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Documents as vectors

I The idea is that (weighted) features form a vector for each
document, and that these vectors can be judged using metrics
of similarity

I A document’s vector for us is simply (for us) the row of the
document-feature matrix



Characteristics of similarity measures

Let A and B be any two documents in a set and d(A,B) be the
distance between A and B.

1. d(x , y) ≥ 0 (the distance between any two points must be
non-negative)

2. d(A,B) = 0 iff A = B (the distance between two documents
must be zero if and only if the two objects are identical)

3. d(A,B) = d(B,A) (distance must be symmetric: A to B is
the same distance as from B to A)

4. d(A,C ) ≤ d(A,B) + d(B,C ) (the measure must satisfy the
triangle inequality)



Euclidean distance

Between document A and B where j indexes their features, where
yij is the value for feature j of document i

I Euclidean distance is based on the Pythagorean theorem

I Formula √√√√ j∑
j=1

(yAj − yBj)2 (1)

I In vector notation:
‖yA − yB‖ (2)

I Can be performed for any number of features J (or V as the
vocabulary size is sometimes called – the number of columns
in of the dfm, same as the number of feature types in the
corpus)



A geometric interpretation of “distance”

In a right angled triangle, the cosine of an angle θ or cos(θ) is the
length of the adjacent side divided by the length of the hypotenuse

We can use the vectors to represent the text location in a
V -dimensional vector space and compute the angles between them



Cosine similarity

I Cosine distance is based on the size of the angle between the
vectors

I Formula
yA · yB
‖yA‖‖yB‖

(3)

I The · operator is the dot product, or
∑

j yAjyBj
I The ‖yA‖ is the vector norm of the (vector of) features vector

y for document A, such that ‖yA‖ =
√∑

j y
2
Aj

I Nice property: independent of document length, because it
deals only with the angle of the vectors

I Ranges from -1.0 to 1.0 for term frequencies, or 0 to 1.0 for
normalized term frequencies (or tf-idf)



Cosine similarity illustrated



Example text

12 

Document similarity 
Hurricane Gilbert swept toward the Dominican 

Republic Sunday , and the Civil  Defense  
alerted its heavily  populated south coast to 
prepare for high winds, heavy rains and high 
seas.  

The storm was approaching from the southeast 
with sustained  winds of 75 mph gusting to 92 
mph .  

�There is no need for alarm," Civil Defense 
Director Eugenio Cabral said in  a television  
alert shortly before  midnight Saturday .  

Cabral said residents of the province of Barahona 
should closely  follow Gilbert 's movement .  

An estimated 100,000 people live in the province, 
including 70,000 in the city of Barahona , about 
125 miles  west of Santo Domingo .  

Tropical Storm Gilbert formed in the eastern 
Caribbean and strengthened into a hurricane 
Saturday night  

The National Hurricane Center in Miami 
reported its position at 2a.m. Sunday at 
latitude 16.1  north ,  longitude 67.5 west, 
about 140 miles south of Ponce, Puerto 
Rico, and 200 miles southeast of Santo 
Domingo.  

The National Weather Service in San Juan , 
Puerto Rico , said Gilbert was  moving 
westward at 15 mph with  a "broad area of 
cloudiness and heavy  weather" rotating 
around the center of the storm.  

The weather service issued a flash flood watch 
for Puerto Rico and the Virgin Islands until 
at least 6p.m. Sunday.  

Strong winds associated with the Gilbert 
brought coastal flooding , strong southeast 
winds and up  to 12 feet  to Puerto Rico 's 
south coast.  



Example text: selected terms

I Document 1
Gilbert: 3, hurricane: 2, rains: 1, storm: 2, winds: 2

I Document 2
Gilbert: 2, hurricane: 1, rains: 0, storm: 1, winds: 2



Example text: cosine similarity in R

toyDfm <- as.dfm(matrix(c(3,2,1,2,2, 2,1,0,1,2),

nrow = 2, byrow = TRUE))

colnames(toyDfm) <- c("Gilbert", "hurricane", "rain", "storm", "winds")

toyDfm

## Document-feature matrix of: 2 documents, 5 features (10% sparse).

## 2 x 5 sparse Matrix of class "dfm"

## features

## docs Gilbert hurricane rain storm winds

## text1 3 2 1 2 2

## text2 2 1 0 1 2

textstat_simil(toyDfm, method = "cosine")

