
Similarity Methods and Clustering

Kenneth Benoit & Pablo Barberá

MY 459: Quantitative Text Analysis

March 5th, 2018

Course website: lse-my459.github.io

https://lse-my459.github.io/

Outline

I Documents as feature vectors

I Similarity foundations
I Similarity Measures

I cosine similarity
I Euclidean distance
I Jacquard

I Clustering methods
I k-means clustering
I hierarchical clustering

I Preview of topic models

Documents as vectors

I The idea is that (weighted) features form a vector for each
document, and that these vectors can be judged using metrics
of similarity

I A document’s vector for us is simply (for us) the row of the
document-feature matrix

Characteristics of similarity measures

Let A and B be any two documents in a set and d(A,B) be the
distance between A and B.

1. d(x , y) ≥ 0 (the distance between any two points must be
non-negative)

2. d(A,B) = 0 iff A = B (the distance between two documents
must be zero if and only if the two objects are identical)

3. d(A,B) = d(B,A) (distance must be symmetric: A to B is
the same distance as from B to A)

4. d(A,C) ≤ d(A,B) + d(B,C) (the measure must satisfy the
triangle inequality)

Euclidean distance

Between document A and B where j indexes their features, where
yij is the value for feature j of document i

I Euclidean distance is based on the Pythagorean theorem

I Formula √√√√ j∑
j=1

(yAj − yBj)2 (1)

I In vector notation:
‖yA − yB‖ (2)

I Can be performed for any number of features J (or V as the
vocabulary size is sometimes called – the number of columns
in of the dfm, same as the number of feature types in the
corpus)

A geometric interpretation of “distance”

In a right angled triangle, the cosine of an angle θ or cos(θ) is the
length of the adjacent side divided by the length of the hypotenuse

We can use the vectors to represent the text location in a
V -dimensional vector space and compute the angles between them

Cosine similarity

I Cosine distance is based on the size of the angle between the
vectors

I Formula
yA · yB
‖yA‖‖yB‖

(3)

I The · operator is the dot product, or
∑

j yAjyBj
I The ‖yA‖ is the vector norm of the (vector of) features vector

y for document A, such that ‖yA‖ =
√∑

j y
2
Aj

I Nice property: independent of document length, because it
deals only with the angle of the vectors

I Ranges from -1.0 to 1.0 for term frequencies, or 0 to 1.0 for
normalized term frequencies (or tf-idf)

Cosine similarity illustrated

Example text

12

Document similarity
Hurricane Gilbert swept toward the Dominican

Republic Sunday , and the Civil Defense
alerted its heavily populated south coast to
prepare for high winds, heavy rains and high
seas.

The storm was approaching from the southeast
with sustained winds of 75 mph gusting to 92
mph .

�There is no need for alarm," Civil Defense
Director Eugenio Cabral said in a television
alert shortly before midnight Saturday .

Cabral said residents of the province of Barahona
should closely follow Gilbert 's movement .

An estimated 100,000 people live in the province,
including 70,000 in the city of Barahona , about
125 miles west of Santo Domingo .

Tropical Storm Gilbert formed in the eastern
Caribbean and strengthened into a hurricane
Saturday night

The National Hurricane Center in Miami
reported its position at 2a.m. Sunday at
latitude 16.1 north , longitude 67.5 west,
about 140 miles south of Ponce, Puerto
Rico, and 200 miles southeast of Santo
Domingo.

The National Weather Service in San Juan ,
Puerto Rico , said Gilbert was moving
westward at 15 mph with a "broad area of
cloudiness and heavy weather" rotating
around the center of the storm.

The weather service issued a flash flood watch
for Puerto Rico and the Virgin Islands until
at least 6p.m. Sunday.

Strong winds associated with the Gilbert
brought coastal flooding , strong southeast
winds and up to 12 feet to Puerto Rico 's
south coast.

Example text: selected terms

I Document 1
Gilbert: 3, hurricane: 2, rains: 1, storm: 2, winds: 2

I Document 2
Gilbert: 2, hurricane: 1, rains: 0, storm: 1, winds: 2

Example text: cosine similarity in R

toyDfm <- as.dfm(matrix(c(3,2,1,2,2, 2,1,0,1,2),

nrow = 2, byrow = TRUE))

colnames(toyDfm) <- c("Gilbert", "hurricane", "rain", "storm", "winds")

toyDfm

Document-feature matrix of: 2 documents, 5 features (10% sparse).

