Appendix B
we show that memoization on continuations is also sufficient to keep
the cubic bound for such CPS parsers.

2.5 Trampoline

In our parser combinators, when one continuation calls another
continuation, the number of calls in the call stack may exceed the
default size of the JVM stack. To avoid stack overflow, we can turn
the calls into a trampoline-style loop. Using a trampoline, calls are
handled in a loop over a custom stack data structure, ensuring that
the JVM stack does not grow too large. To implement a trampoline,
we create and pass around an object of type Trampoline. This object
maintains a custom stack of values that represent calls and runs a
loop over this stack. In the definition of orElse and memo_result,
instead of calling a continuation or a function of type Result[T],
a value representing the call is pushed on top of the stack in the
trampoline object. When the main loop runs, a value is popped
from the stack, and the actual call represented by this value is made.
Parsing terminates when there are no elements left in the stack.

3. SPPF Construction

3.1 Binarized SPPF

General context-free parsing algorithms explore all derivations of a
sentence. To deal with potentially exponential number of parse trees,

5

S, 0, 4

a, 0, 1 S, 1, 3 b, 3, 4

a, 1, 2 S, 2, 3

s, 2, 3

S, 1, 4

S, 0, 4

a, 0, 1

S, 2, 3

s, 2, 3

a, 1, 2 b, 3, 4

S, 0, 4

a, 0, 1 S, 1, 3

b, 3, 4a, 1, 2 S, 2, 3

s, 2, 3

S, 1, 4

S, 0, 4

a, 0, 1 S, 1, 3 b, 3, 4

a, 1, 2 S, 2, 3

s, 2, 3

S, 1, 4S ::= a S . b, 0, 3

S ::= a S . b, 1, 3

(S ::= aSb., 3) (S ::= aS., 1)

(a) Parse tree 1 (b) Parse tree 2 (c) SPPF (d) Binarized SPPF

Figure 9. Two parse trees (a) and (b), their corresponding SPPF (c), and the binarized SPPF version (d).

common subtrees are shared to form a Shared Packed Parse Forest
(SPPF), introduced by Tomita [24]. For example, the two parse trees,
resulting from parsing "aasb" using the grammar S ::= aSb |aS |s,
and their corresponding SPPF are shown in Figure 9.

In an SPPF, there are two types of nodes: symbol nodes and
packed nodes. Symbol nodes are of the form (x, i, j) where x is
the name of a nonterminal, terminal or epsilon, and i and j are
the left and right extents, indicating the start and end positions in
the input string recognized by x. Packed nodes, shown by small
circles in Figure 9, represent a derivation. When there is ambiguity,
e.g., under the root node in Figure 9 (c), multiple packed nodes are
present, each identifying a derivation.

Johnson [12] showed that any parsing algorithm that produces
a Tomita-style SPPF has O(nm+1) worst-case runtime, where m is
the length of the longest rule in the grammar. Therefore, in order
to have general parsing in O(n3) time, which is common in general
recognizers, rules need to be of length at most two. Although a
grammar can be transformed to a grammar with rules of length at
most two, this transformation leads to a large grammar, with many
extra nonterminals. This affects the maintainability of the grammar
and the parsing performance [22].

To enable general context-free parsing in O(n3) without trans-
forming the grammar, Scott and Johnstone [22] introduced binarized
SPPFs, which have additional intermediate nodes. Intermediate
nodes are of the form (L, i, j), where L is a grammar position, and i
and j are the left and right extents. Grammar positions for interme-
diate nodes are of the form A ::= a ·b where |a|� 2. The binarized
version of the SPPF is shown in Figure 9 (d). Intermediate nodes,
similar to nonterminal nodes, can be ambiguous. In this case, they
have more than one packed node as children.

Packed nodes in a binarized SPPF are of the form (L,k), where L
is a grammar position, and k, pivot, is an input position. For packed
nodes under a nonterminal A, L is of the form A ::= a·, where a is
an alternative of A. For example, in the binarized SPPF of Figure 9
(d), the left and right packed nodes under the root node have labels
(S ::= aSb·,3) and (S ::= aS·,1), respectively. For packed nodes
under an intermediate nodes, L is the same as the grammar position
of the intermediate node. Moreover, k is equal to the left extent of
the packed node’s right child. Packed nodes can have at most two
children, which are non-packed nodes.

3.2 SPPF Construction for Cubic CPS Parsers

To extend CPS recognizers to parsers that produce binarized SPPFs,
we redefine terminal, epsilon, seq, and rule as in Figure 10. Now,
these combinators build parsers of type Parser, which is a function
that takes an input position and returns a non-packed (symbol or
intermediate) node as Result[NonPackedNode].

The SPPF creation is delegated to an instance of SPPFLookup
(sppf), which we assume is globally visible. The SPPFLookup in-
terface provides methods that ensure sharing SPPF nodes. Each
method of SPPFLookup first searches for an existing SPPF node with

the given arguments and either returns an existing node, or creates a
new one. The getNonterminalNode and getIntermediateNode meth-
ods take two non-packed nodes as arguments, which will be attached
to the returned node via a packed node.

Each combinator returns a parser that is responsible for creation
of a specific type of an SPPF node. A terminal node is created via
getTerminalNode which takes the name of the terminal, the input
position at which the function is called, and the next input position
corresponding to the end of the matched terminal. Epsilon (epsilon)
nodes have the same left and right extents, both being equal to the
input position at which the parser is called.

The seq2 combinator constructs a parser that creates an interme-
diate node based on the results of its two operands, p1 and p2. An
intermediate node is created via the getIntermediateNode method,
which takes a label and two non-packed nodes, t1 and t2, returned
by the parsers p1 and p2, respectively. Note that seq2 uses its re-
sulting parser, q, as the label of the intermediate node, and as this
definition is recursive, the fix point combinator is used.

