Last updated: 2018-06-20
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180613)
The command set.seed(20180613)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 09c8606
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/ATACseq_footprinting_pipeline.Rmd
Untracked: code_RCC/
Untracked: docs/figure/compare_centipede_predictions.Rmd/
Untracked: workflow_setup.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
library(ggplot2)
library(grid)
library(gridExtra)
library(limma)
library(edgeR)
library(VennDiagram)
Warning: package 'VennDiagram' was built under R version 3.4.4
Loading required package: futile.logger
message <- futile.logger::flog.threshold(futile.logger::ERROR, name = "VennDiagramLogger")
## venn diagram
plot_venn_overlaps <- function(overlaps.m, title = "", col_fill = NULL, category.names = NULL){
grid.newpage()
overlaps_venn.l <- lapply(as.data.frame(overlaps.m), function(x) which(x == 1))
if(is.null(col_fill)){
col_fill <- 1:length(overlaps_venn.l)
}
if(is.null(category.names)){
category.names <- names(x)
}
venn.plot <- venn.diagram(
x = overlaps_venn.l,
category.names = category.names,
filename = NULL,
fill = col_fill,
alpha=rep(0.5, length(overlaps_venn.l)),
cex = 1.5,
cat.fontface=4,
main=title)
grid.draw(venn.plot)
}
tf_name <- "CTCF"
pwm_name <- "CTCF_MA0139.1_1e-4"
thresh_PostPr_bound <- 0.99
cat(pwm_name, "\n")
CTCF_MA0139.1_1e-4
dir_predictions <- paste0("~/Dropbox/research//ATAC-seq/for_Olivia_Gray/results/centipede_predictions/", pwm_name)
## condition: N
bam_namelist_N <- c("N1_nomito_rdup.bam", "N2_nomito_rdup.bam", "N3_nomito_rdup.bam")
site_predictions_N.l <- vector("list", 3)
names(site_predictions_N.l) <- bam_namelist_N
for(i in 1:length(bam_namelist_N)){
bam_basename <- tools::file_path_sans_ext(basename(bam_namelist_N[[i]]))
site_predictions_N.l[[i]] <- read.table(paste0(dir_predictions, "/", pwm_name, "_", bam_basename, "_predictions.txt.gz"), header = T, stringsAsFactors = F)
}
CentPostPr_N.df <- data.frame(N1 = site_predictions_N.l[[1]]$CentPostPr,
N2 = site_predictions_N.l[[2]]$CentPostPr,
N3 = site_predictions_N.l[[3]]$CentPostPr)
CentLogRatios_N.df <- data.frame(N1 = site_predictions_N.l[[1]]$CentLogRatios,
N2 = site_predictions_N.l[[2]]$CentLogRatios,
N3 = site_predictions_N.l[[3]]$CentLogRatios)
## condition: H
bam_namelist_H <- c("H1_nomito_rdup.bam", "H2_nomito_rdup.bam", "H3_nomito_rdup.bam")
site_predictions_H.l <- vector("list", 3)
names(site_predictions_H.l) <- bam_namelist_H
for(i in 1:length(bam_namelist_H)){
bam_basename <- tools::file_path_sans_ext(basename(bam_namelist_H[[i]]))
site_predictions_H.l[[i]] <- read.table(paste0(dir_predictions, "/", pwm_name, "_", bam_basename, "_predictions.txt.gz"), header = T, stringsAsFactors = F)
}
name_sites <- site_predictions_H.l[[1]]$name
CentPostPr_H.df <- data.frame(H1 = site_predictions_H.l[[1]]$CentPostPr,
H2 = site_predictions_H.l[[2]]$CentPostPr,
H3 = site_predictions_H.l[[3]]$CentPostPr)
CentLogRatios_H.df <- data.frame(H1 = site_predictions_H.l[[1]]$CentLogRatios,
H2 = site_predictions_H.l[[2]]$CentLogRatios,
H3 = site_predictions_H.l[[3]]$CentLogRatios)
CentPostPr.df <- cbind(CentPostPr_N.df, CentPostPr_H.df)