## text1

## text2 0.9438798



Relationship to Euclidean distance

I Cosine similarity measures the similarity of vectors with
respect to the origin

I Euclidean distance measures the distance between particular
points of interest along the vector



Relationship to Euclidean distance

I Euclidean distance is ‖yA − yB‖
I cos(A,B) = yA·yB

‖yA‖‖yB‖

If A and B are normalized to unit length (term proportions instead
of frequencies), such that ‖A‖2 = ‖B‖2 = 1, then

‖yA − yB‖2 = (A− B)′(A− B)

= ‖A‖2 + ‖B‖2 − 2 A′B

= 2(1− cos(A,B))

where (1− cos(A,B)) is the complement of the cosine similarity,
also known as cosine distance

so the Euclidean distance is twice the cosine distance for
normalized term vectors



Jacquard coefficient

I Similar to the Cosine similarity

I Formula
yA · yB

‖yA‖+ ‖yB‖ − yA · yB
(4)

I Ranges from 0 to 1.0



Example: Inaugural speeches



Example: Inaugural speeches



Can be made very general for binary features
Example: In the Choi et al paper, they compare vectors of features
for (binary) absence or presence – called (“operational taxonomic

units”)

A Survey of Binary Similarity and Distance Measures 
 

Seung-Seok Choi, Sung-Hyuk Cha, Charles C. Tappert 
Department of Computer Science, Pace University 

New York, US 

ABSTRACT 
 
The binary feature vector is one of the most common 
representations of patterns and measuring similarity and 
distance measures play a critical role in many problems 
such as clustering, classification, etc. Ever since Jaccard 
proposed a similarity measure to classify ecological 
species in 1901, numerous binary similarity and distance 
measures have been proposed in various fields. Applying 
appropriate measures results in more accurate data 
analysis. Notwithstanding, few comprehensive surveys 
on binary measures have been conducted. Hence we 
collected 76 binary similarity and distance measures used 
over the last century and reveal their correlations through 
the hierarchical clustering technique.  
 
Keywords:  binary similarity measure, binary distance 
measure, hierarchical clustering, classification, 
operational taxonomic unit 
 

1. INTRODUCTION 
 
The binary similarity and dissimilarity (distance) 
measures play a critical role in pattern analysis problems 
such as classification, clustering, etc. Since the 
performance relies on the choice of an appropriate 
measure, many researchers have taken elaborate efforts to 
find the most meaningful binary similarity and distance 
measures over a hundred years. Numerous binary 
similarity measures and distance measures have been 
proposed in various fields. 
 
For example, the Jaccard similarity measure was used for 
clustering ecological species [20], and Forbes proposed a 
coefficient for clustering ecologically related species [13, 
14]. The binary similarity measures were subsequently 
applied in biology [19, 23], ethnology [8], taxonomy 
[27], image retrieval [25], geology [24], and chemistry 
[29]. Recently, they have been actively used to solve the 
identification problems in biometrics such as fingerprint 
[30], iris images [4], and handwritten character 
recognition [2, 3]. Many papers [7, 16, 17, 18, 19, 22, 26] 
discuss their properties and features.  
 
Even though numerous binary similarity measures have 
been described in the literature, only a few comparative 
studies collected the wide variety of binary similarity 
measures [4, 5, 19, 21, 28, 30, 31]. Hubalek collected 43 
similarity measures, and 20 of them were used for cluster 
analysis on fungi data to produce five clusters of related 
coefficients [19]. Jackson et al. compared eight binary 
similarity measures to choose the best measure for 

ecological 25 fish species [21]. Tubbs summarized seven 
conventional similarity measures to solve the template 
matching problem [28], and Zhang et al. compared those 
seven measures to show the recognition capability in 
handwriting identification [31]. Willett evaluated 13 
similarity measures for binary fingerprint code [30]. Cha 
et al. proposed weighted binary measurement to improve 
classification performance based on the comparative 
study [4].  
 
Few studies, however, have enumerated or grouped the 
existing binary measures. The number of similarity or 
dissimilarity measures was often limited to those 
provided from several commercial statistical cluster 
analysis tools. We collected and analyzed 76 binary 
similarity and distance measures used over the last 
century, providing the most extensive survey on these 
measures.  
 
