Featurecode_asterCOMSOL(R)GetFEM++Deal IIRangeElmerfemMOOSElibMeshFEniCSFEATool MultiphysicsFiredrake
website:https://www.code-aster.orghttps://www.comsol.comhttp://home.gna.org/getfem/http://www.dealii.orghttp://www.range-software.comhttps://www.csc.fi/elmerhttps://www.mooseframework.org/http://libmesh.github.io/http://fenicsproject.org/https://www.featool.com/http://firedrakeproject.org/
license:GPLProprietaryLGPLLGPLGPLGNU (L)GPLLGPLLGPLGNU GPL\LGPLProprietaryGNU LGPL
GUI:Yes (Salome-Meca)YesNoNoYesYes, partial functionalityYesNoPostprocessing onlyMatlab and Octave GUINo
Community:discussion forum, Bitbucket forgehttps://www.comsol.com/forumMailing listGoogle GroupGitHub1000’s of users, discussion forum, mailing list, Discord serverGoogle Groupmail listsMailing listMailing listMailing list and IRC channel
Documentation:user manual, theory manual, verification manual, developer manual (more than 25000 pages both in French and English with machine translation)User guides, reference manuals, API documentation, application libraries with solved examples, online tutorialsUser doc, tutorials, demos, developer’s guide50+ tutorials, 50+ video lectures, Doxygenuser manual, tutorialsElmerSolver Manual, Elmer Models Manual, ElmerGUI Tutorials, etc. (>700 pages of LaTeX documentation available in PDFs)Doxygen, Markdown, 170+ example codes, 4300+ test inputsDoxygen, 100+ example codesTutorial, demos (how many?), 700-page bookOnline FEATool documentation, ~600 pages, ~20 step-by-step tutorials, and 85 m-script model examplesManual, demos, API reference
Mesh
mesh elements:segments (1d), triangles, quadrilaterals (2d), tetrahedra, pyramids, wedges, hexahedra (3d)Intervals (1D); triangles, quadrilaterals (2D and 3D boundaries); tetrahedra, pyramids, prisms, hexahedra (3d)intervals, triangles, tetrahedra, quads, hexes, prisms, some 4D elements, easily extensible.intervals (1d), quads (2d), and hexes (3d) onlypoints(0d), segments (1d), triangles, quadrilaterals (2d), tetrahedra, hexahedra (3d)intervals (1d), triangles, quadrilaterals (2d), tetrahedra, pyramids, wedges, hexahedra (3d)Tria, Quad, Tetra, Prism, etc.Tria, Quad, Tetra, Prism, etc.intervals, triangles, tetrahedra (quads, hexes - work in progress)intervals, triangles, tetrahedra, quads, hexesintervals, triangles, tetrahedra, quads, plus extruded meshes of hexes and wedges
mesh high-order mapping:QuadraticAny? Second-order is the default for most cases.any orderYes, for Lagrange elements(Any - work in progress)(Any - using appropriate branches)
mesh generation:Yes (Salome-Meca)Built-inExperimental in any dimension + predefined shapes + Extrusion.external+predefined shapesYes (TetGen)Limited own meshing capabilities with ElmerGrid and netgen/tetgen APIs. Internal extrusion and mesh multiplication on parallel level.Built-inBuilt-inYes, Constructive Solid Geometry (CSG) supported via mshr (CGAL and Tetgen used as backends)Integrated DistMesh, Gmsh, and Triangle GUI and CLI interfacesExternal + predefined shapes. Internal mesh extrusion operation.