Finally, the rule combinator first iterates over a sequence of
parsers (by calling map on alts) to create parsers (by applying rule1
to each parser of the sequence) that are responsible for creating
nonterminal nodes. Then, rule reduces the resulting sequence of
parsers. At the end of an alternative, a nonterminal node labeled nt is
created. This is done by calling getNonterminalNode with the name
of the nonterminal, the label of its packed node, and the non-packed
node produced by p at i. Note that rule1 uses its resulting parser, q,
as the label of the packed node, and since this definition is recursive,
the fix point combinator is used.

Sharing non-packed nodes relies on identifying non-packed
nodes by their label and left and right extents. The label of a nonter-
minal or terminal node is a string, while the label of an intermedi-
ate node corresponds to a grammar position. In a parser generator
setting, the labels of intermediate nodes can be determined by pro-
cessing the grammar. In a parser combinator setting, on the other
hand, no such preprocessing step exists, and labels corresponding to
grammar positions should be dynamically determined. We use the
identity of the parser objects resulting from seq2 as labels of inter-
mediate nodes (variable q) to effectively encode grammar positions.
For example, for S := aSb |aS |s, which is defined as

val S = fix(S =>
rule("S", seq(terminal("a"), S, terminal("b")),
seq(terminal("a"), S),
terminal("s")))

the parsers resulting from applying seq2 to the first two symbols,
terminal("a") and S, in the first and second alternatives represent
the unique grammar positions S ::= aS ·b and S ::= aS·, respectively.

3.3 Semantic Actions and Generation of ASTs

Binarized SPPFs are part of the internal machinery of a general
parser, and are not intended for the end user. To provide a user-

6

type Parser = Int => Result[NonPackedNode]

def terminal(t: String): Parser = i => if(input.startsWith(t, i)) success(sppf.getTerminalNode(t, i, i + t.length))
else failure

def epsilon: Parser = i => success(sppf.getEpsilonNode(i))

def seq(ps: Parser*): Parser = ps.reduceLeft(seq2)

def rule(nt: String, alts: Parser*): Parser = memo(alts.map(rule1(nt, _)).reduce((cur, p) => (i => cur(i).orElse(p(i)))))

private def seq2(p1: Parser, p2: Parser): Parser
= fix(q => (i => p1(i).flatMap(t1 => p2(t1.rExtent).map(t2 => sppf.getIntermediateNode(q, t1, t2))))

private def rule1(nt: String, p: Parser): Parser = fix(q => (i => p(i).map(t => sppf.getNonterminalNode(nt, q, t))))

Figure 10. Extension of CPS recognizers to parsers that construct binarized SPPF.

friendly format for processing parsing results, the Meerkat library
supports conversion of binarized SPPFs to terms that reflect the
underlying grammar. This approach is popular in tools that al-
low algebraic specification and term rewriting, for example in
ASF+SDF [26]. Figure 11 shows a visualization of the terms corre-
sponding to the binarized SPPF in Figure 9 (d).

The traversal of binarized SPPFs and generation of terms is
straightforward. As shown in Section 3.1, packed nodes under
nonterminal nodes have labels which corresponds to grammar
positions of the form A ::= a·. The type of a term is computed
as the result of sequencing parsers (seq and rule1) and is stored in
the packed nodes of a nonterminal. We traverse the binarized SPPF
bottom-up, and for each SPPF node type, perform a specific action.

For terminal nodes, a terminal term is created that stores the name
of the terminal and its associated matched string. For nonterminal
or intermediate nodes that are ambiguous, i.e., have more than one
packed node, an ambiguity term is created. An ambiguity term gets
a list of terms as its children. For nonterminal nodes, a nonterminal
term is created. We bypass intermediate nodes, as they do not
correspond to any constructs in the grammar and should not appear
in final terms. This effectively flattens the intermediate nodes.

Besides creation of terms from a binarized SPPF, we support
execution of semantic actions. Due to the inherent nondeterminism
in general parsing, many parsing paths will eventually die. Therefore,
it is desirable to postpone the execution of semantic actions until
parsing is done. In the Meerkat library, semantic actions are stored in
the packed nodes of an SPPF and executed post-parse by traversing
the resulting binarized SPPF. An example of using semantic actions
in the Meerkat library is shown in Figure 1.

The traversal mechanism for semantic actions is basically the
same as for building terms, with the difference that we throw an
exception when an ambiguous node is encountered. In most cases, an
ambiguity is a sign of error in the grammar, and the user should first
resolve the ambiguity, e.g., by investigating the terms corresponding
to the ambiguous parse, and then run the semantic actions.

4. Evaluation

In this section we evaluate the performance of CPS parsers, as
implemented in the Meerkat library. We use the highly ambiguous
grammar G3, S ::= SSS | SS | b, and the grammar of Java. The
results show that Meerkat parsers are cubic on the highly ambiguous
grammar, and behave nearly linearly on the Java grammar. The
experiments were carried out on a machine running Mac OS X
10.9.4 on a quad-core Intel Core i7 2.6 GHz CPU with 16 GB
of memory. The Meerkat library was compiled with Scala 2.11.2
and ran on a 64-Bit Oracle HotSpotTM JVM version 1.7.0_55. The

Amb

S ::= aSb, 0, 4 S ::= aS, 0, 4

a, 0, 1 S ::= aS, 1, 3

a, 1, 2 S ::= s, 2, 3

s, 2, 3

b, 3, 4

S ::= aSb, 1, 4

Figure 11. Terms for the binarized SPPF of Figure 9 (d).

reported time is the mean running time (CPU user time) of 10 runs
for each parse. To allow for JIT optimizations, the first three runs
for each file were skipped.

