Last updated: 2018-07-26
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180613)
The command set.seed(20180613)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: e54fd81
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: code_RCC/.DS_Store
Ignored: data/.DS_Store
Untracked files:
Untracked: analysis/compare_centipede_predictions_DiffACregions_MEF2D.Rmd
Untracked: docs/figure/compare_centipede_predictions.Rmd/
Untracked: docs/figure/compare_centipede_predictions_DiffACregions_MEF2D.Rmd/
Untracked: workflow_setup.R
Unstaged changes:
Modified: analysis/ATACseq_preprocessing_pipeline.Rmd
Modified: analysis/compare_centipede_predictions_DiffACregions_CTCF.Rmd
Modified: analysis/fit_centipede_ATACseq.Rmd
Modified: analysis/license.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
library(ggplot2)
library(grid)
library(gridExtra)
suppressPackageStartupMessages(library(GenomicRanges))
library(limma)
Attaching package: 'limma'
The following object is masked from 'package:BiocGenerics':
plotMA
library(edgeR)
library(VennDiagram)
Warning: package 'VennDiagram' was built under R version 3.4.4
Loading required package: futile.logger
message <- futile.logger::flog.threshold(futile.logger::ERROR, name = "VennDiagramLogger")
## venn diagram
plot_venn_overlaps <- function(overlaps.m, title = "", col_fill = NULL, category.names = NULL){
grid.newpage()
overlaps_venn.l <- lapply(as.data.frame(overlaps.m), function(x) which(x == 1))
if(is.null(col_fill)){
col_fill <- 1:length(overlaps_venn.l)
}
if(is.null(category.names)){
category.names <- names(x)
}
venn.plot <- venn.diagram(
x = overlaps_venn.l,
category.names = category.names,
filename = NULL,
fill = col_fill,
alpha=rep(0.5, length(overlaps_venn.l)),
cex = 1.5,
cat.fontface=4,
main=title)
grid.draw(venn.plot)
}
tf_name <- "HIF1A"
pwm_name <- "HIF1A_MA1106.1_1e-4"
thresh_PostPr_bound <- 0.99
flank <- 100
cat("PWM name: ", pwm_name, "\n")
PWM name: HIF1A_MA1106.1_1e-4
diffAC_regions.df <- read.csv("~/Dropbox/research/ATAC_DNase/ATAC-seq_Olivia_Gray/results/DiffAC_regions/ordered_results_withcoords.csv")
cat(nrow(diffAC_regions.df), "regions in total \n")
138927 regions in total
diffAC_regions.df <- diffAC_regions.df[, c("chr", "Start", "End","GeneID", "baseMean", "Strand", "log2FoldChange", "lfcSE", "stat", "pvalue", "padj")]
diffAC_sig_regions.df <- diffAC_regions.df[diffAC_regions.df$padj < 0.1, ]
cat(nrow(diffAC_sig_regions.df), "significant regions \n")
2390 significant regions
hist(diffAC_regions.df$log2FoldChange, xlab = "log2FoldChange", main = "Differentially open regions (FDR < 10%)")
Version | Author | Date |
---|---|---|
0197370 | kevinlkx | 2018-07-25 |
diffAC_sigH_regions.df <- diffAC_sig_regions.df[diffAC_sig_regions.df$log2FoldChange > 0, ]
cat(nrow(diffAC_sigH_regions.df), "regions differentially open in hypoxia. \n")
201 regions differentially open in hypoxia.
diffAC_sigN_regions.df <- diffAC_sig_regions.df[diffAC_sig_regions.df$log2FoldChange < 0, ]
cat(nrow(diffAC_sigN_regions.df), "regions differentially open in normoxia. \n")
2189 regions differentially open in normoxia.