2 x 5 sparse Matrix of class "dfm"

features

docs Gilbert hurricane rain storm winds

text1 3 2 1 2 2

text2 2 1 0 1 2

textstat_simil(toyDfm, method = "cosine")

text1

text2 0.9438798

Relationship to Euclidean distance

I Cosine similarity measures the similarity of vectors with
respect to the origin

I Euclidean distance measures the distance between particular
points of interest along the vector

Relationship to Euclidean distance

I Euclidean distance is ‖yA − yB‖
I cos(A,B) = yA·yB

‖yA‖‖yB‖

If A and B are normalized to unit length (term proportions instead
of frequencies), such that ‖A‖2 = ‖B‖2 = 1, then

‖yA − yB‖2 = (A− B)′(A− B)

= ‖A‖2 + ‖B‖2 − 2 A′B

= 2(1− cos(A,B))

where (1− cos(A,B)) is the complement of the cosine similarity,
also known as cosine distance

so the Euclidean distance is twice the cosine distance for
normalized term vectors

Jacquard coefficient

I Similar to the Cosine similarity

I Formula
yA · yB

‖yA‖+ ‖yB‖ − yA · yB
(4)

I Ranges from 0 to 1.0

Example: Inaugural speeches

Example: Inaugural speeches

Can be made very general for binary features
Example: In the Choi et al paper, they compare vectors of features
for (binary) absence or presence – called (“operational taxonomic

units”)

A Survey of Binary Similarity and Distance Measures

Seung-Seok Choi, Sung-Hyuk Cha, Charles C. Tappert
Department of Computer Science, Pace University

New York, US

ABSTRACT

The binary feature vector is one of the most common
representations of patterns and measuring similarity and
distance measures play a critical role in many problems
such as clustering, classification, etc. Ever since Jaccard
proposed a similarity measure to classify ecological
species in 1901, numerous binary similarity and distance
measures have been proposed in various fields. Applying
appropriate measures results in more accurate data
analysis. Notwithstanding, few comprehensive surveys
on binary measures have been conducted. Hence we
collected 76 binary similarity and distance measures used
over the last century and reveal their correlations through
the hierarchical clustering technique.

Keywords: binary similarity measure, binary distance
measure, hierarchical clustering, classification,
operational taxonomic unit

1. INTRODUCTION

The binary similarity and dissimilarity (distance)
measures play a critical role in pattern analysis problems
such as classification, clustering, etc. Since the
performance relies on the choice of an appropriate
measure, many researchers have taken elaborate efforts to
find the most meaningful binary similarity and distance
measures over a hundred years. Numerous binary
similarity measures and distance measures have been
proposed in various fields.

For example, the Jaccard similarity measure was used for
clustering ecological species [20], and Forbes proposed a
coefficient for clustering ecologically related species [13,
14]. The binary similarity measures were subsequently
applied in biology [19, 23], ethnology [8], taxonomy
[27], image retrieval [25], geology [24], and chemistry
[29]. Recently, they have been actively used to solve the
identification problems in biometrics such as fingerprint
[30], iris images [4], and handwritten character
recognition [2, 3]. Many papers [7, 16, 17, 18, 19, 22, 26]
discuss their properties and features.

Even though numerous binary similarity measures have
been described in the literature, only a few comparative
studies collected the wide variety of binary similarity
measures [4, 5, 19, 21, 28, 30, 31]. Hubalek collected 43
similarity measures, and 20 of them were used for cluster
analysis on fungi data to produce five clusters of related
coefficients [19]. Jackson et al. compared eight binary
similarity measures to choose the best measure for

ecological 25 fish species [21]. Tubbs summarized seven
conventional similarity measures to solve the template
matching problem [28], and Zhang et al. compared those
seven measures to show the recognition capability in
handwriting identification [31]. Willett evaluated 13
similarity measures for binary fingerprint code [30]. Cha
et al. proposed weighted binary measurement to improve
classification performance based on the comparative
study [4].

Few studies, however, have enumerated or grouped the
existing binary measures. The number of similarity or
dissimilarity measures was often limited to those
provided from several commercial statistical cluster
analysis tools. We collected and analyzed 76 binary
similarity and distance measures used over the last
century, providing the most extensive survey on these
measures.