CentLogRatios.df <- cbind(CentLogRatios_N.df, CentLogRatios_H.df)
cat("Number of bound sites: \n")
Number of bound sites:
colSums(CentPostPr.df > thresh_PostPr_bound)
N1 N2 N3 H1 H2 H3
37688 33636 30943 18018 17260 24842
idx_bound <- which(rowSums(CentPostPr.df > thresh_PostPr_bound) >= 2)
cat(length(idx_bound), "sites are bound in at least two samples \n")
34309 sites are bound in at least two samples
cat(length(idx_bound), "(",round(length(idx_bound)/nrow(CentPostPr.df) *100, 2), "% ) sites are bound in at least two samples \n")
34309 ( 8.74 % ) sites are bound in at least two samples
bound_N <- rowSums(CentPostPr.df[,c("N1", "N2", "N3")] > thresh_PostPr_bound) >= 2
bound_H <- rowSums(CentPostPr.df[,c("H1", "H2", "H3")] > thresh_PostPr_bound) >= 2
bound_N_H <- data.frame(N = bound_N, H = bound_H)
plot_venn_overlaps(bound_N_H, title = paste("Number of", tf_name, "bound sites"),
category.names = c("Bound in N", "Bound in H"), col_fill = c("blue", "red"))
par(pty="s")
plot(rowMeans(CentPostPr_N.df), rowMeans(CentPostPr_H.df),
xlab = "N average P(Bound)", ylab = "H average P(Bound)", main = tf_name,
pch = ".", col = rgb(0,0,1,0.7))
abline(a=0,b=1)
Version | Author | Date |
---|---|---|
5cc1183 | kevinlkx | 2018-06-20 |
par(mfrow = c(1,2))
par(pty="s")
plot(rowMeans(CentLogRatios_N.df), rowMeans(CentLogRatios_H.df),
xlab = "N average logRatios", ylab = "H average logRatios", main = tf_name,
pch = ".", col = rgb(0,0,1,0.7))
abline(a=0,b=1,col = "darkgray")
plot(x = (rowMeans(CentLogRatios_H.df)+rowMeans(CentLogRatios_N.df))/2,
y = rowMeans(CentLogRatios_H.df) - rowMeans(CentLogRatios_N.df),
xlab = "average logRatios", ylab = "Difference in logRatios (H - N)", main = tf_name,
pch = ".", col = rgb(0,0,1,0.7))
abline(v=0, h=0, col = "darkgray")
Version | Author | Date |
---|---|---|
5cc1183 | kevinlkx | 2018-06-20 |
par(pty="s")
plot(rowMeans(CentPostPr_N.df[idx_bound,]), rowMeans(CentPostPr_H.df[idx_bound,]),
xlab = "N average P(Bound)", ylab = "H average P(Bound)", main = paste(tf_name, "bound sites"),
pch = ".", col = rgb(0,0,1,0.7))
abline(a=0,b=1)
Version | Author | Date |
---|---|---|
5cc1183 | kevinlkx | 2018-06-20 |
par(mfrow = c(1,2))
par(pty="s")
plot(rowMeans(CentLogRatios_N.df[idx_bound,]), rowMeans(CentLogRatios_H.df[idx_bound,]),
xlab = "N average logRatios", ylab = "H average logRatios", main = tf_name,
pch = ".", col = rgb(0,0,1,0.7))
abline(a=0,b=1,col = "darkgray")
plot(x = (rowMeans(CentLogRatios_H.df[idx_bound,])+rowMeans(CentLogRatios_N.df[idx_bound,]))/2,
y = rowMeans(CentLogRatios_H.df[idx_bound,]) - rowMeans(CentLogRatios_N.df[idx_bound,]),
xlab = "average logRatios", ylab = "Difference in logRatios (H - N)", main = tf_name,
pch = ".", col = rgb(0,0,1,0.7))
abline(v=0, h=0, col = "darkgray")
Version | Author | Date |
---|---|---|
5cc1183 | kevinlkx | 2018-06-20 |
pca_logRatios <- prcomp(t(CentLogRatios.df))
percentage <- round(pca_logRatios$sdev / sum(pca_logRatios$sdev) * 100, 2)
percentage <- paste0( colnames(pca_logRatios$x), " (", paste( as.character(percentage), "%)") )
pca_logRatios.df <- as.data.frame(pca_logRatios$x)
pca_logRatios.df$group <- rep(c("N","H"), each = 3)