diffAC_sig_regions.gr <- makeGRangesFromDataFrame(diffAC_sig_regions.df, start.field = "Start", end.field = "End", keep.extra.columns = T)
diffAC_sigH_regions.gr <- makeGRangesFromDataFrame(diffAC_sigH_regions.df, start.field = "Start", end.field = "End", keep.extra.columns = T)
diffAC_sigN_regions.gr <- makeGRangesFromDataFrame(diffAC_sigN_regions.df, start.field = "Start", end.field = "End", keep.extra.columns = T)
dir_predictions <- paste0("~/Dropbox/research/ATAC_DNase/ATAC-seq_Olivia_Gray/results/centipede_predictions/", pwm_name)
## condition: N
bam_namelist_N <- c("N1_nomito_rdup.bam", "N2_nomito_rdup.bam", "N3_nomito_rdup.bam")
site_predictions_N.l <- vector("list", 3)
names(site_predictions_N.l) <- bam_namelist_N
for(i in 1:length(bam_namelist_N)){
bam_basename <- tools::file_path_sans_ext(basename(bam_namelist_N[[i]]))
site_predictions_N.l[[i]] <- read.table(paste0(dir_predictions, "/", pwm_name, "_", bam_basename, "_predictions.txt"), header = T, stringsAsFactors = F)
}
CentPostPr_N.df <- data.frame(N1 = site_predictions_N.l[[1]]$CentPostPr,
N2 = site_predictions_N.l[[2]]$CentPostPr,
N3 = site_predictions_N.l[[3]]$CentPostPr)
CentLogRatios_N.df <- data.frame(N1 = site_predictions_N.l[[1]]$CentLogRatios,
N2 = site_predictions_N.l[[2]]$CentLogRatios,
N3 = site_predictions_N.l[[3]]$CentLogRatios)
## condition: H
bam_namelist_H <- c("H1_nomito_rdup.bam", "H2_nomito_rdup.bam", "H3_nomito_rdup.bam")
site_predictions_H.l <- vector("list", 3)
names(site_predictions_H.l) <- bam_namelist_H
for(i in 1:length(bam_namelist_H)){
bam_basename <- tools::file_path_sans_ext(basename(bam_namelist_H[[i]]))
site_predictions_H.l[[i]] <- read.table(paste0(dir_predictions, "/", pwm_name, "_", bam_basename, "_predictions.txt"), header = T, stringsAsFactors = F)
}
CentPostPr_H.df <- data.frame(H1 = site_predictions_H.l[[1]]$CentPostPr,
H2 = site_predictions_H.l[[2]]$CentPostPr,
H3 = site_predictions_H.l[[3]]$CentPostPr)
CentLogRatios_H.df <- data.frame(H1 = site_predictions_H.l[[1]]$CentLogRatios,
H2 = site_predictions_H.l[[2]]$CentLogRatios,
H3 = site_predictions_H.l[[3]]$CentLogRatios)
if(any(site_predictions_N.l[[1]]$name != site_predictions_H.l[[1]]$name)){
stop("sites not match!")
}
sites.df <- site_predictions_N.l[[1]][,1:7]
## get motif coordinates
if(sites.df[1, "end"] - sites.df[1, "start"] > flank){
sites.df$start <- sites.df$start + flank
sites.df$end <- sites.df$end - flank
}
sites.gr <- makeGRangesFromDataFrame(sites.df, start.field = "start", end.field = "end", keep.extra.columns = F)
CentPostPr.df <- cbind(CentPostPr_N.df, CentPostPr_H.df)
CentLogRatios.df <- cbind(CentLogRatios_N.df, CentLogRatios_H.df)
sites_CentPostPr.df <- cbind(sites.df, CentPostPr_N.df, CentPostPr_H.df)
sites_CentLogRatios.df <- cbind(sites.df, CentLogRatios_N.df, CentLogRatios_H.df)
overlaps_diffAC.df <- as.data.frame(findOverlaps(query = sites.gr, subject = diffAC_sig_regions.gr, type = "within", ignore.strand = T))
idx_sites_diffAC <- unique(overlaps_diffAC.df$queryHits)
cat(length(idx_sites_diffAC), "candidate motif sites differentially open in hypoxia or normoxia. \n")
101 candidate motif sites differentially open in hypoxia or normoxia.
overlaps_sigH.df <- as.data.frame(findOverlaps(query = sites.gr, subject = diffAC_sigH_regions.gr, type = "within", ignore.strand = T))
idx_sites_sigH <- unique(overlaps_sigH.df$queryHits)
cat(length(idx_sites_sigH), "candidate motif sites differentially open in hypoxia. \n")
22 candidate motif sites differentially open in hypoxia.
overlaps_sigN.df <- as.data.frame(findOverlaps(query = sites.gr, subject = diffAC_sigN_regions.gr, type = "within", ignore.strand = T))
idx_sites_sigN <- unique(overlaps_sigN.df$queryHits)
cat(length(idx_sites_sigN), "candidate motif sites differentially open in normoxia. \n")
79 candidate motif sites differentially open in normoxia.