This paper is organized as follows. Section 2 describes 
the definitions of 76 binary similarity and dissimilarity 
measures. Section 3 discusses the grouping of those 
measures using hierarchical clustering. Section 4 
concludes this work. 
 

2. DEFINITIONS 
 

Table 1 OTUs Expression of Binary Instances i and j 
j        i 1 (Presence) 0 (Absence) Sum 

1 (Presence) jia x  jib x  a+b 

0 (Absence) jic x  jid x  c+d 

Sum a+c b+d n=a+b+c+d 

 
Suppose that two objects or patterns, i and j are 
represented by the binary feature vector form. Let n be 
the number of features (attributes) or dimension of the 
feature vector. Definitions of binary similarity and 
distance measures are expressed by Operational 
Taxonomic Units (OTUs as shown in Table 1) [9] in a 2 x 
2 contingency table  where a is the number of features 
where the values of i and j are both 1 (or presence), 
meaning ‘positive matches’, b is the number of attributes 
where the value of i and j is (0,1), meaning ‘i absence 
mismatches’, c is the number of attributes where the 
value of i and j is (1,0), meaning ‘j absence mismatches’, 
and d is the number of attributes where both i and j have 
0 (or absence), meaning ‘negative matches’. The diagonal 
sum a+d represents the total number of matches between 

I Cosine similarity:

scosine =
a√

(a + b)(a + c)
(5)

I Jaccard similarity:

sJaccard =
a√

(a + b + c)
(6)



Typical features

I Normalized term frequency (almost certainly)

I Very common to use tf-idf – if not, similarity is boosted by
common words (stop words)

I Not as common to use binary features



Uses for similarity measures: Clustering



Other uses, extensions

I Used extensively in information retrieval

I Summmary measures of how far apart two texts are – but be
careful exactly how you define “features”

I Some but not many applications in social sciences to measure
substantive similarity — scaling models are generally preferred

I Can be used to generalize or represent features in machine
learning, by combining features using kernel methods to
compute similarities between textual (sub)sequences without
extracting the features explicitly (as we have done here)



The idea of ”clusters”

I Essentially: groups of items such that inside a cluster they are
very similar to each other, but very different from those
outside the cluster

I “unsupervised classification”: cluster is not to relate features
to classes or latent traits, but rather to estimate membership
of distinct groups

I groups are given labels through post-estimation interpretation
of their elements

I typically used when we do not and never will know the “true”
class labels

I issues: how to weight distance is arbitrary
I which dimensionality? (determined by which features are

selected)
I how to weight distance is arbitrary
I different metrics for distance



k-means clustering

I Essence: assign each item to one of k clusters, where the goal
is to minimised within-cluster difference and maximize
between-cluster differences

I Uses random starting positions and iterates until stable

I as with kNN, k-means clustering treats feature values as
coordinates in a multi-dimensional space

I Advantages
I simplicity
I highly flexible
I efficient

I Disadvantages
I no fixed rules for determining k
I uses an element of randomness for starting values



algorithm details

1. Choose starting values
I assign random positions to k starting values that will serve as

the “cluster centres”, known as “centroids” ; or,
I assign each feature randomly to one of k classes

2. assign each item to the class of the centroid that is “closest”
I Euclidean distance is most common
I any others may also be used (Manhattan, Minkowski,

Mahalanobis, etc.)
I (assumes feature vectors have been normalised within item)

3. update: recompute the cluster centroids as the mean value of
the points assigned to that cluster

4. repeat reassignment of points and updating centroids

5. repeat 2–4 until some stopping condition is satisfied
I e.g. when no items are reclassified following update of centroids



k-means clustering illustrated



choosing the appropriate number of clusters

I very often based on prior information about the number of
categories sought

I for example, you need to cluster people in a class into a fixed
number of (like-minded) tutorial groups

I a (rough!) guideline: set k =
√
N/2 where N is the number

of items to be classified
I usually too big: setting k to large values will improve

within-cluster similarity, but risks overfitting



choosing the appropriate number of clusters

I “elbow plots”: fit multiple clusters with different k values,
and choose k beyond which are diminishing gains

Chapter 9

[ 277 ]

Ideally, you will have some a priori knowledge (that is, a prior belief) about the true 
groupings, and you can begin applying k-means using this information. For instance, 
if you were clustering movies, you might begin by setting N equal to the number of 
genres considered for the Academy Awards. In the data science conference seating 
problem that we worked through previously, N�PLJKW�UHÁHFW�WKH�QXPEHU�RI�DFDGHPLF�
ÀHOGV�RI�VWXG\�WKDW�ZHUH�LQYLWHG�

Sometimes the number of clusters is dictated by business requirements or the 
motivation for the analysis. For example, the number of tables in the meeting hall 
could dictate how many groups of people should be created from the data science 
attendee list. Extending this idea to a business case, if the marketing department only 
has resources to create three distinct advertising campaigns, it might make sense to 
set N = 3 to assign all the potential customers to one of the three appeals.