4.1 Parsing G3

To evaluate the runtime performance of CPS parsers in the worst
case, we ran the Meerkat parser for G3 on sequences of b’s, varying
from 10 to 500. G3 triggers the worst-case behavior for CPS parsers.
Standard GLR parsers, except for BRNGLR that produces binarized
SPPFs, are O(n4) on G3. The results are shown in Figure 12. As
can be seen, the resulting curve is cubic with high confidence, as
indicated by the R2 value of 0.9998.

4.2 Parsing Java

To evaluate the performance of CPS parsers on grammars of real
programming languages, we have chosen the grammar of Java 7
from the main part of the Java Language Specification [8]. This
grammar has a left-recursive unambiguous expression grammar that
encodes operator precedence by introducing new nonterminals. We
ran the parser for the character-level Java grammar4 for 7449 Java
files in the source release of JDK 1.7.0_60-b19. All files were parsed
successfully and without ambiguity. Figure 13 shows the running
time corresponding to the execution of the parser for the character-
level Java grammar for increasing input sizes. We use a log-log
(base 10) plot. The goodness of the fit is indicated by the R2 value of
0.9828. The regression line equation (log-log scale) is written in the
plot. As the regression is calculated after a log transformation of the
original data, and the coefficient is close to one (1.138201), we can
conclude that the running time for Java is near linear (y ⇡ x1.138201).

4 https://github.com/meerkat-parser/grammars

7

https://github.com/meerkat-parser/grammars

0 100 200 300 400 500

0
20

00
60

00
10

00
0

Size (#characters)

CP
U

 ti
m

e
(m

s)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●y = 0.000064 x3 + 0.0137 x2 − 2.8824 x 91.2971
R2 = 0.9998

Regression line

Figure 12. Runtime of parsing string of b’s using G3.

5. Related Work

Conventional parser combinators are recursive-descent like. There-
fore, a natural choice for generalizing parser combinators to support
all context-free grammars is to generalize recursive-descent parsing.
The main challenge is support for left recursion. In this section we
discuss a number of parsing techniques that generalize recursive-
descent parsing, with a focus on how support for left recursion is
provided. We discuss each work based on the following aspects:

1. The mechanism used to support direct left recursion.
2. Support for indirect/hidden left recursion: not supported, re-

quires extra mechanism, or uniformly works with the mechanism
for direct left recursion.

3. The worst-case runtime complexity of the recognizer and parser.
4. The output of a parser (single parse tree or a parse forest).

Table 1 gives an overview of related work based on these aspects.
Note that there are other parser combinator tools, e.g., Parsec [14]
and the Scala parser combinator library [16], which are essentially
basic recursive-descent recognizers (see Section 2), and we do not
discuss them in this section.

5.1 Left-Recursion Curtailment Using the Input Length

Frost et al. [7] present an approach for supporting direct left recur-
sion based on the length of the input. In this approach, the number
of calls to recognizers at each input position is maintained. For
non-left-recursive recognizers, the count will be at most one. For
left-recursive ones, the count increases by each recursive call at
the same input position. When the count exceeds the number of
remaining tokens in the input string plus one, the call is curtailed, as
no successful parse is possible at this point.

In this approach, each left-recursive recognizer can be called at
each input position at most n times, where n is the length of the
input. This brings the worst-case complexity of this approach to
O(n4), compared to the expected O(n3) complexity. In addition,
this approach requires extra machinery to accommodate indirect left
recursion. Since the parser version of Frost et al. ’s approach creates
a Tomita-style SPPF, it is of unbounded polynomial complexity.

One essential difference between Frost et al. ’s approach and
CPS parsers is the moment when a chain of left-recursive calls is
terminated. In CPS parsers, this happens when the second call to a
recognizer at the same input position is made. Then, the results for
left-recursive recognizers are effectively computed in a loop: as long
as a new result is produced, the terminated parsing paths, recorded
as continuations, are restarted at the new input position. As a result,

3 4 5

0
1

2
3

Size (#characters) in log10

CP
U

 ti
m

e
(m

s)
 in

 lo
g1

0 y = 1.138201 x − 8.696786
R2 = 0.9828

Regression line

Figure 13. Runtime of parsing Java files.

handling left-recursive rules is more efficient in CPS parsers. Finally,
it should be noted that Frost et al. ’s approach cannot be used in
cases where the length of the input is not known, for example, when
reading from a network socket.

5.2 Left Recursion in PEGs

Parsing Expression Grammars (PEGs) [6] are an alternative to
context-free grammars, where the unordered alternation operator
is replaced with a prioritized choice operator. PEGs are commonly
implemented as recursive-descent parsers with local backtracking:
the alternatives of a nonterminal are tried in order, and the next
alternative is tried only if the current one fails. As a result, PEGs
produce at most one parse tree and cannot be ambiguous. PEGs
suffer from the quirk that if an alternative is a prefix of another
one, the second alternative is never tried. This, for example, leads
to parse error on "ab" for the grammar A ::= a|ab, although it is
apparent that the second alternative can correctly parse this input.

Packrat parsing [5] uses memoization to implement PEGs in
linear time. However, Packrat parsers, like other recursive-descent
parsers, do not support left recursion. Warth et al. [28] propose a
mechanism to support left recursion by modifying the memoization
in Packrat parsing. In this approach, a special fail value is put into
the memo table before calling a parser at an input position for the
first time, so that left-recursive calls fail. This ensures termination
of the parser for a left-recursive nonterminal. Then, if any of the
non-left-recursive alternatives can produce a result, the parser is
restarted to re-try the left-recursive ones. As long as a new result
is produced, the new result replaces the previous one in the memo
table, and the parser is called again at this input position, reusing
the last result from the memo table for the left-recursive calls. This
process is called growing the seed.