mesh adaptive-refinement:h-refinementYes, full adaptive mesh refinement (h-refinement); no p-refinement but several higher-order elements are included. Mesh adaptation on the whole or parts of the geometry, for stationary, eigenvalue, and time-dependent simulations and by rebuilding the entire mesh or refining chosen mesh elements.Only hh, p, and hp for CG and DGh-refinement for selected equationsh, p, mached hp, singular hph, p, mached hp, singular hpOnly h
mesh input\output:unv, gmsh, MED, asterSTL, PLY, NASTRAN, 3MF, VRML (import only), native formatgmsh, GiD, Ansysrbm, stlExodusII, Nemesis, Abaqus, Ensight, Gmsh, GMV, OFF, TecPlot TetGen, etc.ExodusII, Nemesis, Abaqus, Ensight, Gmsh, GMV, OFF, TecPlot TetGen, etc.XDMF (and FEniCS XML)FeatFlow, FEniCS XML, GiD, Gmsh, GMV, Triangle
mesh check:limited features (double nodes, degenerated elements)Avoids inverted and degenerated elements; various mesh quality measures?limited features (double nodes, degenerated elements, intersected elements)intersections (collision testing)
CAD files support:Yes (Salome-Meca)STEP, IGES and many others.NoIGES, STEP (with OpenCascade wrapper)Yes (stl)Limited support via OpenCASCADE in ElmerGUI
mesh operation:Yes (Salome-Meca)Merge, copy, refine; convert; boundary layers; extrude, revolve, sweep, loft for 3D geometiesExtrude, rotate, translation, refineExtrude, rotate, translation, refineMerge, join, extrude, modular mesh modifier systemdistort/translate/rotate/scaleMerge, join, extrude, and revolve operations
Parallel possibilities
automatic mesh partitioning:Yes for parallel calculations (PTScotch, ParMetis)Yes (METIS)yes, shared (METIS/Parmetis) and distributed (p4est)Nopartitioning with ElmerGrid using Metis or geometric division, internal partitioning in ElmerSolver using ZoltanMetis, Parmetis, Hilbert (shared and distributed meshes)Metis, Parmetis, HilbertYes (ParMETIS and SCOTCH)Yes
MPI:YesAlmost ideal for parameter sweep? For large scale simulations Comsol 4.2 bench by Pepper has 19.2 speedup on 24 core cluster (0.8 efficiency).YesYes (up to 147k processes), test for 4k processes and geometric multigrid for 147k, strong and weak scalingNoYes, demonstrated scalability up to 1000’s of coresYesYesYes, DOLFIN solver scales up to 24kYes, Scaling plot for Firedrake out to 24k cores.
threads:YesSupports multithreadingThreading Build BlocksYesthreadsafe, some modules threaded and vectorized.YesYes
OpenMP:YesYesYesYes (vectorization only)YesYes, partiallyYesYesLimited
OpenCL:NoNoNoNoNoNo
CUDA:NoNoNosince 9.1, see step-64 for matrix-free GPU+MPI exampleNoPreliminary API for sparse linear algebra
Solver
Dimension:0D/1D/2D/3D (dimensions may coexist)0D, 1D, 2D, 3D (can coexist)Any, possibility to mix and couple problem of different dimension1/2/3D0D/1D/2D/3D (dimensions may coexist)1D/2D/3D (dimensions may coexist)1/2/3D2D\3D1/2/3D1/2/3D1/2/3D
FE:Lagrange elements (isoparametric), mixed elements, structural mechanics elements (beam, plate)Lagrange (order 1-7), Hermite (order 3-7), discontinuous Lagrange (order 0-7), bubble, Gauss point, serendipity, NedelecContinuous and discontinuous Lagrange, Hermite, Argyris, Morley, Nedelec, Raviart-Thomas, composite elements (HCT, FVS), Hierarchical elements, Xfem, easily extensible.Lagrange elements of any order, continuous and discontinuous; Nedelec and Raviart-Thomas elements of any order; BDM and Bernstein; elements composed of other elements.Lagrange elementsLagrange elements, p-elements up to 10th order, Hcurl conforming elements (linear and quadratic) forLagrange, Hierarchic, Discontinuous Monomials, NedelecLagrange, Hierarchic, Discontinuous Monomials, NedelecLagrange, BDM, RT, Nedelic, Crouzeix-Raviart, all simplex elements in the Periodic Table (femtable.org), anyLagrange (1st-5th order), Crouzeix-Raviart, HermiteLagrange, BDM, RT, Nedelec, all simplex elements and Q- quad elements in the Periodic Table, any
Quadrature:depending on the type of element (Gauss, Newton-Cotes, etc)Gauss-Legendre, Gauss-Lobatto, midpoint, trapezoidal, Simpson, Milne and Weddle (closed Newton-Cotes for 4 and 7 order polinomials), Gauss quadrature with logarithmic or 1/R weighting function, Telles quadrature of arbitrary order.Gauss-Legendre (1D and tensor product rules in 2D and 3D) tabulated up to 44th-order to high precision, best available rules for triangles and tetrahedra to very high order, best available monomial rules for quadrilaterals and hexahedra.Gauss-Legendre (1D and tensor product rules in 2D and 3D) tabulated up to 44th-order to high precision, best available rules for triangles and tetrahedra to very high order, best available monomial rules for quadrilaterals and hexahedra.