p <- ggplot(pca_logRatios.df, aes(x=PC1,y=PC2,color=group,label=row.names(pca_logRatios.df)))
p <- p + geom_point() + geom_text(size = 3, show.legend = F, vjust = 2, nudge_y = 0.5) +
labs(title = tf_name, x = percentage[1], y = percentage[2])
p
Version | Author | Date |
---|---|---|
5cc1183 | kevinlkx | 2018-06-20 |
pca_logRatios <- prcomp(t(CentLogRatios.df[idx_bound, ]))
percentage <- round(pca_logRatios$sdev / sum(pca_logRatios$sdev) * 100, 2)
percentage <- paste0( colnames(pca_logRatios$x), " (", paste( as.character(percentage), "%)") )
pca_logRatios.df <- as.data.frame(pca_logRatios$x)
pca_logRatios.df$group <- rep(c("N","H"), each = 3)
p <- ggplot(pca_logRatios.df, aes(x=PC1,y=PC2,color=group,label=row.names(pca_logRatios.df)))
p <- p + geom_point() + geom_text(size = 3, show.legend = F, vjust = 2, nudge_y = 0.5) +
labs(title = tf_name, x = percentage[1], y = percentage[2])
p
Version | Author | Date |
---|---|---|
5cc1183 | kevinlkx | 2018-06-20 |
targets <- data.frame(bam = c(bam_namelist_N, bam_namelist_H),
label = colnames(CentLogRatios.df),
condition = rep(c("N", "H"), each = 3))
print(targets)
bam label condition
1 N1_nomito_rdup.bam N1 N
2 N2_nomito_rdup.bam N2 N
3 N3_nomito_rdup.bam N3 N
4 H1_nomito_rdup.bam H1 H
5 H2_nomito_rdup.bam H2 H
6 H3_nomito_rdup.bam H3 H
condition <- factor(targets$condition, levels = c("N", "H"))
design <- model.matrix(~0+condition)
colnames(design) <- levels(condition)
print(design)
N H
1 1 0
2 1 0
3 1 0
4 0 1
5 0 1
6 0 1
attr(,"assign")
[1] 1 1
attr(,"contrasts")
attr(,"contrasts")$condition
[1] "contr.treatment"
CentLogRatios_Bound.df <- CentLogRatios.df[idx_bound, ]
fit <- lmFit(CentLogRatios_Bound.df, design)
contrasts <- makeContrasts(H-N, levels=design)
fit2 <- contrasts.fit(fit, contrasts)
fit2 <- eBayes(fit2, trend=TRUE)
num_diffbind <- summary(decideTests(fit2))
percent_diffbind <- round(num_diffbind / sum(num_diffbind) * 100, 2)
cat(percent_diffbind[1], "% down in H vs. N,", percent_diffbind[3], "% up in H vs. N \n")
63.53 % down in H vs. N, 0.01 % up in H vs. N
# volcanoplot(fit2, main="H vs. N", xlab = "Difference in logRatios (H - N)")
plot(x = fit2$coef, y = -log10(fit2$p.value),
xlab = "Difference in logRatios (H - N)", ylab = "-log10(P-value)", main= paste(tf_name, "H vs. N"),
pch = 16, cex = 0.35)
Version | Author | Date |
---|---|---|
5cc1183 | kevinlkx | 2018-06-20 |
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] VennDiagram_1.6.20 futile.logger_1.4.3 edgeR_3.20.9
[4] limma_3.34.9 gridExtra_2.3 ggplot2_2.2.1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 compiler_3.4.3 pillar_1.2.2
[4] formatR_1.5 git2r_0.21.0 plyr_1.8.4
[7] workflowr_1.0.1 R.methodsS3_1.7.1 R.utils_2.6.0
[10] futile.options_1.0.1 tools_3.4.3 digest_0.6.15
[13] evaluate_0.10.1 tibble_1.4.2 gtable_0.2.0
[16] lattice_0.20-35 rlang_0.2.0 yaml_2.1.18
[19] stringr_1.3.0 knitr_1.20 locfit_1.5-9.1
[22] rprojroot_1.3-2 rmarkdown_1.9 lambda.r_1.2.2
[25] magrittr_1.5 whisker_0.3-2 splines_3.4.3
[28] backports_1.1.2 scales_0.5.0 htmltools_0.3.6
[31] colorspace_1.3-2 labeling_0.3 stringi_1.1.7
[34] lazyeval_0.2.1 munsell_0.4.3 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.0.1