This paper is organized as follows. Section 2 describes
the definitions of 76 binary similarity and dissimilarity
measures. Section 3 discusses the grouping of those
measures using hierarchical clustering. Section 4
concludes this work.

2. DEFINITIONS

Table 1 OTUs Expression of Binary Instances i and j
j i 1 (Presence) 0 (Absence) Sum

1 (Presence) jia x jib x a+b

0 (Absence) jic x jid x c+d

Sum a+c b+d n=a+b+c+d

Suppose that two objects or patterns, i and j are
represented by the binary feature vector form. Let n be
the number of features (attributes) or dimension of the
feature vector. Definitions of binary similarity and
distance measures are expressed by Operational
Taxonomic Units (OTUs as shown in Table 1) [9] in a 2 x
2 contingency table where a is the number of features
where the values of i and j are both 1 (or presence),
meaning ‘positive matches’, b is the number of attributes
where the value of i and j is (0,1), meaning ‘i absence
mismatches’, c is the number of attributes where the
value of i and j is (1,0), meaning ‘j absence mismatches’,
and d is the number of attributes where both i and j have
0 (or absence), meaning ‘negative matches’. The diagonal
sum a+d represents the total number of matches between

I Cosine similarity:

scosine =
a√

(a + b)(a + c)
(5)

I Jaccard similarity:

sJaccard =
a√

(a + b + c)
(6)

Typical features

I Normalized term frequency (almost certainly)

I Very common to use tf-idf – if not, similarity is boosted by
common words (stop words)

I Not as common to use binary features

Uses for similarity measures: Clustering

Other uses, extensions

I Used extensively in information retrieval

I Summmary measures of how far apart two texts are – but be
careful exactly how you define “features”

I Some but not many applications in social sciences to measure
substantive similarity — scaling models are generally preferred

I Can be used to generalize or represent features in machine
learning, by combining features using kernel methods to
compute similarities between textual (sub)sequences without
extracting the features explicitly (as we have done here)

The idea of ”clusters”

I Essentially: groups of items such that inside a cluster they are
very similar to each other, but very different from those
outside the cluster

I “unsupervised classification”: cluster is not to relate features
to classes or latent traits, but rather to estimate membership
of distinct groups

I groups are given labels through post-estimation interpretation
of their elements

I typically used when we do not and never will know the “true”
class labels

I issues: how to weight distance is arbitrary
I which dimensionality? (determined by which features are

selected)
I how to weight distance is arbitrary
I different metrics for distance

k-means clustering

I Essence: assign each item to one of k clusters, where the goal
is to minimised within-cluster difference and maximize
between-cluster differences

I Uses random starting positions and iterates until stable

I as with kNN, k-means clustering treats feature values as
coordinates in a multi-dimensional space

I Advantages
I simplicity
I highly flexible
I efficient

I Disadvantages
I no fixed rules for determining k
I uses an element of randomness for starting values

algorithm details

1. Choose starting values
I assign random positions to k starting values that will serve as

the “cluster centres”, known as “centroids” ; or,
I assign each feature randomly to one of k classes

2. assign each item to the class of the centroid that is “closest”
I Euclidean distance is most common
I any others may also be used (Manhattan, Minkowski,

Mahalanobis, etc.)
I (assumes feature vectors have been normalised within item)

3. update: recompute the cluster centroids as the mean value of
the points assigned to that cluster

4. repeat reassignment of points and updating centroids

5. repeat 2–4 until some stopping condition is satisfied
I e.g. when no items are reclassified following update of centroids

k-means clustering illustrated

choosing the appropriate number of clusters

I very often based on prior information about the number of
categories sought

I for example, you need to cluster people in a class into a fixed
number of (like-minded) tutorial groups

I a (rough!) guideline: set k =
√
N/2 where N is the number

of items to be classified
I usually too big: setting k to large values will improve

within-cluster similarity, but risks overfitting

choosing the appropriate number of clusters

I “elbow plots”: fit multiple clusters with different k values,
and choose k beyond which are diminishing gains

Chapter 9

[277]

Ideally, you will have some a priori knowledge (that is, a prior belief) about the true
groupings, and you can begin applying k-means using this information. For instance,
if you were clustering movies, you might begin by setting N equal to the number of
genres considered for the Academy Awards. In the data science conference seating
problem that we worked through previously, N�PLJKW�UHÁHFW�WKH�QXPEHU�RI�DFDGHPLF�
ÀHOGV�RI�VWXG\�WKDW�ZHUH�LQYLWHG�

Sometimes the number of clusters is dictated by business requirements or the
motivation for the analysis. For example, the number of tables in the meeting hall
could dictate how many groups of people should be created from the data science
attendee list. Extending this idea to a business case, if the marketing department only
has resources to create three distinct advertising campaigns, it might make sense to
set N = 3 to assign all the potential customers to one of the three appeals.