Without any a priori knowledge at all, one rule of thumb suggests setting N equal 
to the square root of (n / 2), where n is the number of examples in the dataset. 
However, this rule of thumb is likely to result in an unwieldy number of clusters for 
ODUJH�GDWDVHWV��/XFNLO\��WKHUH�DUH�RWKHU�VWDWLVWLFDO�PHWKRGV�WKDW�FDQ�DVVLVW�LQ�ÀQGLQJ�D�
suitable k-means cluster set.

A technique known as the elbow method attempts to gauge how the homogeneity 
or heterogeneity within the clusters changes for various values of N. As illustrated 
LQ�WKH�IROORZLQJ�ÀJXUHV��WKH�KRPRJHQHLW\�ZLWKLQ�FOXVWHUV�LV�H[SHFWHG�WR�LQFUHDVH�DV�
additional clusters are added; similarly, heterogeneity will also continue to decrease 
with more clusters. Because you could continue to see improvements until each 
example is in its own cluster, the goal is not to maximize homogeneity or minimize 
KHWHURJHQHLW\��EXW�UDWKHU�WR�ÀQG�N such that there are diminishing returns beyond that 
point. This value of N is known as the elbow point, because it looks like an elbow.



choosing the appropriate number of clusters

I “fit” statistics to measure homogeneity within clusters and
heterogeneity in between

I

I numerous examples exist

I “iterative heuristic fitting”* (IHF) (trying different values and
looking at what seems most plausible)

* Warning: This is my (slightly facetious) term only!



Other clustering methods: hierarchical clustering

I agglomerative: works from the bottom up to create clusters
I like k-means, usually involves projection: reducing the

features through either selection or projection to a
lower-dimensional representation

1. local projection: reducing features within document
2. global projection: reducing features across all documents

(Schütze and Silverstein, 1997)
3. SVD methods, such PCA on a normalised feature matrix
4. usually simple threshold-based truncation is used

(keep all but 100 highest frequency or tf-idf terms)

I frequently/always involves weighting (normalising term
frequency, tf-idf)



hierarchical clustering algorithm

1. start by considering each item as its own cluster, for n clusters

2. calculate the N(N − 1)/2 pairwise distances between each of
the n clusters, store in a matrix D0

3. find smallest (off-diagonal) distance in D0, and merge the
items corresponding to the i , j indexes in D0 into a new
“cluster”

4. recalculate distance matrix D1 with new cluster(s). options for
determining the location of a cluster include:

I centroids (mean)
I most dissimilar objects
I Ward’s measure(s) based on minimising variance

5. repeat 3–4 until a stopping condition is reached
I e.g. all items have been merged into a single cluster

6. to plot the dendrograms, need decisions on ordering, since
there are 2(N−1) possible orderings



Dendrogram: Presidential State of the Union addresses



Dendrogram: Presidential State of the Union addresses



pros and cons of hierarchical clustering

I advantages
I deterministic, unlike k-means
I no need to decide on k in advance (although can specify as a

stopping condition)
I allows hierarchical relations to be examined

(usually through dendrograms)

I disadvantages
I more complex to compute: quadratic in complexity: O(n2)

– whereas k-means has complexity that is O(n)
I the decision about where to create branches and in what order

can be somewhat arbitrary, determined by method of declaring
the “distance” to already formed clusters

I for words, tends to identify collocations as base-level clusters
(e.g. “saddam” and “hussein”)



Dendrogram: Presidential State of the Union addresses



Topic Models

I Topic models are algorithms for discovering the main
“themes” in an unstructured corpus

I Requires no prior information, training set, or special
annotation of the texts
– only a decision on K (number of topics)

I A probabilistic, generative advance on several earlier methods,
“Latent Semantic Analysis” (LSA) and “probabilistic latent
semantic indexing” (pLSI)