For indirect left recursion, this approach uses an extra data
structure, called rule invocation stack, to maintain the recursive
calls between mutually left-recursive nonterminals. Warth et al. ’s
approach breaks the linear runtime guarantee of Packrat parsing,
as for some left-recursive grammars, the runtime complexity of
this approach is O(n2) [28]. Tratt [25] identifies a problem with
Warth et al. ’s approach for rules that are both left and right recursive,
e.g., E ::= E +E. For such rules, this approach is biased towards
producing a right-associative derivation, which does not conform to
the semantics of PEGs.

5.3 Cancellation Parsing

Cancellation parsing [17] is a technique to support left recursion for
Definite Clause Grammars (DCGs) in Prolog. The basic idea behind
this technique is that each call to a nonterminal takes a set of already

8

Table 1. Overview of related work that extend recursive-descent parsing towards a general parsing solution.

Approach Mechanism Indirect/Hidden Worst-case Complexity Output

Recognizer Parser

Left-recursion curtailment Input-length heuristics extra O(n4) unbounded polynomial Tomita-style SPPF
Left recursion in PEGs Memoization and growing the seed extra O(n2) O(n2) Single parse tree
Cancellation parsing Passing cancellation sets extra exponential exponential Single parse tree
ANTLR 4 Left-recursion elimination by rewriting no O(n4) O(n4) Single parse tree
GLL Cycles in the GSS uniform O(n3) O(n3) Binarized SPPF
CPS parsers Memoization in CPS uniform O(n3) O(n3) Binarized SPPF

called nonterminals, the cancellation set. If the nonterminal is
already in the set, the parser backtracks and tries the next alternative,
otherwise the nonterminal is added to the cancellation set. This
guarantees termination in presence of left recursion. To construct
the parse trees corresponding to the terminated paths, for each left-
recursive nonterminal A, a special token A is put before the rest of
the token stream, using untoken, and a rule A ::= A is added to the
grammar. After inserting A, nonterminal A is called again with the
current cancellation set.

A(c) ::= [A /2 c] A(A [c) 'a' untoken(A) A(c)
| 'a' untoken(A) A(c)
| A // Added rule for the inserted tokens

This approach works for direct and indirect left recursion, but does
not work for hidden left recursion, i.e., when a left-recursive call
is hidden behind a nullable nonterminal, e.g., A ::= BAa and B ⇤)e .
To support hidden left recursion, this approach requires grammar
analysis to identify nullable nonterminals, and pass a boolean flag to
each call. The need for grammar analysis for hidden left recursion
and customization of left-recursive definitions (untoken and rules for
A) makes this approach fundamentally different from ours. Finally,
this parsing technique is designed to have no side effects [17], and
does not memoize previous results, thus is of worst-case exponential
complexity.

5.4 ANTLR 4

ANTLR 4 [19] supports direct left-recursive rules by rewriting them
to non-left-recursive ones. During this rewriting process, ANTLR
inserts semantic predicates to resolve ambiguities based on the order
of alternatives. The resulting parsers mimic the operator precedence
technique by Clarke [3]: the rules that come earlier have higher
precedence, and all rules are left-associative by default, unless
explicitly marked as right-associative. ANTLR 4 does not support
indirect left recursion because rewriting grammars to eliminate
indirect left-recursion results in large grammars that have no obvious
relationship with the original ones.

ANTLR 4 uses the Adaptive LL(*), ALL(*), strategy, in which
a sub-parse is invoked for each alternative of a nonterminal and
intermediate results are cached. ALL(*) effectively uses global
backtracking to avoid the problems with PEG-style backtracking
of previous versions of ANTLR. ALL(*) parsers have worst-case
complexity of O(n4) and produce at most one derivation, since
ambiguities are resolved during parsing. The ambiguity resolution
mechanism is based on the order of alternatives, in which the
sub-parse with the lowest alternative number (appearing earlier) is
preferred. Because of complex grammar transformations performed
by ANTLR 4 before parsing, and its lack of direct support for left
recursion, this parsing strategy is not suitable for parser combinators.

5.5 GLL Parsing

Generalized LL (GLL) [21] is a fully general, worst-case cubic
parsing algorithm. GLL uses a Graph Structured Stack (GSS) that

handles multiple function call stacks, and produces binarized SPPFs.
The problem of left recursion (direct/indirect/hidden) is uniformly
solved by allowing cycles in the GSS. GLL parsers are recursive-
descent like, and have a close relationship with the grammar.

Among all the related work we discussed so far, GLL parsing
is the closest to our work, especially if we consider a version of
GLL [2] which uses a more efficient GSS [1]. In fact, CPS parsers
have the same performance characteristics as GLL parsers with the
new GSS [1]. Although CPS parsers and GLL use very different
terms to describe their inner workings, presumably because of
different communities they have been developed in, there are many
similarities in these two approaches. Most notably, left recursion is
handled in both approaches essentially in the same way.

In a GLL parser (with new GSS [1]) when the parser is before
a nonterminal, a GSS node corresponding to the nonterminal and
the current input position is searched. If the GSS node exists, the
GSS edge is added, recording the current grammar position, and the
previous parsing results associated with this GSS node are reused.
When a new result is added to the results associated with a GSS node,
the parser will explore the paths recorded on outgoing GSS edges
with the new result. Similarly, in CPS parsers, if a memoized parser
has been already called at the current input position, a continuation
is added, recording the current position in the sequence, and the
parsing results associated with the parser are reused. When a new
result is added to the results of a parser, the recorded continuations
will be called with the new result.