dir_bam <- "~/Dropbox/research/ATAC_DNase/ATAC-seq_Olivia_Gray/ATAC-seq_BAMfiles/"
bam_basename_list <- c("N1_nomito_rdup", "N2_nomito_rdup", "N3_nomito_rdup",
"H1_nomito_rdup", "H2_nomito_rdup", "H3_nomito_rdup")
reads_mapped <- rep(NA, length = length(bam_basename_list))
names(reads_mapped) <- bam_basename_list
for(bam_basename in bam_basename_list){
readstats_name <- paste0(dir_bam, "/", bam_basename, ".idxstats.txt")
readstats.df <- read.table(readstats_name, header = F)
reads_mapped[bam_basename] <- sum(readstats.df[,3])
}
cat("Number of reads mapped (million): \n")
Number of reads mapped (million):
print(reads_mapped/1e6)
N1_nomito_rdup N2_nomito_rdup N3_nomito_rdup H1_nomito_rdup H2_nomito_rdup
44.52970 45.87505 43.06390 30.81426 38.17168
H3_nomito_rdup
37.04096
cat("Number of bound sites that are differentially open in hypoxia: \n")
Number of bound sites that are differentially open in hypoxia:
colSums(CentPostPr.df[idx_sites_sigH, ] > thresh_PostPr_bound)
N1 N2 N3 H1 H2 H3
14 12 9 21 18 22
cat("Number of bound sites that are differentially open in normoxia: \n")
Number of bound sites that are differentially open in normoxia:
colSums(CentPostPr.df[idx_sites_sigN, ] > thresh_PostPr_bound)
N1 N2 N3 H1 H2 H3
79 79 78 45 36 53
# binding probablity
par(pty="s")
plot(rowMeans(CentPostPr_N.df), rowMeans(CentPostPr_H.df),
xlab = "N average P(Bound)", ylab = "H average P(Bound)", main = tf_name,
pch = ".", col = rgb(0,0,1,0.7))
abline(a=0, b=1, col = "darkgray")
Version | Author | Date |
---|---|---|
0197370 | kevinlkx | 2018-07-25 |
# logRatios
par(mfrow = c(1,2))
par(pty="s")
plot(rowMeans(CentLogRatios_N.df), rowMeans(CentLogRatios_H.df),
xlab = "N average logRatios", ylab = "H average logRatios", main = tf_name,
pch = ".", col = rgb(0,0,1,0.7))
abline(a=0,b=1,col = "darkgray")
plot(x = (rowMeans(CentLogRatios_H.df)+rowMeans(CentLogRatios_N.df))/2,
y = rowMeans(CentLogRatios_H.df) - rowMeans(CentLogRatios_N.df),
xlab = "average logRatios", ylab = "Difference in logRatios (H - N)", main = tf_name,
pch = ".", col = rgb(0,0,1,0.7))
abline(v=0, h=0, col = "darkgray")
Version | Author | Date |
---|---|---|
0197370 | kevinlkx | 2018-07-25 |
cat(length(idx_sites_sigH), "candidate motif sites differentially open in hypoxia. \n")
22 candidate motif sites differentially open in hypoxia.
# binding probablity
par(pty="s")
plot(rowMeans(CentPostPr_N.df[idx_sites_sigH,]), rowMeans(CentPostPr_H.df[idx_sites_sigH,]),
xlab = "N average P(Bound)", ylab = "H average P(Bound)", main = paste(tf_name, "bound sites"),
pch = 20, col = rgb(0,0,1,0.7))
abline(a=0, b=1, col = "darkgray")
Version | Author | Date |
---|---|---|
0197370 | kevinlkx | 2018-07-25 |
# logRatios
par(mfrow = c(1,2))
par(pty="s")
plot(rowMeans(CentLogRatios_N.df[idx_sites_sigH,]), rowMeans(CentLogRatios_H.df[idx_sites_sigH,]),
xlab = "N average logRatios", ylab = "H average logRatios", main = tf_name,
pch = 20, col = rgb(0,0,1,0.7))
abline(a=0,b=1,col = "darkgray")
plot(x = (rowMeans(CentLogRatios_H.df[idx_sites_sigH,])+rowMeans(CentLogRatios_N.df[idx_sites_sigH,]))/2,
y = rowMeans(CentLogRatios_H.df[idx_sites_sigH,]) - rowMeans(CentLogRatios_N.df[idx_sites_sigH,]),
xlab = "average logRatios", ylab = "Difference in logRatios (H - N)", main = tf_name,
pch = 20, col = rgb(0,0,1,0.7))
abline(v=0, h=0, col = "darkgray")
Version | Author | Date |
---|---|---|
0197370 | kevinlkx | 2018-07-25 |
cat(length(idx_sites_sigN), "candidate motif sites differentially open in normoxia \n")
79 candidate motif sites differentially open in normoxia
# binding probablity
par(pty="s")