Transient problems:YesYes, BDF, Runge-Kutta (RK34, Cash-Karp 5, Dormand-Prince 5), and generalized alpha time steppingAny user implemented and/or from a set of predifined. Explicit methods: forward Euler, 3rd and 4th order Runge-Kutta. Implicit methods: backward Euler, implicit Midpoint, Crank-Nicolson, SDIRK. Embedded explicit methods: Heun-Euler, Bogacki-Shampine, Dopri, Fehlberg, Cash-Karp.Yesimplicit-euler explicit-euler crank-nicolson bdf2 explicit-midpoint dirk explicit-tvd-rk-2 newmark-betaBE, CN, and Fractional-Step-Theta schemes
Predifined equations:Yes (mechanics, thermics, acoustics)Incompressible Navier-Stokes, heat transfer, convection-diffusion-reaction, linear elasticity, electromagnetics, pressure acoustics, Darcy’s law, and support for custom PDE equations A lot more via add-on modules.Laplace?Yes (Incompressible Navier-Stokes, Heat transfer (convection-conduction-radiation), Stress analysis, Soft body dynamics, Modal analysis, Electrostatics, Magnetostatics )Around 50 predefined solversPhase Field, Solid Mechanics, Navier-Stokes, Porous Flow, Level Set, Chemical Reactions, Heat Conduction, support for custom PDEsNoIncompressible Navier-Stokes, Heat transfer, convection-diffusion-reaction, linear elasticity, electromagnetics, Darcy’s, Brinkman equations, and support for custom PDE equations
Automated assembly:YesYesYesYesYesYes
Visualization:Paraview (Salome-Meca)Built-inExternal or with the Scilab/Matlab/Python interface. Possibility to perform complex slices.External (export to *.vtk and many others)GUI (built-in)ElmerGUI comes VTK based visualization tool (but Paraview is recommended)Yes, VTK-based GUI, Python visualizatuion libraryNoBuil-in simple plotting + ExternalBuilt-in with optional Plotly and GMV exportExternal
Output format:MED, ASCIIText and unstructured VTK-file for data.BMP,PNG, GIF, TIFF, JPEG, glTF, Windows clipboard, Microsoft PowerPoint (for images). GIF, Flash, AVI, WebM (for animatios). Touchstone data (for networks).vtk, gmsh, OpenDX.*.dx *.ucd *.gnuplot *.povray *.eps *.gmv *.tecplot *.tecplot_binary *.vtk *.vtu *.svg *.hdf5Several output formats (VTU, gmsh,…)ExodusII, Xdr, etc.ExodusII, Xdr, etc.VTK(.pvd, .vtu) and XDMF/HDF5GMV and PlotlyVTK(.pvd, .vtu)
Boundary elements solver:Yes for Soil-Structure Interaction (Miss3D)YesNoYesExisting but without multipole acceleration (not usable for large problems)NoNo
Use multiple meshes:YesYes including different dimensions and taking account of any transformation.Yes, autorefined from same initial mesh for each variable of a coupled problemContinuity of non-conforming interfaces ensured by mortar finite elementsYes, including non-matching meshesYes
Linear algebra
Used libs:BLAS/LAPACK, MUMPS (and SCALAPACK), PETScMUMPS, PARDISO, SPOOLES; ARPACK, BLAS, BLIS, Intel MKL, LAPACKSuperLU, MUMPS, Built-in.Built-in + Trilinos, PETSc, and SLEPcNoBuilt-in, Hypre, Trilinos, umfpack, MUMPS, Pardiso, etc. (optional)PETSc, Trilinos, LASPack, SLEPcPETSc, Trilinos, LASPack, SLEPcPETSc, Trilinos/TPetra, Eigen.Matlab/Octave built-in (Umfpack), supports integration with the FEniCS and FeatFlow solversPETSc
Iterative matrix solvers:GMRES, CG, GCR, CR, FGMRES (via PETSc)GMRES, FGMRES, BiCGStab, conjugate gradients, TFQMR, or any precoditioner. Algebraic and geometric multigrid. Domain decomponsition (Schwarz, Schur)All KrylovAll Krylov (CG, Minres, GMRES, BiCGStab, QMRS)GMRES, CGBuilt-in Krylov solvers, Krylov and multigrid solvers from external librariesLASPack serial, PETSc parallelLASPack serial, PETSc parallelMatlab/Octave built-in
Preconditioners:ILU, Jacobi, Simple Precision Preconditioner (via MUMPS)Direct preconditioner, Krylov, SOR, SSOR, SORU, SOR line, SOR gauge, SOR vector, Jacobi, incomplete and hierarchical LU, SAI, SCGS, Vanka, AMSBasic ones (ILU, ILUT)Many, including algebraic multigrid (via Hypre and ML) and geometric multigridILU, JacobiBuilt-in preconditioners (ILU, diagonal, vanka, block) andLASPack serial, PETSc parallel, algebraic multigrid (via Hypre)LASPack serial, PETSc parallelMatlab/Octave built-in
Matrix-free