The main difference between a GLL parser and CPS parser is
how the control flow is designed. GLL uses a GSS, which is a
global data structure that encodes all parsing paths, while in a CPS
parser, the control flow is encoded in continuation-passing style. It
is in principle possible to realize a direct embedding of context-free
grammars based on GLL parsing, although such an implementation
may not be trivial. The GLL parsing algorithm [21] was designed
for a code generation setting, in which a grammar processing
phase generates the required labels for grammar positions. In parser
combinators based on GLL, these labels should be dynamically
represented. For example, Spiewak [23] shows how to build parser
combinators based on GLL by encoding GSS nodes and edges as
closures. This encoding resembles a form of continuation-passing
style. Moreover, parser combinators based on GLL may benefit
from a different GSS structure [1], as it is more similar to function
memoization. We believe that our general parser combinators,
compared to a functional formulation of GLL, are a more natural
and elegant choice for realizing general parser combinators, as they
offer a more straightforward generalization of traditional parser
combinators.

6. Conclusions

In this paper we presented a foundation for general parser combina-
tors based on an extension of Johnson’s CPS recognizers. Jonhson
stated that for constructing a parse forest from his approach “a

9

straightforward implementation attempt would probably be very
complicated” [13]. To the best of our knowledge no parser version
of Johnson’s CPS recognizers existed before our work. One of our
core contributions is the extension of CPS recognizers to parsers
that construct binarized SPPFs [21, 22]. We showed that binarized
SPPFs are a perfect fit for CPS recognizers. In particular, interme-
diate nodes provide a natural way to build a node from a binary
sequence combinator. The results of parsing Java show that CPS
parsers are practical for large, real-world grammars, even in a dy-
namic parser combinator setting where static grammar analysis is
not an option. As future work, we plan to experiment with more
programming languages and explore optimization opportunities in
the Meerkat library.

Acknowledgments

We thank Jurgen Vinju, Paul Klint, and the anonymous reviewers
for their constructive feedback on earlier versions of this paper.

References

[1] A. Afroozeh and A. Izmaylova. Faster, Practical GLL Parsing. In
Compiler Construction, CC’15, pages 89–108. Springer, 2015.

[2] A. Afroozeh and A. Izmaylova. One Parser to Rule Them All. In
Onward! 15, pages 151–170. ACM, 2015.

[3] K. Clarke. The Top-down Parsing of Expressions. Technical report,
Dept. of Computer Science and Statistics, Queen Mary College, 1986.

[4] J. Earley. An Efficient Context-free Parsing Algorithm. Commun. ACM,
13(2):94–102, Feb. 1970. ISSN 0001-0782.

[5] B. Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time, func-
tional pearl. In International conference on Functional programming,
ICFP ’02, pages 36–47, 2002.

[6] B. Ford. Parsing Expression Grammars: A Recognition-based Syntactic
Foundation. In Symposium on Principles of Programming Languages,
POPL ’04, pages 111–122, 2004.

[7] R. A. Frost, R. Hafiz, and P. Callaghan. Parser Combinators For Am-
biguous Left-recursive Grammars. In Practical Aspects of Declarative
Languages, PADL’08, 2008.

[8] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java
Language Specification Java SE 7 Edition, February 2013.

[9] G. Hutton. Higher-order Functions for Parsing. Journal of Functional
Programming, 2(3):323–343, July 1992.

[10] G. Hutton and E. Meijer. Monadic Parsing in Haskell. J. Funct.
Program., 8(4):437–444, July 1998.

[11] T. Jim, Y. Mandelbaum, and D. Walker. Semantics and Algorithms for
Data-dependent Grammars. In Principles of Programming Languages,
POPL ’10, pages 417–430, 2010.

[12] M. Johnson. The Computational Complexity of GLR Parsing. In
Generalized LR Parsing, pages 35–42. Springer US, 1991.

[13] M. Johnson. Memoization in Top-down Parsing. Comput. Linguist., 21
(3):405–417, Sept. 1995. ISSN 0891-2017.

[14] D. Leijen. Parsec, A Fast Combinator Parser. Technical Report 35,
Department of Computer Science, University of Utrecht (RUU), 2001.

[15] S. McPeak and G. C. Necula. Elkhound: A Fast, Practical GLR Parser
Generator. In Compiler Construction, CC’15, pages 73–88, 2004.

[16] A. Moors, F. Piessens, and M. Odersky. Parser Combinators in Scala.
Technical report, Katholieke Universiteit Leuven, 2008.

[17] M.-J. Nederhof. A New Top-down Parsing Algorithm for Left-
recursive DCGs. In Progamming Language Implementation and Logic
Programming, pages 108–122. Springer, 1993.

[18] P. Norvig. Techniques for Automatic Memoization with Applications to
Context-free Parsing. Computational Linguistics, 17(1):91–98, 1991.

[19] T. Parr, S. Harwell, and K. Fisher. Adaptive LL(*) Parsing: The Power
of Dynamic Analysis. In OOPSLA ’14, pages 579–598, 2014.

[20] T. Ridge. Simple, Efficient, Sound and Complete Combinator Pars-
ing for All Context-Free Grammars, Using an Oracle. In Software
Language Engineering, pages 261–281. Springer, 2014. .

[21] E. Scott and A. Johnstone. GLL Parse-tree Generation. Science of
Computer Programming, 78(10):1828–1844, 2013.

[22] E. Scott, A. Johnstone, and R. Economopoulos. BRNGLR: A Cubic
Tomita-style GLR Parsing Algorithm. Acta informatica, 44(6):427–461,
2007.

[23] D. Spiewak. Generalized Parser Combinators. http://www.cs.uwm.
edu/~dspiewak/papers/generalized-parser-combinators.
pdf, March 2010.

[24] M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers, USA, 1985.

[25] L. Tratt. Direct Left-recursive Parsing Expression Grammars. Technical
Report EIS-10-01, Middlesex University, Oct. 2010.

[26] M. van den Brand, J. Heering, P. Klint, and P. Olivier. Compiling
Rewrite Systems: The ASF+SDF Compiler. ACM Transactions on
Programming Languages and Systems, 24(4):334–368, 2002.

[27] P. Wadler. Comprehending Monads. In LISP and Functional Program-
ming, LFP ’90, pages 61–78. ACM, 1990.