Without any a priori knowledge at all, one rule of thumb suggests setting N equal
to the square root of (n / 2), where n is the number of examples in the dataset.
However, this rule of thumb is likely to result in an unwieldy number of clusters for
ODUJH�GDWDVHWV��/XFNLO\��WKHUH�DUH�RWKHU�VWDWLVWLFDO�PHWKRGV�WKDW�FDQ�DVVLVW�LQ�ÀQGLQJ�D�
suitable k-means cluster set.

A technique known as the elbow method attempts to gauge how the homogeneity
or heterogeneity within the clusters changes for various values of N. As illustrated
LQ�WKH�IROORZLQJ�ÀJXUHV��WKH�KRPRJHQHLW\�ZLWKLQ�FOXVWHUV�LV�H[SHFWHG�WR�LQFUHDVH�DV�
additional clusters are added; similarly, heterogeneity will also continue to decrease
with more clusters. Because you could continue to see improvements until each
example is in its own cluster, the goal is not to maximize homogeneity or minimize
KHWHURJHQHLW\��EXW�UDWKHU�WR�ÀQG�N such that there are diminishing returns beyond that
point. This value of N is known as the elbow point, because it looks like an elbow.

choosing the appropriate number of clusters

I “fit” statistics to measure homogeneity within clusters and
heterogeneity in between

I

I numerous examples exist

I “iterative heuristic fitting”* (IHF) (trying different values and
looking at what seems most plausible)

* Warning: This is my (slightly facetious) term only!

Other clustering methods: hierarchical clustering

I agglomerative: works from the bottom up to create clusters
I like k-means, usually involves projection: reducing the

features through either selection or projection to a
lower-dimensional representation

1. local projection: reducing features within document
2. global projection: reducing features across all documents

(Schütze and Silverstein, 1997)
3. SVD methods, such PCA on a normalised feature matrix
4. usually simple threshold-based truncation is used

(keep all but 100 highest frequency or tf-idf terms)

I frequently/always involves weighting (normalising term
frequency, tf-idf)

hierarchical clustering algorithm

1. start by considering each item as its own cluster, for n clusters

2. calculate the N(N − 1)/2 pairwise distances between each of
the n clusters, store in a matrix D0

3. find smallest (off-diagonal) distance in D0, and merge the
items corresponding to the i , j indexes in D0 into a new
“cluster”

4. recalculate distance matrix D1 with new cluster(s). options for
determining the location of a cluster include:

I centroids (mean)
I most dissimilar objects
I Ward’s measure(s) based on minimising variance

5. repeat 3–4 until a stopping condition is reached
I e.g. all items have been merged into a single cluster

6. to plot the dendrograms, need decisions on ordering, since
there are 2(N−1) possible orderings

Dendrogram: Presidential State of the Union addresses

Dendrogram: Presidential State of the Union addresses

pros and cons of hierarchical clustering

I advantages
I deterministic, unlike k-means
I no need to decide on k in advance (although can specify as a

stopping condition)
I allows hierarchical relations to be examined

(usually through dendrograms)

I disadvantages
I more complex to compute: quadratic in complexity: O(n2)

– whereas k-means has complexity that is O(n)
I the decision about where to create branches and in what order

can be somewhat arbitrary, determined by method of declaring
the “distance” to already formed clusters

I for words, tends to identify collocations as base-level clusters
(e.g. “saddam” and “hussein”)

Dendrogram: Presidential State of the Union addresses

Topic Models

I Topic models are algorithms for discovering the main
“themes” in an unstructured corpus

I Requires no prior information, training set, or special
annotation of the texts
– only a decision on K (number of topics)

I A probabilistic, generative advance on several earlier methods,
“Latent Semantic Analysis” (LSA) and “probabilistic latent
semantic indexing” (pLSI)