matrix-free:NoYesNoYesNoExperimental implementationYes
matrix-free save memory:NoNoYesNo
matrix-free speed-up:NoNoYesNo
Used language
Native language:Fortran 90, PythonPrimarily C++ and JavaC++C++C++Fortran (2008 standard)C++C++C++Matlab / OctavePython (and generated C)
Bindings to language:PythonFull API for Java and Matlab (the latter via add-on product)Python, Scilab or MatlabNoNoPython
Other
Predefined equations:linear quasistatics, linear thermics, non-linear quasistatics, non-linear dynamics, eigen problem for mechanics, linear dynamics on physical basis and modal basis, harmonic analysis, spectral analysisYes, many predefined physics and multiphysics interfaces in COMSOL Multiphysics and its add-ons.Model bricks: Laplace, linear and nonlinear elasticity, Helmholtz, plasticity, Mindlin and K.L. plates, boundary conditions including contact with friction.
Coupled nonlinear problems:thermo-hydro-mechanical problem for porous media, coupling with Code_Saturne CFD software for Fluid-Structure Interaction via SALOME platformYesYes
Binary:Yes for Salome-Meca (Linux)Windows, Linux, macOSLinux (Debian/Ubuntu)Linux, Windows (work in progress), MacWindows, Linux (launchpad: Debian/Ubuntu), Mac (homebrew) (all with MPI)Linux (Debian\Ubuntu), MacWindows, Linux, MacNo. Automated installers for Linux and Mac
fullname:Analyse des Structures et Thermo-mécanique pour des Études et des Recherches (ASTER)Elmer finite element software
Testing:More than 3500 verification testcases covering all features and providing easy starting points for beginnershttps://www.comsol.com/legal/quality-policy3500+ testsMore than 700 consistency tests ensuring backward compatibility4300+ tests, Testing as a service for derived applications
scripting:Full API for Java and, through add-on product, MatlabRuntime parsed mathematical expression in input filesFully scriptable in as m-file Matlab scripts and the GUI supports exporting models in script format
automatic differentiation:YesForward-mode for Jacobian computation, symbolic differentiation capabilities
multiphysics:Yes, full custom and predefined multiphysics couplings between all kinds of physicsArbitrary multiphysics couplings are supportedArbitrary multiphysics couplings are supported
Optimization Solvers:With the Optimization Module add-on: Coorinate search, Nelder-Mead, Monte Carlo, BOBYQA, COBYLA, SNOPT, MMA, Levenberg-MarquardtSupport for TAO- and nlopt-based constrained optimization solvers incorporating gradient and Hessian information.Support for TAO- and nlopt-based constrained optimization solvers incorporating gradient and Hessian information.
Symbolic derivation of the tangent system for nonlinear problems:Yes
Support for fictitious domain methods:Yes
Wilkinson Prize:20072015 for dolfin-adjoint

Overview

This is an auto generated comparison from manually filled `*.profiles` for FEA software. It is also available in HTML format preview 1 (fast and correct rendering of html table from previous commit), preview 2 (a bit slow, had problems with Firefox, usually current commit) with first row and Feature column being fixed for ease of table exploration. Profiles in table are sorted with the number of filled keys.

Profile format

Profile is read line-by-line. Any string before colon ‘:’ is treated as a key, the other part till the end of the line as value. Lines without colon are ignored, comments should start with hash ‘#’ in the begging of the line. main-keys.txt file contains keys in order to be listed first, all other keys from all profiles are lister afterwards. Key are always carried with colon, table group names are not (for visual ease they are four spaces indented). Use generate-comparison.py to generate a table from profiles, you will need to install `org-ruby` gem to convert it into HTML format (use `sudo gem install org-ruby` in Ubuntu linux to install this gem).

Contribution

Fill free to contribute! There is still a lot of codes, not compared it the table, e.g: MFEM, NgSolve, CalculiX and Salomé + Code_Saturne, ANSYS, NASTRAN, CFD-ACE+, COSMOSWORKS. Comsol(R) description is poor.