[28] A. Warth, J. R. Douglass, and T. Millstein. Packrat Parsers Can Support
Left Recursion. In Partial Evaluation and Semantics-based Program
Manipulation, PEPM ’08, pages 103–110, 2008.

A. Complexity of CPS Recognizers

A.1 Notation

We start by introducing notation to support reasoning about the
execution and complexity of memoized CPS recognizers. We denote
the resulting recognizers of the terminal, epsilon, seq and rule
combinators of Figure 2 and 6 as follows:

• fe = epsilon() and fa = terminal(“a”) denote recognizers for e
and for terminal a, respectively.

• fA = rule(fa1 , fa2 , . . . , fak) denotes a recognizer for nonterminal
A ::= a1 |a2 | . . . |ak, where ai = x1x2 . . .xm is an alternative
consisting of a sequence of symbols.

• fai is either a recognizer for a symbol, fai = fx1 , m = 1, or a
sequence of symbols, fai = seq(fx1 , fx2 , . . . , fxm), m � 2.

• fa1|a2|...|ak
denotes the result of applying reduce in the body of

the rule combinator, i.e., an unmemoized recognizer for A.

We also use the following notation:
(fA, i,k) denotes a call to fA at an input position i with a continuation
k passed to the result of calling fA at i.
(R(A,i),K(A,i)) denotes the memo entry created upon the first call to
fA at the input position i, where R(A,i) is the result list, and K(A,i) is
the continuation list.
For any call (fA, i,k), such that fA is called at the input position i
for the first time, continuations of the following forms are created:
k i

A denotes the continuation (Figure 5, lines 12–15) that maintains
the results produced by fA at i: it records new input positions in
R(A,i) and runs all the continuations pending for this call in K(A,i).
k i

A::=a·xb denotes the continuation that corresponds to a grammar
position A ::= a · xb in an alternative of A, |a|� 1, and is uniquely
identified by A ::= a · xb and i. When fA is called at the input
position i for the first time, i.e., when the unmemoized recognizer
for A is called at i with k i

A (Figure 5, line 16), continuations of this
form are recursively created as follows, where function application
binds stronger than !:
k i

A::=a·xb = j ! fx(j)(k i
A::=ax·b), where fx is the recognizer for

the next symbol x in the alternative, and k i
A::=ax·b corresponds

10

http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.pdf
http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.pdf
http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.pdf

to the next grammar position A ::= ax ·b . This follows from the
definition of seq, namely, the left reduce semantics and composition
via flatMap. Note that for recognizers, k i

A::=axb · refers to the same
continuation as k i

A.

A.2 Execution of Memoized CPS Recognizers

In Figure 5 we use data structures that are sufficient to explain the
semantics but require amortized constant or linear time for their
operations. The complexity analysis of the next sections, however,
assumes that certain operations execute in constant time during the
execution of memoized CPS recognizers. Therefore, we need to
discuss how to provide such constant-time operations.

We assume that the following operations execute in constant time:
copying arguments into the stack when the function call is executed,
assigning the value of a variable to another variable, and creating
closures. Scala is a JVM-based language that handles primitive types
by value and reference types by reference value. Reference values
are fixed-size values representing addresses in memory. Therefore,
passing arguments of reference types to a function, or assigning
one variable to another, results in copying the reference values,
which executes in constant time. To implement closures, Scala uses
closure conversion, such that captured variables are turned into fields
of anonymous classes, representing closures, and these fields are
initialized by passing extra arguments to the constructors. Therefore,
we assume that operations such as success, failure, map, flatMap
and orElse in Figure 4 execute in constant time.

Now, we consider the execution of memoized CPS recognizers
that performs one of the following calls at each step:
(fe , i,k), a call to the recognizer for e . The execution continues with
the call (k, i), and the recognizer call returns after the continuation
call returns.
(fa, i,k), a call to the recognizer for a terminal a. If the terminal
matches a substring in the input string starting from i (a constant-
time operation), the execution continues with the call (k, j), where j
is the next input position after the match, otherwise no continuation
is called, and the recognizer call returns.
(fA, i,k), a call to the recognizer for a nonterminal A. This call
requires memo-table lookup of the result of calling fA at i. If the
result is not found, i.e., the first call to fA at position i, a new function
is created with two variables in its scope: the result list R(A,i) and
continuation list K(A,i). As the memo table can be implemented as an
array of length n+1, n is the length of the input, the lookup operation
can execute in constant time. In addition, ast the continuation list
can be implemented as a linked list and the result list as an array of
size n+1, addition of a new element into the lists (+=) and element
lookup into the result list (contains) can execute in constant time.
The execution of (fA, i,k) continues with addition of k to K(A,i)

(if- and else-branch of memo_result). Depending on the check
whether K(A,i) is empty (a constant-time operation), the execution
continues with either the call to the unmemoized recognizer for A,
(fa1|a2|...|ak

, i,k i
A), or iteration over R(A,i) (a linear operation) calling

k for each recorded input position. The call (fa1|a2|...|ak
, i,k i

A) will
perform a constant number of steps to combine the results of calling
fai at i (via orElse), and will eventually lead to a constant number of
calls (fa1 , i,k i

A), . . . , (fak , i,k i
A), corresponding to the alternatives

of A.
(fa , i,k i

A), a call to the recognizer for an alternative of A. If |a|> 1,
this call results in a constant number of composition steps (via
flatMap). Then, the continuations corresponding to the grammar
positions in a are created, and the call (fx, i,k i

A::=x·g), assuming
a = xg , to the recognizer for the first symbol in a is made.