plot(rowMeans(CentPostPr_N.df[idx_sites_sigN,]), rowMeans(CentPostPr_H.df[idx_sites_sigN,]),
xlab = "N average P(Bound)", ylab = "H average P(Bound)", main = paste(tf_name, "bound sites"),
pch = 20, col = rgb(0,0,1,0.7))
abline(a=0, b=1, col = "darkgray")
Version | Author | Date |
---|---|---|
0197370 | kevinlkx | 2018-07-25 |
# logRatios
par(mfrow = c(1,2))
par(pty="s")
plot(rowMeans(CentLogRatios_N.df[idx_sites_sigN,]), rowMeans(CentLogRatios_H.df[idx_sites_sigN,]),
xlab = "N average logRatios", ylab = "H average logRatios", main = tf_name,
pch = 20, col = rgb(0,0,1,0.7))
abline(a=0,b=1,col = "darkgray")
plot(x = (rowMeans(CentLogRatios_H.df[idx_sites_sigN,])+rowMeans(CentLogRatios_N.df[idx_sites_sigN,]))/2,
y = rowMeans(CentLogRatios_H.df[idx_sites_sigN,]) - rowMeans(CentLogRatios_N.df[idx_sites_sigN,]),
xlab = "average logRatios", ylab = "Difference in logRatios (H - N)", main = tf_name,
pch = 20, col = rgb(0,0,1,0.7))
abline(v=0, h=0, col = "darkgray")
targets <- data.frame(bam = c(bam_namelist_N, bam_namelist_H),
label = colnames(CentLogRatios.df),
condition = rep(c("N", "H"), each = 3))
print(targets)
bam label condition
1 N1_nomito_rdup.bam N1 N
2 N2_nomito_rdup.bam N2 N
3 N3_nomito_rdup.bam N3 N
4 H1_nomito_rdup.bam H1 H
5 H2_nomito_rdup.bam H2 H
6 H3_nomito_rdup.bam H3 H
condition <- factor(targets$condition, levels = c("N", "H"))
design <- model.matrix(~0+condition)
colnames(design) <- levels(condition)
print(design)
N H
1 1 0
2 1 0
3 1 0
4 0 1
5 0 1
6 0 1
attr(,"assign")
[1] 1 1
attr(,"contrasts")
attr(,"contrasts")$condition
[1] "contr.treatment"
CentLogRatios_diffAC.df <- CentLogRatios.df[idx_sites_diffAC, ]
fit <- lmFit(CentLogRatios_diffAC.df, design)
contrasts <- makeContrasts(H-N, levels=design)
fit2 <- contrasts.fit(fit, contrasts)
fit2 <- eBayes(fit2, trend=TRUE)
num_diffbind <- summary(decideTests(fit2))
percent_diffbind <- round(num_diffbind / sum(num_diffbind) * 100, 2)
cat(num_diffbind[1], "sites differentially open in normoxia (", percent_diffbind[1], "%) \n",
num_diffbind[3], "sites differentially open in hypoxia (", percent_diffbind[3], "%) \n",
num_diffbind[2], "sites not significantly different (", percent_diffbind[2], "%) \n")
79 sites differentially open in normoxia ( 78.22 %)
14 sites differentially open in hypoxia ( 13.86 %)
8 sites not significantly different ( 7.92 %)
# volcanoplot(fit2, main="H vs. N", xlab = "Difference in logRatios (H - N)")
plot(x = fit2$coef, y = -log10(fit2$p.value),
xlab = "Difference in logRatios (H - N)", ylab = "-log10(P-value)", main= paste(tf_name, "H vs. N"),
pch = 16, cex = 0.35)
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] parallel stats4 grid stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] VennDiagram_1.6.20 futile.logger_1.4.3 edgeR_3.20.9
[4] limma_3.34.9 GenomicRanges_1.30.3 GenomeInfoDb_1.14.0
[7] IRanges_2.12.0 S4Vectors_0.16.0 BiocGenerics_0.24.0
[10] gridExtra_2.3 ggplot2_2.2.1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 formatR_1.5 XVector_0.18.0
[4] compiler_3.4.3 pillar_1.2.2 git2r_0.21.0
[7] plyr_1.8.4 workflowr_1.1.1 futile.options_1.0.1
[10] zlibbioc_1.24.0 R.methodsS3_1.7.1 R.utils_2.6.0
[13] bitops_1.0-6 tools_3.4.3 digest_0.6.15
[16] lattice_0.20-35 evaluate_0.10.1 tibble_1.4.2
[19] gtable_0.2.0 rlang_0.2.0 yaml_2.1.18
[22] GenomeInfoDbData_1.0.0 stringr_1.3.0 knitr_1.20
[25] locfit_1.5-9.1 rprojroot_1.3-2 rmarkdown_1.9
[28] lambda.r_1.2.2 magrittr_1.5 whisker_0.3-2
[31] splines_3.4.3 backports_1.1.2 scales_0.5.0
[34] htmltools_0.3.6 colorspace_1.3-2 stringi_1.1.7
[37] RCurl_1.95-4.10 lazyeval_0.2.1 munsell_0.4.3
[40] R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1