(k i
A::=a·xb , j) or (k i

A, j), a call to a continuation. The former call
directly results in (fx, j,k i

A::=ax·b), a call to the recognizer for x
with the next continuation k i

A::=ax·b . The latter call leads to the
check (constant-time) whether j exists in the result list, and if not, j
is added (constant-time, as discussed above) to the result list. Finally,
iteration over the continuation list K(A,i) (a linear operation) runs
each continuation with the new input position j.

Consider calls of the forms (fx, i,k), where x is any symbol,
and (k i

A, j). The execution of memoized CPS recognizers continues
linearly until either a call (fA, i,k), to the recognizer for a nontermi-
nal, or (k i

A, j) is executed: both calls may result in iteration over a
list, the size of which depends on n, calling a continuation in each
iteration step. When a call (fA, i,k) is the first call to fA at the input
position i, it does not lead to iteration but requires an O(n) operation
to create an array of size n+1 for the result list.

A.3 Complexity of Memoized CPS Recognizers

In this section we show that the execution of memoized CPS
recognizers can require O(nm+1) operations, where m is the length
of the longest rule in the grammar. This unbounded polynomial
behavior can be observed by the family of highly ambiguous
grammars [12]: S ::= Sm |SS |b |e , m � 3, where Sm denotes a
sequence of S’s of length m. Because of the last three alternatives,
any, possibly empty, sequence of b’s can be recognized by S.

We consider parsing string bn. The memoization technique of
Section 2.3 ensures that for any input position i, there will be at
most one call (fSm , i,k i

S), corresponding to the first alternative of
S, made upon the first call to fS at i. Now, we show that the total
number of calls that will be made to the continuations k i

S, 0 i n,
is O(nm+1).

After creating the continuations corresponding to the positions in
the sequence Sm and the input position i, the call (fS, i,k i

S::=S·SSm�2)
to the recognizer for the first symbol in the alternative Sm will be
made. First, we consider the call (fS,0,k0

S::=S·SSm�2) corresponding
to input position 0.

This call results in addition of the continuation k0
S::=S·SSm�2 to

K(S,0), and therefore, for each i1 in R(S,0) a call (k0
S::=S·SSm�2 , i1)

will be executed. Each of these calls in turn results in a call to the
recognizer for the second S in Sm, (fS, i1,k0

S::=SS·Sm�2), which adds
the continuation k0

S::=SS·Sm�2 to K(S,i1). Again, for each i2 in R(S,i1),
i1 i2, a call (k0

S::=SS·Sm�2 , i2) will be executed.
Since 0 i1 i2 n, the total number of calls made to

k0
S::=SS·Sm�2 is

�n+2
2
�
. Some of these calls, however, are dupli-

cate: for each i2, there will be multiple i1, 0 i1 i2, such
that k0

S::=SS·Sm�2 2 K(S,i1) and i2 2 R(S,i1). Each duplicate call
(k0

S::=SS·Sm�2 , i2) leads to addition of the continuation k0
S::=SSS·Sm�2

to K(S,i2), resulting in the same continuation being added to the
same continuation list multiple times. As a result, the total number
of calls made to k0

S , corresponding to the end of the alternative Sm,
is equal to the number of all the combinations with repetition for
the respective indices 0 i1 i2 . . . im�1 im n, which is�n+m

m
�
.

Finally, if we consider all the calls (fS, i,k i
S::=S·SSm�2), 0 i n,

the total number of calls made to the continuations k i
S, resulting

from the first alternative, is
�n+m+1

m+1
�
, which is a polynomial in n of

order m+1.

B. Complexity of CPS Parsers

In this section we show that the complexity of CPS parsers is O(n3),
where n is the length of the input. We start by adapting the notation
of Section A.1 to the parser version. First, fa, fe , fA, etc. now denote

11

the respective parsers instead of recognizers. Second, result list R(A,i)

stores nonterminal nodes (A, i, j), instead of input positions. Finally,
for any call (fA, i,k), such that the parser fA is called at the input
position i for the first time, continuations of the following forms can
be created:
k i

A denotes the continuation that maintains the results produced by
fA at i, now, recording new nonterminal nodes (A, i, j) in R(A,i). In
addition, k i

A::=a· now denotes the continuation that corresponds to a
grammar position A ::= a· and is created as:
k i

A::=a · = t ! k i
A(h

i
A::=a (t)), where hi

A::=a is a function (passed
to map in rule1 of Figure 10) which is uniquely identified by
i and A ::= a . hi

A::=a takes a non-packed node t and creates a
nonterminal node (A, i, j). If |a| > 1, t is an intermediate node
of the form (A ::= a·, i, j), otherwise a symbol node of the form
(x, i, j) corresponding to x, the only symbol in a .
k i

A::=a ·xb denotes the continuation that corresponds to a grammar
position A ::= a · xb in an alternative of A, |a|� 1, and is uniquely
identified by A ::= a · xb and i. Upon the first call to fA at i,
continuations of this form are recursively created as:
k i

A::=a ·xb = t ! gi
A::=a·xb (t)(k

i
A::=ax·b), where t is either an inter-

mediate node of the form (A ::= a · xb , i, j), |a| > 1 or a symbol
node of the form (y, i, j), |a|= 1.
gi

A::=a·xb is a function (passed to flatMap in seq2 of Figure 10),
which is uniquely identified by i and A ::= a ·xb . This function calls
the parser for the next symbol fx at the right extent of t, say j. Then,
it creates the following continuation and passes this continuation to
the result of fx(j):
k i, j

A::=ax·b = t ! k i
A::=ax·b (h

i, j
A::=ax·b (t)), where t is a symbol node

of the form (x, j,k).
hi, j

A::=ax·b is the function (passed to map in seq2 of Figure 10) created
by gi

A::=a·xb to construct an intermediate node (A ::= ax · b , i,k)
given (x, j,k). Finally, k i, j

A::=ax·b calls k i
A::=ax·b with the resulting

intermediate node.

LEMMA 1. For any parser fB and any input position j, 0 j n
the number of continuations in the continuation list K(B, j) is O(n).

PROOF 1. For any nonterminal A such that A ::= aBb is an alter-
native of A, we have only the following calls that add a continuation
to K(B, j):

1. (fB, j,k i
A::=B·b) when |a|= 0 and i= j. This call can only result

from (fA::=Bb , j,k i
A::=Bb ·).

2. (fB, j,k i, j
A::=aB·b) when |a| � 1 and 0 i j. This call can

only result from (k i
A::=a·Bb , t), where t is an intermediate node

(A ::= a ·Bb , i, j), |a|> 1, or a symbol node (y, i, j), |a|= 1.

In the first case, given that CPS parsers for nonterminals are
memoized, there will be at most one call to the parser for an
alternative at each input position, such as (fA::=Bb , j,k i

A::=Bb ·), and
therefore, at most one call to the parser for the first symbol in the
alternative, such as (fB, j,k i

A::=B·b). Thus the continuation k i
A::=B·b

can be added to K(B, j) at most once. In the second case, given
that continuations of the form k i

A::=a·Bb are memoized, for any i,
0 i j, there will be at most one call (k i

A::=a·Bb , t) resulting

in creation of k i, j
A::=aB·b and the call (fB, j,k i, j

A::=aB·b). Thus the

continuation k i, j
A::=aB·b is uniquely identified by i, j and A ::= aB ·b

and can be added to K(B, j) at most once. Finally, given that 0 i n,
the total number of continuations in K(B, j) is at most O(n). ⇤

LEMMA 2. For any parser fA and any input position i, 0 i n,
the number of elements in R(A,i) is O(n).

PROOF 2. Given that continuations of the form k i
A:=a· and k i

A are
memoized, for any non-packed node t with left extent i and right
extent j, i j n, there will be at most one call (k i

A:=a·, t) resulting
in (k i

A,(A, i, j)), and there will be at most one call (k i
A,(A, i, j))

adding (A, i, j) to R(A,i). Thus the number of elements in R(A,i) is at
most O(n). ⇤
THEOREM 1. The complexity of CPS parsers that construct a
binarized SPPF is O(n3).

PROOF 3. We consider calls of the forms:

1. (fx, j,k i
A::=x·b) and (fx, j,k i, j

A::=ax·b), |a|� 1

2. (k i
A::=a·xb , t)

3. (k i
A,(A, i, j))

where 0 i j n, and t is a non-packed node with left extent i
and right extent j. The execution of CPS parsers continues linearly
until either a call to the parser for a nonterminal, of the form
(fB, j,k i

A::=B·b) and (fB, j,k i, j
A::=aB·b), or a call of form 2 or 3 is

executed. In the parser version, a call of form 2 may require an
O(n) operation to create a continuation k i, j

A::=ax·b
5. We show that

there will be at most O(n2) calls of form 1. Also, there will be at
most O(n2) calls of form 2, each of which creates a continuation
k i, j

A::=ax·b , and at most O(n2) calls of form 3, each of which results
in iteration over a continuation list.

Similar to the proof of Lemma 1, there are only two forms of
calls that may lead to a call of form 1. Given that CPS parsers
for nonterminals are memoized, there will be at most O(n) calls
of the form (fA::=xb , j,k i

A::=xb ·) resulting in (fx, j,k i
A::=x·b), where

0 i = j n. Also, given that continuations of the form k i
A::=a·xb

are memoized, there will be at most O(n2) calls of form 2 creating
k i, j

A::=ax·b and resulting in (fx, j,k i, j
A::=ax·b), where 0 i j n.

Thus there will be at most O(n2) calls of form 1. Given that
continuations of the form k i

A are memoized, there will be also at
most O(n2) calls of form 3, 0 i j n, resulting in iteration.

Each call of the form (fB, j,k i
A::=B·b) or (fB, j,k i, j

A::=aB·b), when
it is the first call to fB at the input position j, or each call of form 2
may result in a constant number of O(n) operations to create arrays
of size n+ 1 (to initialize a result list and/or to create memoized
continuations) followed by a constant number of other calls of
form 1 (already subsumed by the O(n2) calls above). Each call of
the form (fB, j,k i

A::=B·b) or (fB, j,k i, j
A::=aB·b), when it is not the first

call to fB at the input position j, or each call of form 3 may result
in iteration over a list leading to at most O(n) other continuation
calls (by Lemma 1 and 2). Each of the O(n) other continuation
calls is either a duplicate call eliminated by the memoization, or a
call to a continuation of the form k i

A::=a·xb (already subsumed by

the O(n2) continuation calls above), or of the forms k i, j
A::=ax·b and

k i
A=a· directly resulting in a call already subsumed by the O(n2)

calls above. Thus the complexity of CPS parsers that construct
binarized SPPFs is at most O(n3). ⇤

5 Although in the complexity analysis we assume that all continuations are
memoized, it can be shown that memoizing continuations of this form is not
needed. We use this as an optimization in the Meerkat library.

12

	Introduction
	General Cubic CPS Recognizers
	Basic Recursive-Descent Recognizers
	Full Backtracking Using Continuation-Passing Style
	Support for Left Recursion
	Memoization on Continuations
	Trampoline

	SPPF Construction
	Binarized SPPF
	SPPF Construction for Cubic CPS Parsers
	Semantic Actions and Generation of ASTs

	Evaluation
	Parsing 3
	Parsing Java

	Related Work
	Left-Recursion Curtailment Using the Input Length
	Left Recursion in PEGs
	Cancellation Parsing
	ANTLR 4
	GLL Parsing

	Conclusions
	Complexity of CPS Recognizers
	Notation
	Execution of Memoized CPS Recognizers
	Complexity of Memoized CPS Recognizers

	Complexity of CPS Parsers

